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Developmental cell death of cortical projection
neurons is controlled by a Bcl11a/Bcl6-dependent
pathway
Christoph Wiegreffe1, Tobias Wahl1, Natalie Sophie Joos1,†, Jerome Bonnefont2,3 , Pentao Liu4 &

Stefan Britsch1,*

Abstract

Developmental neuron death plays a pivotal role in refining orga-
nization and wiring during neocortex formation. Aberrant regula-
tion of this process results in neurodevelopmental disorders
including impaired learning and memory. Underlying molecular
pathways are incompletely determined. Loss of Bcl11a in cortical
projection neurons induces pronounced cell death in upper-layer
cortical projection neurons during postnatal corticogenesis. We
use this genetic model to explore genetic mechanisms by which
developmental neuron death is controlled. Unexpectedly, we find
Bcl6, previously shown to be involved in the transition of cortical
neurons from progenitor to postmitotic differentiation state to
provide a major checkpoint regulating neuron survival during late
cortical development. We show that Bcl11a is a direct transcrip-
tional regulator of Bcl6. Deletion of Bcl6 exerts death of cortical
projection neurons. In turn, reintroduction of Bcl6 into Bcl11a
mutants prevents induction of cell death in these neurons.
Together, our data identify a novel Bcl11a/Bcl6-dependent molecu-
lar pathway in regulation of developmental cell death during
corticogenesis.
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Introduction

Developmental cell death (DCD) occurs in all animals and organs. It

is part of a homeostatic balance between generation and elimination

of cells. Developmental cell death provides a major checkpoint for

quality control allowing selective removal of either defective, mis-

integrated or no longer required cells (Causeret et al, 2018; Wong &

Marin, 2019). During the development of the mammalian neocor-

tex, excess numbers of neurons are generated. Supernumerary

neurons are eliminated during two distinct waves of apoptosis. In

mice, the first wave of DCD occurs around E14 and affects predomi-

nantly proliferating neuron precursors (Blaschke et al, 1996; de la

Rosa & de Pablo, 2000; Roth et al, 2000). During a second wave,

corresponding to the first two postnatal weeks in rodents, approxi-

mately 30% of postmitotic cortical neurons are eliminated by DCD

(Verney et al, 2000; Southwell et al, 2012). Within this period,

entire neuron populations, as for example Cajal–Retzius cells, which

transiently serve as signaling centers, are removed by DCD (Chowd-

hury et al, 2010; Ledonne et al, 2016), while in other neuron types,

like cortical projection neurons (CPN), DCD adjusts definitive

neuron numbers and refines immature synaptic circuits (Blanquie

et al, 2017; Wong et al, 2018). In the neocortex, dysregulated DCD

has been shown to be associated with a wide spectrum of neurode-

velopmental disorders, including major structural changes as well

as structurally more subtle defects, like autism-spectrum disorders

and intellectual disability (Kuida et al, 1996; Eriksson et al, 2001;

Wei et al, 2014; Nakamura et al, 2016). Developmental cell death

acts cell-type specific and is spatio-temporarily highly restricted

suggesting complex molecular regulation. In contrast to the periph-

eral nervous system, where target-derived neurotrophic signals have

been extensively demonstrated to play a key role in regulation of

neuron survival (Huang & Reichardt, 2001), the molecular controls

of DCD within the central nervous system (CNS) are incompletely

determined. Electrical and synaptic activity has been shown to

confer survival signals onto postmitotic cortical neurons (Blanquie

et al, 2017; Denaxa et al, 2018; Priya et al, 2018; Wong

et al, 2018). Transcription factor cascades as well as secreted signal-

ing molecules are of key importance for the development of the

neocortex. It is, however, unclear, how these regulatory networks

are connected to DCD.
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Bcl11a (Ctip1) encodes a zinc-finger protein that regulates tran-

scription through interaction with COUP-TF proteins as well as

direct, sequence-dependent DNA binding (Avram et al, 2002). We

previously demonstrated that postmitotic upper-layer CPN require

expression of Bcl11a for early postnatal survival. Cre/loxP-

dependent ablation of Bcl11a in CPN results in massive increase in

apoptosis between P4 and P6 selectively in upper-layer CPN (Wiegr-

effe et al, 2015).

In this study, we employed Bcl11a mutation in CPN as a highly

selective genetic tool to systematically identify downstream candi-

date genes involved in the regulation of DCD in postmitotic CPN.

Using comparative transcriptome analysis, we found that Bcl6,

previously reported to be involved in the transition of cortical

neurons from progenitor to postmitotic differentiation state (Tiberi

et al, 2012; Bonnefont et al, 2019), is downregulated in Bcl11a

mutant upper-layer CPN. Furthermore, we show Bcl11a to directly

bind to a conserved promotor element and to activate transcription

of the Bcl6 gene. Knockout of Bcl6 in postmitotic CPN induces their

apoptosis. In turn, reintroduction of Bcl6 into Bcl11a mutant CPN

prevents these neurons from apoptosis. Finally, we show Foxo1 to

be downregulated in both, Bcl6 and Bcl11a mutant CPN. Normaliza-

tion of Foxo1 expression is sufficient to suppress increased apoptosis

in Bcl11a mutant CPN suggesting Foxo1 to participate in the regula-

tion of DCD in CPN during postnatal neocorticogenesis. Taken

together, in this study we demonstrate that DCD of postmitotic

upper-layer CPN is controlled by a novel Bcl11a/Bcl6-dependent

transcriptional pathway.

Results and Discussion

Identification of downstream candidate targets of Bcl11a

We used Bcl11aF/F; Emx1IRESCre brains as a model to identify genes

that play a role in postnatal survival of projection neurons in the

somatosensory neocortex. Bcl11a mutant brains display robust

increase in apoptosis during the second wave of DCD in upper corti-

cal layers at postnatal stages (Wiegreffe et al, 2015). Using laser

capture microdissection, we specifically isolated cortical layers 2–4

of Bcl11a mutant and control brains at P2 (Fig 1A and B), a stage

A
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B

Figure 1. Identification of downstream candidate target genes of Bcl11a
in superficial cortical layers at early postnatal development.

A Cortical layers 2–4 were isolated by laser microdissection from Bcl11aF/F;
Emx1IRESCre and control neocortex (n = 4).

B Gene expression was compared using microarrays. From a set of 137
differentially expressed (DE) genes, candidate targets were selected based
on gene ontology (GO) and PubMed analyses and verified by quantitative
real-time PCR and RNA in situ hybridization.

C Volcano plot showing DE genes (red). Those not significantly changed (fold
change < 1.5; P > 0.05) are shaded black. Bcl11a and Bcl6 are highlighted
in green.

D Relative Bcl6 mRNA expression level determined by quantitative real-time
PCR is decreased in laser-microdissected cortical tissue of P2 Bcl11aF/F;
Emx1IRESCre compared with control brains (n = 4). Results are expressed as
mean � s.e.m.; Student’s t-test; **P < 0.01.

E RNA in situ hybridization showing downregulation of Bcl6 expression in
Bcl11aF/F;Emx1IRESCre compared with control neocortex at E17.5, P0, P2, and P4.

Data information: Scale bars, 100 lm (A) and 50 lm (E).
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when the second wave of apoptosis has not yet been initiated (Blan-

quie et al, 2017) and cell death is not yet increased in Bcl11a

mutants (Wiegreffe et al, 2015). We then performed a differential

expression analysis using microarrays and identified a set of 137 dif-

ferentially expressed (DE) genes that were subjected to a GO over-

representation test as previously described (Mi et al, 2013; De

Bruyckere et al, 2018), which revealed genes involved in axon guid-

ance, cell–cell adhesion, and regulation of cell communication

(Figs 1C, and EV1, EV2 and EV3A; Dataset EV1). To verify the

validity of the experimental approach, selected candidate genes

were tested by quantitative real-time PCR and RNA in situ

hybridization. Cdh6, Cdh12, Efna5, and Pcdh9 that were identified

as downregulated were verified by this approach (Fig EV3B and C).

In addition, Cdh13, Flrt2, Flrt3, and Slit2 were verified as upregu-

lated (Fig EV3B and D). Together, these results show that our

genetic approach consistently identified DE genes in upper cortical

layers of Bcl11a mutant brains that could directly or indirectly be

involved in the regulation of developmental apoptosis.

Among the DE genes, we found Bcl6, a transcriptional repressor

that was previously reported to regulate cortical neurogenesis

(Tiberi et al, 2012; Bonnefont et al, 2019), to be downregulated by

64.8 � 0.1% in Bcl11a mutant neocortex (Fig 1D). Using RNA

in situ hybridization, we found robust expression of Bcl6 predomi-

nantly in upper and at low levels in deep cortical layers of controls

between E17.5 and P4 (Fig 1E). In Bcl11a mutant neocortex, Bcl6

was downregulated in upper cortical layers at these stages (Fig 1E),

suggesting this gene to be transcriptionally downstream of Bcl11a in

upper cortical layers. Outside the CNS, Bcl6 exerts anti-apoptotic

functions by suppressing genes involved in DNA damage response

(Phan & Dalla-Favera, 2004; Phan et al, 2005; Ranuncolo et al,

2007), which could possibly be conserved in the developing neocor-

tex as well. Therefore, we focused further analyses on Bcl6.

Bcl6 is a direct target of Bcl11a in upper-layer cortical
projection neurons

To better characterize the expression of Bcl6 protein in early post-

natal somatosensory cortex we generated a polyclonal antibody in

guinea pig raised against the N-terminal 484 amino acids of mouse

Bcl6. Specificity of the Bcl6 antibody was tested by immunohisto-

chemistry using Bcl6 mutant brains, which lack exons 4–10 (Ye

et al, 1997) and do not express Bcl6 protein (Tiberi et al, 2012). In

comparison to wild-type littermates, we did not detect Bcl6 protein

in Bcl6 mutant brains at P0 (Appendix Fig S1), demonstrating our

antibody to specifically detect Bcl6 protein. Coexpression analysis

of Bcl6 together with Bcl11a and Satb2, a marker for callosal

projection neurons (Alcamo et al, 2008; Britanova et al, 2008),

showed 25.6 � 1.9% Bcl6+ Bcl11a+ Satb2+, 1.3 � 0.5% Bcl6+

Bcl11a+, and 0.8 � 0.2% Bcl6+ Satb2+ cells in wild-type brains.

Only 0.3 � 1.0% of cells exclusively expressed Bcl6 (Fig 2A and

B). Coexpression analysis of Bcl6 together with Bcl11a and Cux1,

a marker for cortical layers 2–4 (Nieto et al, 2004), showed

19.0 � 0.7% Bcl6+ Bcl11a+ Cux1+, 11.6 � 0.9% Bcl6+ Bcl11a+, and

1.0 � 0.2% Bcl6+ Cux1+ cells. Again, only 0.9 � 0.2% of cells

exclusively expressed Bcl6 (Fig 2C and D). Thus, more than 90%

of Bcl6+ cells coexpress Satb2 as well as Bcl11a and more than

61% of these cells are located in Cux1+ upper layers with distinct

localization to cortical layers 2/3 (Fig 2C). Notably, a substantial

proportion of Bcl6+ cells is located in deep cortical layers. Thus,

Bcl6 is a marker for a subset of callosal projection neurons identi-

fied by coexpression of Bcl11a and that are located in cortical

layers 2/3 as well as in deep cortical layers.

By DNA sequence analysis, we found a TGACCA binding motif

of Bcl11a (Liu et al, 2018) in the first intron that was located 982 bp

downstream of the transcriptional start site and ~10.2 kb upstream

of the first protein-coding exon of the Bcl6 gene. This binding motif

was embedded within a 55 bp long conserved region with a high

degree of conservation between rat, human, and chimp (Fig 2E).

Binding of Bcl11a to this motif was tested by chromatin immunopre-

cipitation (ChIP) followed by quantitative real-time PCR using a

primer pair flanking this region. An enrichment of more than four-

fold was found using a Bcl11a-specific antibody in comparison with

an immunoglobulin G (IgG) control antibody (Fig 2F), demonstrat-

ing binding of Bcl11a to this region. As negative controls, binding of

Bcl11a to exon 5 of Bcl6 and the Hprt promoter was tested, but no

significant enrichment was found in comparison with the IgG

control antibody (Fig 2F). The sequence containing the Bcl11a bind-

ing motif was further tested for its ability to activate gene expres-

sion. In luciferase assays, a 1.5-fold induction was measured,

indicating this element to convey functional activation upon Bcl11a

binding (Fig 2G). As negative controls, we tested a region of exon 5

of the Bcl6 gene as well as activation in the presence of the closely

▸Figure 2. Bcl6 is expressed in superficial callosal projection neurons and a target gene of Bcl11a.

A Immunohistochemistry of Bcl6 (red), Bcl11a (green), and Satb2 (blue) in P2 wild-type neocortex.
B Venn diagram displaying the proportions of Bcl6 neurons overlapping with Bcl11a and Satb2 expressing cells. The percentage of each labeled cell population is given

in relation to all labeled cells (Bcl6+ and Bcl11a+ and Satb2+, in total 4,479 cells).
C Immunohistochemistry of Bcl6 (red), Bcl11a (green), and Cux1 (blue) in P2 wild-type neocortex.
D Venn diagram displaying the proportions of Bcl6 neurons overlapping with Bcl11a and Cux1 expressing cells. The percentage of each labeled cell population is given

in relation to all labeled cells (Bcl6+ and Bcl11a+ and Cux1+, in total 4,301 cells).
E Scheme of the Bcl6 gene locus displaying the start codon (ATG) at +11.2 kb relative to the transcriptional start site (TSS). A regulatory element (RE) in the first intron

at +982 bp contains a conserved binding motif (TGACCA, in red) of Bcl11a.
F ChIP analysis using a Bcl11a antibody and P2 cortical tissue detects Bcl11a binding to the RE shown in (E). Negative controls include ChIP with unspecific IgG

antibody and the precipitation of exon 5 of Bcl6 and the Hprt promoter. The experiment was independently repeated four times. Results are expressed as
mean � s.e.m.; Student’s t-test; *P < 0.05.

G Luciferase assays in HEK293 cells transfected with control (CAG-CtlGFP), Bcl11a (CAG-Bcl11aGFP), or Bcl11b (CAG-Bcl11bGFP) expression vector show induction of luciferase
activity of the RE reporter construct by Bcl11a. Negative controls include a reporter construct for a region of exon 5 of the Bcl6 gene and co-transfection with the
closely related transcription factor Bcl11b. The experiment was independently repeated four times. Results are expressed as mean � s.e.m.; one-way ANOVA followed
by Tukey’s post-hoc test; ***P < 0.001. Data information: Scale bars, 50 lm.
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related transcription factor Bcl11b, which both did not induce tran-

scriptional activity in luciferase assays (Fig 2G).

Bcl6 is downregulated in upper layers of Bcl11a
mutant neocortex

To confirm Bcl6 downregulation in the Bcl11a mutant neocortex on

protein level, we performed immunohistochemistry with Bcl6 and

neuron subtype-specific antibodies. The overall expression of Bcl6 was

reduced by 44.0 � 7.0% compared with control neocortex at P2

(Fig 3A and B). We did not detect changes in the number of Satb2+ and

Cux1+ cells that would normally coexpress with Bcl6 (c.f. Fig 2A–D),

suggesting that these cells are born correctly, have for the most

part migrated to their respective layers, and undergo neuron subtype-

specific differentiation (Fig 3A and B). Furthermore, the proportion

of Cux1+ and Satb2+ cells coexpressing Bcl6 was reduced from

57.4 � 2.3 to 24.2 � 2.6% and 58.5 � 2.8 to 31.8 � 1.6%, respec-

tively, in Bcl11a mutant compared with control neocortex (Fig 3A

and C). As previously demonstrated, cortical thickness is reduced and

layer 5 is increased at the expense of layer 6 in Bcl11a mutants at this

stage (Wiegreffe et al, 2015; Woodworth et al, 2016). We did not

detect significant changes in the number of cells coexpressing Bcl6 in

deep cortical layers labeled by Bcl11b (layer 5) or Tbr1 (layer 6; Moly-

neaux et al, 2007; Fig EV4A–C), indicating a selective loss of Bcl6 in

upper-layer neurons. Together, these data are compatible with a func-

tion of Bcl6 in CPN survival, which is massively impaired in upper

layers of the Bcl11amutant neocortex after P2 (Wiegreffe et al, 2015).

Cell-autonomous control of Bcl6 expression by Bcl11a

To further examine whether Bcl6 expression is directly regulated

by Bcl11a in neurons, we created a mosaic mutant in vivo situation

by using in utero electroporation. We generated Bcl11a-deficient

neurons in cortical layer 2/3 by electroporating Cre together with

GFP (CAG-CreGFP) or GFP alone (CAG-CtlGFP) into conditional Bcl11a

mutant (Bcl11aF/F) brains at E15.5 and analyzed the transfected

brains at P2 (Fig 4A and B). The proportion of GFP+ cells that coex-

presses Bcl6 was reduced from 70.3 � 4.0% in controls to

9.5 � 1.5% in Bcl11a-deficient cortical neurons (Fig 4C and F). In

contrast, the proportions of GFP+ cells that coexpress Cux1 or Satb2

remained unchanged (Fig 4D–F). Thus, cell-autonomous loss of

Bcl11a in superficial cortical layers leads to a dramatic and specific

reduction of Bcl6. Together with the direct binding of Bcl11a to the

Bcl6 gene and its transcriptional activation through a conserved

binding motif (Fig 2E–G), this suggests that Bcl11a directly controls

Bcl6 expression in these cells.

Reintroduction of Bcl6 into Bcl11a mutants rescues neuron death

We next asked whether reintroduction of Bcl6 into Bcl11a mutant

neurons located in upper cortical layers could rescue mutant

neurons from undergoing apoptosis and thereby normalize the

Bcl11a mutant phenotype. We generated Cre-dependent control

(CAG-LSL-CtlGFP) and Bcl6 (CAG-LSL-Bcl6GFP) expression constructs

that were tested in HEK293 cells and by western blot

(Appendix Fig S2A). Both constructs induced robust GFP expression

A

B C

Figure 3. Bcl6 expression is specifically downregulated in superficial
cortical layers of Bcl11aF/F;Emx1IRESCre neocortex.

A Immunohistochemistry of Bcl6 (red), Cux1 (green), and Satb2 (blue) in P2
Bcl11aF/F;Emx1IRESCre and control neocortex. Nuclei are stained with Dapi
(white).

B Relative quantification of Bcl6+, Satb2+, and Cux1+ cells in Bcl11aF/F;
Emx1IRESCre and control neocortex (n = 4).

C Numbers of Cux1+ or Satb2+ cells that coexpress Bcl6 are reduced in
Bcl11aF/F;Emx1IRESCre compared with control neocortex (n = 4).

Data information: All graphs represent the mean � s.e.m.; Student’s t-test;
***P < 0.001. Scale bar, 50 lm.
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in the presence or absence of Cre, indicating that the floxed stop

(LSL) cassette did not prevent the GFP from being expressed.

However, Bcl6 expression was only observed in the presence of Cre,

indicating a tight regulation of Bcl6 expression from this construct

(Appendix Fig S2B). We then overexpressed Bcl6 in Bcl11a mutant

cortical neurons by in utero electroporation at E15.5 and analyzed

A
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Figure 4.
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the brains at P5 (Fig 4A). To circumvent functions of Bcl6 that

could interfere with neurogenesis (Tiberi et al, 2012; Bonnefont

et al, 2019), we directed Bcl6 expression to postmitotic neurons

by electroporating CAG-LSL-CtlGFP or CAG-LSL-Bcl6GFP expression

constructs together with Cre placed under the control of the postmi-

totically activated Neurod promoter (Neurod-Cre) into Bcl11aD/F

(i.e., conditional mutant) or Bcl11a+/F (i.e., control) brains (Fig 4G).

Co-electroporation of Neurod-Cre together with CAG-LSL-CtlGFP

robustly induced cell death in Bcl11aD/F in comparison with control

brains by more than threefold. In contrast, postmitotic reintroduc-

tion of Bcl6 into Bcl11a-deficient neurons reduced apoptosis to

control levels. Of note, overexpression of Bcl6 in control brains did

not significantly reduce the number of cleaved caspase 3+ cells

below control levels (Fig 4H and I). Together, these data strongly

support a role for Bcl6 as a direct functional downstream target of

Bcl11a that controls neuron survival during the second wave of

DCD at the early postnatal stage.

Increased cell death in postnatal Bcl6 mutant neocortex

To further corroborate that Bcl6 confers survival of cortical projec-

tion neurons, we generated forebrain-specific Bcl6 mutants by cross-

ing conditional Bcl6 mutant mice (Bcl6F/F), in which exons 7–9 are

flanked by loxP sites (Hollister et al, 2013), with NexCre mice (Goeb-

bels et al, 2006) that induce recombination in postmitotic cortical

projection neurons. Quantitative real-time PCR showed that NexCre

reduced Bcl6 expression by 80.0 � 0.1% compared with controls at

P0 (Fig 5B). Due to restricted activity of NexCre, incomplete reduc-

tion of Bcl6 is likely caused by residual expression in non-neuronal

cell types. We chose P5 to analyze DCD in Bcl6 mutant brains

because Bcl11a mutants display massively increased cell death

(Wiegreffe et al, 2015) and naturally occurring cell death in wild-

type brains peaks around this stage (Blanquie et al, 2017). We

found a significant increase in cleaved caspase 3+ cells located

predominantly in the upper cortical layers from 6.04 � 0.02% in

controls to 8.44 � 0.77% cells/mm2 in Bcl6 mutant brains concomi-

tant with a reduction of cortical area by 9.7 � 2.0% (Fig 5A, C

and D). We compared this increase in apoptosis in Bcl6 mutants to

the phenotypes observed in Bcl11aF/F;NexCre and the previously

described Bcl11aF/F;Emx1IRESCre mutants (Fig EV5A and B; Wiegreffe

et al, 2015). Both Bcl11a mutants display a similar extent of apopto-

sis. In both cases, increased neuron death was more pronounced as

compared to the apoptosis rate observed in Bcl6F/F;NexCre mutants.

This suggests that upstream of Bcl6, Bcl11a controls additional func-

tions in neocortex development, which may indirectly and indepen-

dently of Bcl6 contribute to cell survival control of CPN. For

◀ Figure 4. Cell-autonomous loss of Bcl11a in superficial cortical layers leads to reduced Bcl6 expression and reintroduction of Bcl6 into Bcl11a mutant
superficial projection neurons rescues the Bcl11a mutant phenotype.

A Schematic representation of the experimental approach. Embryos are electroporated at E15.5 with the indicated DNA plasmids and sacrificed at either P2 or P5.
B DNA plasmids used in the experiment shown in (C–F).
C–E Immunohistochemistry of electroporated P2 Bcl11aF/F neurons in superficial cortical layers with GFP (green) and Bcl6 (red, C), Cux1 (red, D), or Satb2 (red, E)

antibodies. Bcl6 expression is specifically downregulated Bcl11aF/F neocortex upon electroporation of CAG-CreGFP in comparison with CAG-CtlGFP control plasmid.
Nuclei are stained with Dapi (white).

F Quantification of the percentage of electroporated cells expressing Bcl6 (n = 3), Satb2 (n = 3), and Cux1 (n = 5). Results are expressed as mean � s.e.m.; Student’s
t-test; ***P < 0.001.

G DNA plasmids used in the experiment shown in (H and I).
H Immunohistochemistry of electroporated P5 Bcl11aΔ/F and Bcl11a+/F neurons in superficial cortical layers with GFP (green) and cleaved caspase 3 (CC3, magenta)

antibodies. Electroporation of Neurod-CreGFP plasmid together with CAG-LSL-Bcl6GFP into Bcl11aF/F neocortex reduces the number of CC3+ cells to control levels.
I Quantification of the experiment shown in (H) (n = 4). Results are expressed as mean � s.e.m.; one-way ANOVA followed by Tukey’s post-hoc test; ***P < 0.001.

Data information: White arrowheads point at GFP+ cells that also express Bcl6, Cux1, Satb2, or CC3. Black arrowheads indicate cells expressing only GFP+. Scale bars,
20 lm (C–E), 50 lm (H).

▸Figure 5. Postnatal developmental cell death is increased in Bcl6F/F;NexCre neocortex.

A Immunohistochemistry of cleaved caspase 3 (CC3) shows that the number of CC3+ cells (marked by black arrowheads) is increased in P5 Bcl6F/F;NexCre compared with
control neocortex. Insets are enlargements of the boxed areas in corresponding panels.

B Relative Bcl6 mRNA expression level determined by quantitative real-time PCR using primers targeting a region of exon 8 is decreased in P0 Bcl6F/F;NexCre compared
with control brains (n = 4). Results are expressed as mean � s.e.m.; Student’s t-test; ***P < 0.001.

C Quantification of the experiment shown in (A) (n = 3). Results are expressed as mean � s.e.m.; Student’s t-test; *P < 0.05.
D Quantification of neocortical area in P5 Bcl6F/F;NexCre and control brains (n = 3). Results are expressed as mean � s.e.m.; Student’s t-test; **P < 0.01.
E Heat map showing differentially expressed genes in laser-microdissected superficial cortical layers of P5 Bcl6F/F;NexCre compared with control brains (n = 4).
F Relative Foxo1 mRNA expression level determined by quantitative real-time PCR is increased in laser-microdissected superficial cortical layers of P5 Bcl6F/F;NexCre com-

pared with control brains (n = 4). Results are expressed as mean � s.e.m.; Student’s t-test; **P < 0.01.
G RNA in situ hybridization showing upregulation of Foxo1 expression in P5 Bcl6F/F;NexCre compared with control neocortex.
H Schematic representation of the experimental approach. Embryos are electroporated at E15.5 and sacrificed at P5.
I DNA plasmids used in the experiment shown in (J and K).
J Immunohistochemistry of electroporated P5 Bcl11aF/F neurons in superficial cortical layers with GFP (green) and cleaved caspase 3 (CC3, magenta) antibodies.

Electroporation of CAG-CreGFP plasmid together with Foxo1-shRNAGFP#4 into Bcl11aF/F neocortex reduces the number of CC3+ cells to control levels. White and black
arrowheads indicate GFP+ CC3+ and GFP+ cells, respectively.

K Quantification of the experiment shown in (J) (n = 4, CAG-CtlGFP/Ctl-shRNAGFP; n = 3, CAG-CreGFP/Ctl-shRNAGFP; n = 5, CAG-CreGFP/Foxo1-shRNAGFP#4). Results are
expressed as mean � s.e.m.; one-way ANOVA followed by Tukey’s post-hoc test; *P < 0.05.

Data information: Scale bars, 500 lm (A), 50 lm (G, J).
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example, we and others have shown previously that morphogenesis

and connectivity of CPN depend on Bcl11a (Simon et al, 2020).

Collectively, our data show that Bcl6 exerts functions in upper-

layer neuron survival during early postnatal neocortical develop-

ment. To characterize downstream genetic pathways of Bcl6 respon-

sible for the observed phenotype, we isolated upper cortical layers

from Bcl6 mutant and control brains by laser capture microdissec-

tion at P5 and performed a differential expression analysis on this

tissue using microarrays. This analysis revealed a small number of

DE genes that were mostly upregulated in Bcl6 mutant upper corti-

cal layers (Fig 5E, Dataset EV2). By systematic comparison of the

differential transcriptomes of Bcl11a and Bcl6 mutants

(Datasets EV1 and EV2, and Fig EV5C), we identified only three

genes overlapping in both datasets that were verified by quantita-

tive real-time PCR (Fig EV5C–E). Of these genes, the cell death-

associated factor Foxo1 was found upregulated in both, Bcl6 and

Bcl11a mutants (Fig 5F; Fig EV5D and E). Upregulation of Foxo1

was most apparent in upper layers of the Bcl6 mutant neocortex

(Fig 5G). Bcl11a and Bcl6 were shown to physically interact and

colocalize in nuclear paraspeckles suggesting common regulation of

gene expression (Nakamura et al, 2000; Liu et al, 2006). Members

of the Foxo family have been demonstrated to be involved in the

control of neuron survival (Carter & Brunet, 2007; Santo &

Paik, 2018). It might thus well be that Bcl6 together with Bcl11a

exerts anti-apoptotic functions in CPN through this pathway.

To further explore functions of Foxo1 in Bcl11a/Bcl6-dependent

DCD of CPN, we knocked down Foxo1 gene expression by the help of

shRNA according to previously published experimental strategies

(Wiegreffe et al, 2015). The shRNA sequences were selected accord-

ing to published studies (Zhang et al, 2011; Park et al, 2019). Using

western blot analysis, construct Foxo1-shRNAGFP#4 was determined

to be most efficient for its ability to reduce Foxo1 expression and

employed for further experiments (Appendix Fig S3A–C). Using in

utero electroporation, we introduced Foxo1-shRNAGFP#4 together with

CAG-CreGFP constructs into Bcl11aF/F upper-layer CPN. As controls,

Ctl-shRNAGFP together with CAG-CtlGFP or CAG-CreGFP were used. The

shRNA-mediated knockdown of Foxo1 expression was sufficient to

suppress, that is, rescue the Bcl11a-dependent apoptosis phenotype

in CPN in vivo. In contrast, co-electroporation of Ctl-shRNAGFP

together with CAG-CreGFP did not affect increased apoptosis in Bcl11a

mutant CPN (Fig 5H–K). This provides direct experimental evidence

for a functional role of Foxo1 in Bcl11a/Bcl6-dependent regulation of

DCD of CPN. In lymphoid cells, Bcl6 regulates cell death through p53

function (Phan & Dalla-Favera, 2004; Cerchietti et al, 2008). Using

quantitative real-time PCR, we did not detect changes in p53 expres-

sion in our expression analysis (Fig EV5D and E). Taken together, in

this study we demonstrate that DCD of postmitotic upper-layer CPN

is controlled by a novel Bcl11a/Bcl6-dependent transcriptional path-

way that involves Foxo1 function.

Previously, we demonstrated Bcl6 to be required during early

phases of neocortical development, where Bcl6 promotes the transi-

tion of neural progenitors into postmitotic neurons (Tiberi

et al, 2012; Bonnefont et al, 2019). Our data suggest additional

functions of Bcl6 in the postnatal development of postmitotic CPN.

A conserved function of this factor in control of cell survival is

supported by its well-characterized functions in the lymphatic

system. Bcl6 prevents apoptosis in germinal center B-cells and

exerts oncogenic activity in diffuse large B-cell lymphoma both,

through modulation of the p53 downstream pathway (Phan & Dalla-

Favera, 2004; Cerchietti et al, 2008). In the cerebellum, deletion of

Bcl6 induces massively increased cell death of granule cell precur-

sors but not postmitotic granule cells leading to reduction of organ

size (Tiberi et al, 2014). Interestingly, activation of nuclear calcium

pathway through synaptic NMDA-receptor signaling induces Bcl6

expression in hippocampal neurons. In turn, upregulation of Bcl6

improves the survival of these neurons (Zhang et al, 2007). This

suggests that activity-dependent as well as activity-independent,

transcriptional regulatory pathways converge onto Bcl6 in the

control of DCD.

Compared with Bcl11a mutants, we observed a milder increase

in apoptosis in Bcl6 mutant CPN, raising the possibility of additional

signals to contribute to apoptosis in Bcl11a mutants, for example,

through regulation of alternative cell death pathways. Our system-

atic GO and transcriptome analyses, however, did not reveal further

candidate target genes of Bcl11a commonly involved in alternative

apoptosis pathways. Postnatally, Bcl11a mutant CPN display severe

morphogenetic defects as characterized by shortened apical

dendrites and disturbed dendritic branching pattern (Wiegreffe

et al, 2015). This may result in impaired synaptic integration and

electrical activity of Bc11a mutant neurons and in turn contribute to

the severity of the phenotype.

Alternatively, additional, not yet characterized signals, might be

involved. In our screen, we detected several axon guidance mole-

cules, including Slit2, Efna5, Sema3c, �3d, �7a, Flrt2, �3 to be

deregulated in Bcl11a mutant CPN. Semaphorins, for example, have

extensively been demonstrated to influence neuronal connectivity

(Koropouli & Kolodkin, 2014). Thus, differentially expressed guid-

ance molecules, as observed in our study, might either directly or

indirectly, through modulation of connectivity influence the severity

of the apoptosis phenotype in Bcl11a mutants. In addition, we found

cadherin 6, 12, 13 and protocadherin 9 to be deregulated in Bcl11a

mutant CPN. Recent experimental evidence suggests cadherins, in

addition to their well-characterized functions in cell recognition and

neural circuit assembly (Jontes, 2018; Sanes & Zipursky, 2020), to

exert survival functions as well, for example, in neocortical

interneurons (L�aszl�o et al, 2020). We previously demonstrated

Bcl11a to be expressed in neocortical interneurons (Wiegreffe

et al, 2015) raising the possibility that Bcl11a controls DCD also in

these cells. During neocorticogenesis, DCD occurs in cell-type-

specific and temporally distinct patterns. In mice, numbers of CPN

are refined by DCD specifically between P4 and P6, whereas the

time course of DCD in cortical interneurons is shifted to later devel-

opmental stages (Southwell et al, 2012; Blanquie et al, 2017; Wong

et al, 2018). Emx1IRESCre-/NexCre-dependent recombination as used

in our study restricts Bcl11a mutation selectively to CPN. Thus, a

role of Bcl11a in cortical interneuron survival remains to be deter-

mined by cell-type-specific mutation of Bcl11a in interneurons.

Bcl11a has been previously demonstrated to directly interact with

Nr2f1 (COUP-TFI). Moreover, in a very recent study Bcl1a was

suggested to directly bind to the Nr2f1 gene locus and suppress its

transcription (Du et al, 2021) raising the question whether Nr2f1 is

involved in Bcl11a-dependent control of late DCD in cortical projec-

tion neurons. Several lines of evidence argue against this assump-

tion. (i) extensive phenotype analyses of Nr2f1 mutants from

various laboratories have implicated this factor in control of cortical

progenitor proliferation as well as cortical patterning, and laminar
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fate determination in postmitotic neurons (Tocco et al, 2021). Yet, a

direct role for Nr2f1 in control of postmitotic neuron survival has

not been reported. (ii) in our study, we did not detect deregulated

Nr2f1 expression in Bcl11a nor in Bcl6 mutants as compared to

controls. Interestingly, Bcl11a and Nr2f1 have been shown to be

involved in establishing somatomotor versus somatosensory cortical

area identity leading to a partial motorization of the mutant neocor-

tex (Armentano et al, 2007; Greig et al, 2016). Interestingly, wild-

type Bcl6 expression is lower in the somatomotor cortex as in the

somatosensory cortex. Correspondingly, numbers of neurons elimi-

nated by DCD are substantially higher in the somatomotor as

compared to the somatosensory cortex (Blanquie et al, 2017). Nr2f1

might thus indirectly participate in the control of Bcl6 expression

through the control of cortical area identity. Whether this occurs

through direct protein interaction with Bcl11a or indirectly through

mechanisms independent of Bcl11a remains to be determined.

Materials and Methods

Animals

Mice carrying a conditional knockout allele of Bcl11a (Bcl11aF) have

previously been described (John et al, 2012). These mice were

crossed to Emx1IRESCre (Gorski et al, 2002), NexCre (Goebbels

et al, 2006), or DeleterCre (Schwenk et al, 1995) mice to generate

conditional Bcl11aF/F;Emx1IRESCre, conditional Bcl11aF/F;NexCre, and

Bcl11aD/+ heterozygous mutants, respectively. Bcl11aF/+;Emx1IRESCre

littermates were phenotypically indistinguishable from Bcl11a+/+;

Emx1IRESCre animals (Appendix Fig S4A and B) and served as

controls throughout the study. Mice carrying a conditional knockout

allele of Bcl6 (Bcl6F; Hollister et al, 2013) were crossed to NexCre

mice to generate conditional Bcl6F/F;NexCre mutants. Bcl6F/F litter-

mates without a NexCre allele served as controls. Bcl6+/� mice have

previously been described (Ye et al, 1997). Genotyping of the mice

was performed by PCR. Animals were kept in a 12:12-h light–dark

cycle and at a constant temperature (22 � 1°C) in IVC cages. All

mouse experiments were carried out in compliance with German

law and approved by the respective government offices in T€ubingen,

Germany.

Immunohistochemistry and RNA in situ hybridization

Brains were fixed in 4% PFA in 0.1 M phosphate buffer (pH 7.4),

embedded in OCT compound (Polysciences), and frozen sections

were prepared at 14 lm for immunohistochemistry or 18 lm for

RNA in situ hybridization as previously described (John et al, 2012;

Simon et al, 2012). Paraffin and vibratome sections were prepared

at 7 and 50 lm, respectively. All clones for non-radioactive RNA

in situ hybridization, except for Flrt2 and Flrt3, which were a gift by

R€udiger Klein (Max Planck Institute of Neurobiology, Martinsried,

Germany), were generated by reverse transcription PCR and

oligonucleotides are listed in Table EV1.

The following antibodies were used: guinea pig anti-Bcl11a at

1:1,000 dilution (John et al, 2012), mouse anti-Bcl11a at 1:1,000

dilution (Abcam Cat# ab19487, RRID:AB_444947), rabbit anti-

Bcl11a at 1:1,000 dilution (John et al, 2012), rat anti-Bcl11b at

1:1,000 dilution (Abcam Cat# ab18465, RRID:AB_2064130), rabbit

anti-cleaved Caspase 3 at 1:300 dilution (Cell Signaling Technology

Cat# 9661, RRID:AB_2341188), rabbit anti-Cux1 at 1:500 dilution

(Santa Cruz Biotechnology Cat# sc-13,024, RRID:AB_2261231),

chicken anti-GFP at 1:2,000 dilution (Abcam Cat# ab13970, RRID:

AB_300798), mouse anti-Satb2 at 1:1,000 dilution (Abcam Cat#

ab51502, RRID:AB_882455), and rabbit anti-Tbr1 at 1:500 dilution

(Abcam Cat# ab31940, RRID:AB_2200219). To generate anti-Bcl6

antiserum, guinea pigs were injected with a protein comprising

amino acids 4–484 of mouse Bcl6 (NP_033874) and pooled sera

were purified by affinity chromatography and used at 1:1,000 dilu-

tion. Biotin-conjugated, HRP-conjugated, and fluorescent secondary

antibodies were purchased from Jackson ImmunoResearch and used

at 1:500 dilution. Sections were counterstained with Dapi (Molecu-

lar Probes). Immunohistochemical detection of Bcl6 was performed

on paraffin sections with antigen retrieval by boiling the section for

30 min in Tris-EDTA buffer, pH 9.0 and enhanced using tyramide

signal amplification (Invitrogen) according to the manufacturer’s

instructions or an avidin/biotin-based peroxidase system and DAB

substrate (Vector Laboratories). Cleaved caspase 3 was detected on

frozen sections of conditional Bcl6 mutants using an avidin/biotin-

based peroxidase system and DAB substrate (Vector Laboratories).

All fluorescent images were examined on a TCS SP5II confocal

microscope (Leica) and processed with Adobe Photoshop (RRID:

SCR_014199) software.

Laser microdissection

All procedures were performed in an RNase-free environment. Corti-

cal layers 2–4 were isolated from unfixed frozen sections via laser

microdissection. Briefly, brains were quickly removed from the

skull, washed in ice-cold PBS, frozen in OCT compound (Poly-

sciences), and stored at �80°C. Sections were prepared at 20 lm
and mounted on membrane-covered 1 mm PEN slides (Zeiss) that

were UV-treated and coated with poly-L-lysine. Sections were fixed

in ice-cold 70% EtOH for 1 min, incubated in 1% cresyl violet

acetate solution (Waldeck) for 45 s, and washed in 70% EtOH and

100% EtOH for 1 min each. After a brief drying step on a 37°C

warming plate, sections were immediately processed for laser

microdissection using a PALM MicroBeam Rel.4.2 (Zeiss). Laser-

microdissected tissue was lysed in RLT lysis buffer (Qiagen)

containing 2-mercaptoethanol for 30 min on ice and stored at

�80°C before total RNA extraction.

Plasmids

CAG-CtlGFP and CAG-CreGFP have previously been described (Hand

et al, 2005; Wiegreffe et al, 2015). Bcl11a (NM_001242934) and

Bcl11b (NM_001079883) were cloned by PCR using cDNA as

template and inserted into CAG-CtlGFP to generate CAG-Bcl11aGFP

and CAG-Bcl11bGFP, respectively. The recombinase Cre was from

CAG-CreGFP and inserted into pNeuroD-ires-GFP (gift of Franck

Polleux; RRID:Addgene_61403) to generate NeuroD-Cre. The ires-

GFP cassette was cut from CAG-CtlGFP and inserted into pCALNL-GFP

(gift of Connie Cepko; RRID:Addgene_13770) to generate CAG-LSL-

CtlGFP. Bcl6 (NM_009744) was cloned by PCR using a cDNA clone

(OriGene Tec. Cat.# MC203091) as template and inserted into CAG-

LSL-CtlGFP to generate CAG-LSL-Bcl6GFP. CAG-Cre was a gift of

Connie Cepko (RRID:Addgene_13775). Foxo1 (NM_019739) was
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cloned by PCR using a cDNA clone (OriGene Tec. Cat.# MC203091)

as template and inserted into pCAG-DsRed2-FLAG (gift of Franck

Polleux) to generate CAG-Foxo1FLAG. Foxo1-shRNAGFP#2 and #4 were

generated by cloning published shRNAs directed against

Foxo1 (Zhang et al, 2011; Park et al, 2019) into the short hairpin

vector, pCA-b-EGFPm5-silencer-3 (gift of Matthieu Vermeren)

using the oligonucleotide sequences listed in Table EV2.

Ctl-shRNAGFP was generated by cloning a scrambled sequence (50-
TACGCGCATAAGATTAGGG-30) with no significant homology to

any known gene sequence from mouse or human (Kawauchi

et al, 2006) into pCA-b-EGFPm5-silencer-3.

In utero electroporation

In utero electroporation was performed as previously described

(Saito & Nakatsuji, 2001; Wiegreffe et al, 2017) with minor modifi-

cations. Briefly, pregnant dams were anesthetized with Isoflurane

(Abbott) and 1–2 ll of plasmid DNA were injected per embryo at a

concentration of 0.5–1.0 lg/ll per construct. Five millimeter elec-

trodes (Nepagene) and five pulses of 40 V (50 ms ON, 950 ms OFF)

generated by a CUY21 EDIT electroporator (Nepagene) were used to

transfect cells in the dorsolateral ventricular zone.

Microarray analysis, GO enrichment analysis, and quantitative
real-time PCR

Microarray analysis was performed as previously described (John

et al, 2012; Simon et al, 2012) with minor modifications. Briefly,

total RNA was isolated from laser-microdissected control and

mutant samples (n = 4) using the RNeasy Micro Plus Kit (Qiagen).

The isolated RNA was checked for purity and integrity using Nano-

drop spectrophotometer and TapeStation (Agilent), respectively.

Transcriptome analysis was performed using GeneChip Mouse Gene

1.0 ST Arrays (Affymetrix) and BRB-ArrayTools developed by Dr.

Richard Simon and BRB-ArrayTools Development Team (http://

linus.nci.nih.gov/BRB-ArrayTools.html).

DE genes identified by microarray analysis were subjected to a

gene ontology (GO) enrichment analysis using PANTHER version

15.0 (released 2020-02-14) and overrepresentation test (released

2020-02-28) with default settings and mouse whole-genome as refer-

ence list (Mi et al, 2013).

Total RNA was reverse transcribed using the SensiFast cDNA

Synthesis Kit (Bioline), and quantitative real-time PCR was

performed using the LightCycler DNA Master SYBR Green I Kit in a

LightCycler 480 System (Roche). Oligonucleotides used for quantita-

tive real-time PCR are listed in Table EV1. The relative copy number

of Gapdh RNA was quantified and used for normalization. Data

were analyzed using the comparative CT method (Schmittgen &

Livak, 2008).

Chromatin immunoprecipitation and luciferase assay

Chromatin immunoprecipitation (ChIP) was carried out as previ-

ously described (Nelson et al, 2006) with minor modifications.

Briefly, P0 cortical tissue was collected from wild-type pups, flash-

frozen in liquid nitrogen, and stored at �80°C until ChIP. Tissue was

disrupted in low sucrose buffer (320 mM sucrose, 10 mM HEPES,

pH 8.0, 5 mM CaCl2, 3 mM Mg[CH3COO]2, 1 mM DTT, 0.1 mM

EDTA, 0.1% Triton X-100) and fixed for 15 min at RT in 1%

formaldehyde. After quenching with glycine solution, nuclei were

washed in Nelson buffer (140 mM NaCl, 20 mM EDTA, pH 8.0,

50 mM Tris, pH 8.0, 1% Triton X-100, 0.5% NP-40) and disrupted in

RIPA buffer (140 mM NaCl, 10 mM Tris, pH 8.0, 1 mM EDTA, pH

8.0, 1% SDS, 1% Triton X-100, 0.1% NaDOC). Chromatin was soni-

cated for 40 cycles (30 s ON/OFF) using a Bioruptor Plus (Diagen-

ode) with high power settings. For each ChIP reaction, 15 lg of

sheared chromatin was diluted 10 times with IP buffer (50 mM Tris,

pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% NaDOC, 20 mM EDTA, pH

8.0, 0.1% SDS) and incubated overnight at 4°C with 3 ll specific
mouse monoclonal antibody recognizing Bcl11a (Abcam Cat#

ab19487, RRID:AB_444947) or unspecific IgG1 antibody (Cell Signal-

ing Technology Cat# 5415, RRID:AB_10829607), which served as a

negative control. Twenty microliter of protein G magnetic beads

(Invitrogen) were added to each ChIP reaction for 2 h at 4°C. After

washing with IP buffer containing 0.1% SDS, LiCl buffer (500 mM

LiCl, 100 mM Tris, pH 8.0, 1% NP-40, 1% NaDOC, 20 mM EDTA,

pH 8.0), and TE buffer (10 mM Tris, pH 8.0, 1 mM EDTA, pH 8.0),

DNA was eluted from beads and purified by phenol-chloroform

extraction. The precipitated DNA was analyzed by quantitative real-

time PCR using oligonucleotides recognizing a region containing a

conserved Bcl11a binding motif (TGACCA) in the first intron of Bcl6.

As negative controls, oligonucleotides were used recognizing a

region of exon 5 of Bcl6 and the Hprt promoter region, respectively.

All oligonucleotide sequences are listed in Table EV1. ChIP quantita-

tive real-time PCR data were analyzed by the comparative CT method

determining the fold enrichment of the immunoprecipitated DNA by

the specific antibody versus IgG1 using the input as a reference.

The 93-bp region containing the conserved Bcl11a binding motif

in the first intron of Bcl6 was cloned into a Gaussia luciferase

(GLuc) reporter vector containing a minimal CMV promoter (pEZX-

GN03; Genecopoeia). This construct was transfected into HEK293

cells (ATCC Cat# PTA-4488, RRID:CVCL_0045) with CAG-CtlGFP or

CAG-Bcl11aGFP using Lipofectamine 2000 according to the manufac-

turer’s instructions (Invitrogen). A reporter vector containing a 112-

bp region of exon 5 of Bcl6 and CAG-Bcl11bGFP was transfected as a

control. pCMV-SEAP (secreted alkaline phosphatase) was co-

transfected in each well as a transfection control. Supernatant from

transfected cells was analyzed 48 h after transfection. Luciferase

assays were performed using the Secrete-Pair Dual Luminescence

Assay Kit (Genecopoeia) in accordance with the manufacturer’s

instructions and a SpectraMax i3x instrument (Molecular Devices).

Values are reported as the mean ratio of luminescence intensity of

GLuc over SEAP and were collected from four independent experi-

ments performed with at least two replicates per experiment.

Cell culture and western blot

HEK293 cells (ATCC Cat# PTA-4488, RRID:CVCL_0045) were grown

in DMEM with 10% fetal calf serum and 1% penicillin/streptomycin

at 37°C under 5% CO2 atmosphere. Cells were transfected using

Lipofectamine 2000 according to the manufacturer’s instructions

(Invitrogen). After 48 h, total proteins were extracted with ice-cold

lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris, pH 8.0, 1 mM

EDTA), separated by SDS–PAGE, and electrophoretically transferred

onto PVDF membranes (Amersham). Membranes were blocked with

5% non-fat milk (Bio-Rad) and incubated with mouse anti-b-actin
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(Abcam Cat# ab8226, RRID:AB_306371), rabbit anti-Bcl6 (Santa

Cruz Biotechnology Cat# sc-858, RRID:AB_2063450), rabbit anti-

FLAG (Sigma-Aldrich Cat# F7425, RRID:AB_439687), rabbit anti-

Gapdh (Sigma-Aldrich Cat# G9545, RRID:AB_796208), and chicken

anti-GFP (Abcam Cat# ab13970, RRID:AB_300798), followed by

treatment with horseradish peroxidase-conjugated secondary anti-

bodies (Jackson ImmunoResearch) and ECL Plus western blotting

detection reagents (ThermoScientific) or DAB substrate (Vector

Laboratories) according to the manufacturers’ instructions.

Cell counts and statistical analysis

For each experiment, at least three control and three mutant brains

were analyzed, and three to five sections per brain were quantified.

Anatomically matched sections were selected from an anterio-

posterior level between the anterior commissure and the dorsal

hippocampus. Stained cells were counted in radial units of 100 lm
(Figs 2, 3 and EV4), 350 lm (Fig 4C–F), or 750 lm (Figs 4H and I,

and 5J and K) width in the presumptive somatosensory cortex

or in the entire neocortex (Figs 5A and C, and EV5A and B,

Appendix Fig S4). Cells were counted using ImageJ (RRID:SCR_

003070) and Imaris (RRID:SCR:007370) software. Statistical analysis

was done with Microsoft Excel (RRID:SCR_016137) or GraphPad

Prism (RRID:SCR_002798) software. Venn diagrams were generated

using MATLAB (RRID:SCR_001622) software. Significance between

groups was assessed using a two-tailed Student’s t-test or one-way

ANOVA, followed by Tuckey’s post-hoc test. P-values < 0.05 were

considered statistically significant.

Data availability

The datasets produced in this study are available in the following

databases:

i microarray data: Gene Expression Omnibus GSE185287 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185287).

ii microarray data: Gene Expression Omnibus GSE185288 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185288).

Expanded View for this article is available online.
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