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The FLUXCOM ensemble of global 
land-atmosphere energy fluxes
Martin Jung1, Sujan Koirala1, Ulrich Weber1, Kazuhito Ichii   2,3, Fabian Gans1,  
Gustau Camps-Valls4, Dario Papale   5, Christopher Schwalm6, Gianluca Tramontana5 & 
Markus Reichstein1

Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly 
constrained. Here we use machine learning to merge energy flux measurements from FLUXNET 
eddy covariance towers with remote sensing and meteorological data to estimate global gridded net 
radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 
147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° 
resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a 
full factorial design across machine learning methods, forcing datasets and energy balance closure 
corrections. For RS and RS + METEO setups respectively, we estimate 2001–2013 global (±1 s.d.) 
net radiation as 75.49 ± 1.39 W m−2 and 77.52 ± 2.43 W m−2, sensible heat as 32.39 ± 4.17 W m−2 
and 35.58 ± 4.75 W m−2, and latent heat flux as 39.14 ± 6.60 W m−2 and 39.49 ± 4.51 W m−2 (as 
evapotranspiration, 75.6 ± 9.8 × 103 km3 yr−1 and 76 ± 6.8 × 103 km3 yr−1). FLUXCOM products 
are suitable to quantify global land-atmosphere interactions and benchmark land surface model 
simulations.

Background & Summary
Intercomparisons of global land surface models (LSMs) suggest large uncertainties regarding magnitude and 
pattern of land-atmosphere energy fluxes1,2, making it difficult to assess and close energy and water budgets3–5. 
Existing regional networks of in-situ measurements from FLUXNET eddy covariance towers6 provide only une-
venly spaced point information impairing direct comparisons with LSMs. In addition, the lack of energy bal-
ance closure of around 20% across sites suggests systematic biases of measured turbulent latent and sensible 
heat fluxes7. The reasons for the energy balance closure gap are unclear and a community-accepted correction is 
unavailable.

Previous efforts to integrate FLUXNET measurements, satellite remote sensing and climate data with machine 
learning8–10 have yielded global products of land-atmosphere fluxes that have been used frequently to evaluate 
LSM simulations11–15, for water budgets16,17, and land-atmosphere interactions18–21. However, data-driven global 
flux estimates are subject to uncertainty from, for example, choice in machine learning algorithm and predictor 
variables, global climate forcing data, and the lack of energy balance closure. A better characterisation of these 
uncertainties is needed for energy and water budget studies and to interpret apparent mismatches with LSM 
simulations. This, in turn, will lead to improvements of global estimation of land-atmosphere energy fluxes by 
data-driven and process models.

The FLUXCOM initiative (www.fluxcom.org) aims to improve our understanding of the multiple sources and 
facets of uncertainties in empirical upscaling and, ultimately, to provide an ensemble of machine learning-based 
global flux products to the scientific community. We use two complementary experimental setups of input driv-
ers (covariates) and resulting global gridded products. In the remote sensing (“RS”) setup, fluxes are estimated 
exclusively from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. The second approach 
additionally includes meteorological information. In this “RS + METEO” setup, fluxes are estimated from daily 
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meteorological data and mean seasonal cycles of satellite data. Global products of the RS setup have the advan-
tage that they do not require global climate forcing datasets as inputs. Such datasets are themselves subject to 
uncertainty and are limited in spatial resolution. Not using climate data, however, excludes potentially important 
information on meteorological conditions for biosphere-atmosphere fluxes and limits temporal coverage to the 
MODIS era (i.e. 2001 onwards). In contrast, the RS + METEO setup makes use of daily meteorological conditions 
and through the use of mean seasonal cycles of satellite derived input drivers allows for estimating fluxes beyond 
the satellite era.

The skill of machine learning-based estimation for both setups at flux tower sites was analysed in detail via 
cross-validation22. The analysis revealed good performance for latent and sensible heat, and in particular for net radi-
ation. Both seasonality and between-site mean fluxes were well predicted, showing more skill than for carbon fluxes 
(gross primary productivity, terrestrial ecosystem respiration, net ecosystem exchange). Furthermore, only negligi-
ble differences were found between different machine learning techniques, and between the RS and RS + METEO 
setups, which suggests an overall robust extraction of the main patterns of flux variation across methods.

In this study, we used the validated and trained machine learning techniques for the FLUXCOM energy fluxes 
of Tramontana et al.22 and generated a large ensemble of gridded global flux products (Fig. 1). For the RS setup, 
nine machine learning methods were used to generate gridded products at an 8-daily temporal and 0.0833° spa-
tial resolution for the 2001–2015 period. For the RS + METEO setup, three machine learning techniques with 
four global climate forcing data sets yielded products with daily temporal and 0.5° spatial resolution, and time 
periods (from ~1980 to present) depending on the climate input data. For latent and sensible heat fluxes, we addi-
tionally considered uncertainty from a lack of tower-based energy balance closure by propagating three different 
correction variants. Within the RS and RS + METEO setups, we followed a full factorial design of machine learn-
ing methods (9 for RS, 3 for RS + METEO) times energy balance correction variants (3 for LE and H, 1 for Rn), 
and climate forcing input products (4, only for RS + METEO). To allow for a better reuse of the large archive, we 
generated ensemble products by pooling machine learning estimates and energy balance closure gap variants. For 
the RS + METEO setup, this was also done separately for each climate forcing data to allow modellers to compare 
their simulations with the FLUXCOM ensemble product driven by the same forcing.

Methods
Training of machine learning algorithms.  Machine learning methods were trained using observations 
from 224 flux tower sites following the specifications in Table 1 and detailed previously22. Two methods of the RS 
setup (GPR and RDF-GP) and one for the RS + METEO setup (KRR) which were included in Tramontana et al. 
were not used here due to computational cost. The observed flux tower data had been screened for good quality by 

Fig. 1  Schematic overview of the methodology and data products from the FLUXCOM initiative. The flow 
diagram shows the methodological steps for the remote sensing -based (RS, left) and the remote sensing and 
meteorological data -based (RS + METEO, right) FLUXCOM products. Final monthly ensemble products 
for Rn, LE, and H from RS are available at 0.0833° and at 0.5° spatial resolution. Ensemble products from 
RS + METEO are available per climate forcing data set as well as a pooled ensemble. All ensemble products 
encompass ensemble members of different machine learning methods (ML, 9 for RS, 3 for RS + METEO) and 
energy balance corrections (EBC, 3 for LE and H).
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(1) allowing for no more than 20% of half-hourly data comprising a daily value to be gap-filled data23, (2) check-
ing for empirical consistency of energy fluxes, and (3) visual inspection. The same set of valid data points was 
used for net radiation, latent, and sensible heat flux (i.e. case-wise exclusion). Daily latent and sensible heat fluxes 
were then corrected for energy balance closure gap at FLUXNET sites using different approaches before training 
the machine learning algorithms (see below). The choice of satellite based and meteorological predictor variables 
followed a thorough feature selection analysis using a tailored genetic algorithm24. Some predictor variables vary 
only in space (e.g. plant functional type), some also seasonally (e.g. potential shortwave radiation), and some for 
each individual time step and location (e.g. short wave radiation, see Table 1). Each machine learning method 
used the same dataset for training within the RS or RS + METEO setup respectively and used all available data 
points in contrast to using only 90% of sites as in the cross-validation analysis22.

Correction for energy balance non-closure at FLUXNET sites prior to training.  We used three dif-
ferent approaches to address uncertainty due to the widely observed lack of energy balance closure at FLUXNET 
sites. The different correction approaches correspond to different hypothesis regarding the primary cause of 
the energy balance closure gap. The general form of the correction is xLE*LE + xH*H = Rn-G, where G is the 
ground heat flux, and xLE and xH are the correction factors for latent and sensible heat, respectively. The perhaps 
most widely used approach is the Bowen ratio correction25 (“BWR”, see Table 2), which assumes that the ratio 
of sensible and latent heat flux is accurately measured, and LE and H are scaled with the same correction factor 
(xLE&H: = xLE = xH) to force energy balance closure (xLE&H = (Rn − G)/(LE + H)). The “residual approach” (“RES” 
and “NONE”, see Table 2) allocates all missing energy to either LE (LERES with = xLE = (Rn-G-H)/LE, xH = 1) or H 
(HRES with xH = (Rn-G-LE)/H, xLE = 1). The correction factors xLE and xH are estimated as the median of 30 daily 
values in a moving window. Median values within moving windows were chosen to minimize the impact of noise 
on x. Very small fluxes (<1 MJ m−2 d−1) were not corrected (x = 1) because x can take implausible values when 
the denominator approaches zero. When G was not measured or missing, it was estimated based on a Random 
Forest model which was trained on all available daily measurements of G across sites using daily meteorological 
and energy flux variables as predictors.

Global products of predictor variables for RS products.  To produce spatio-temporal grids of energy 
fluxes, the trained machine learning algorithms require only spatio-temporal grids of input data. We used MODIS 
land products (collection 5; https://lpdaac.usgs.gov/) as input data for FLUXCOM. The MODIS products include 
daytime and nighttime land surface temperature (LST; MOD11A226), land cover (MCD12Q127), fraction of 
absorbed photosynthetically active radiation by a canopy (fPAR) (MOD15A228), and bidirectional reflectance 
distribution function (BRDF)-corrected reflectances (MCD43B429). Land cover data from 2001 to 2010 were 
processed to assign the majority land cover class in each 0.0833° grid for the whole period, i.e. land cover change 
was not considered. The LST, fPAR, and BRDF-corrected reflectances were provided with an 8-daily tempo-
ral resolution. The BRDF-corrected reflectances were further converted to vegetation indices: the normalized 

RS RS + METEO

Product specifications

Spatial resolution 0.0833° 0.5°

Temporal resolution 8 daily daily

Time period 2001–2015 Depending on climate forcing

Climate input n.a. CRUNCEPv8, WFDEI, GSWP3, CERES-
GPCP

Tiling by PFT no yes

Spatial & Seasonal patterns f(RS) f(RS,METEO)

Interannual & trend patterns f(RS) f(METEO)

Training specifications

Machine learning methods 9: RF, ANN, GMDH, MARS, MTE 
(3 variants), KRR, SVR 3: RF, ANN, MARS

Number of flux observations for training ~20,000 ~200,000

Spatial features PFT, Max of MSC(fAPAR*Rg), Min 
of MSC(Rg)

PFT, Max of MSC(WAIU), Mean 
of MSC(BAND 6), Max of 
MSC(fAPAR*Rg)

Spatial, seasonal features Rpot, MSC(EVI*LSTDay)
Rpot, MSC(NDWI), MSC(LSTNight), 
MSC(EVI*Rg)

Spatial, seasonal, interannual features Rg, LSTDay, Anom of LSTNight, Anom 
of (EVI*LSTDay)

Rg, Rain, Rh, Rg*IWA*MSC(NDVI)

Table 1.  Specifications of the FLUXCOM RS and RS + METEO setups for energy fluxes. List of acronyms: 
Enhanced Vegetation Index (EVI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), 
daytime Land Surface Temperature (LSTDay) and night time Land Surface Temperature (LSTNight), Normalized 
Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Plant Functional Type 
(PFT), incoming global Radiation (Rg), top of atmosphere potential Radiation (Rpot), Index of Water 
Availability (IWA), Relative humidity (Rh), upper Water Availability Index WAI (WAIU) (for details see 
Tramontana et al.22 Supplementary Material, Sect. S3), Mean Seasonal Cycle (MSC). Random forest (RF), 
Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), Model-Tree Ensemble 
(MTE), Kernel Ridge Regression (KRR), and Support Vector Regression (SVR).
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difference vegetation index (NDVI), the enhanced vegetation index (EVI)30, and the normalized difference water 
index (NDWI)31.

The processing of the gridded remote sensing data followed the procedure done at flux site-level22. Poor qual-
ity data were filled to create continuous time-series data. For each time snapshot, bad quality data were identified 
for each 1 km pixels by the MODIS quality assurance/quality criteria (QA/QC). If more than 25% of 1 km pixels 
within a 0.0833° grid cell had good quality, the mean of good quality pixels was taken. Otherwise, the value was 
estimated using the local mean seasonal cycle, i.e. the mean value of other years with accepted quality for the same 
8-daily period was used.

For the RS product we used incoming surface shortwave radiation data of the Japan Aerospace eXploration 
Agency (JAXA) Satellite Monitoring for Environmental Studies (JASMES) product for 2001–2015 period (ftp://
suzaku.eorc.jaxa.jp/pub/GLI/glical/Global_05km/repro_v6/). The products are derived from Terra MODIS data 
with a simple radiative transfer model32. The products were previously evaluated for three EC sites in Asia33 and 
20 EC sites in Alaska34, and showed a good agreement with observations. Spatial and temporal averaging was 
conducted by converting the original 5 km grid to 0.0833° grids and daily to 8-daily temporal resolution. Missing 
data in the original 5 km data were replaced by mean daily values of available years.

Global products of predictor variables for RS + METEO products.  Mean seasonal and mean annual 
characteristics of MODIS-based remotely sensed land surface variables (see Table 1 and Tramontana et al. for 
details) were tiled by plant functional type, i.e. grids for each PFT containing the mean value per PFT and time 
step at 0.5° were created. Mean seasonal cycles of daily MODIS data for each grid cell used in the RS + METEO 
setup were computed by linearly interpolating a temporally smoothed mean seasonal cycle of 8-daily values. The 
land cover fractions are based on the same product and approach as in the RS product.

For daily meteorological variables four different commonly used global climate forcing data sets were cho-
sen: WATCH Forcing Data ERA Interim (WFDEI35, 1979–2013, ftp://rfdata:forceDATA@ftp.iiasa.ac.at), Global 
Soil Wetness Project 3 forcing (GSWP336, 1950–2014,), CRUNCEPv837 (1950–2016, https://vesg.ipsl.upmc.fr/
thredds/catalog/work/p529viov/cruncep/V8_1901_2016/catalog.html), and a combination of radiation based on 
CERES38 and precipitation from GPCP39 (CERES-GPCP, 2001–2014, https://ceres.larc.nasa.gov/, https://precip.
gsfc.nasa.gov/). The water availability index and the index of water availability, (WAI and IWA, see supplement 3 
in Tramontana et al.22), were calculated for each forcing data set based on daily precipitation and potential evap-
otranspiration. The native spatial resolution of all four climate forcing datasets was 0.5° except for CERES-GPCP 
(1°). Here, CERES based radiation and GPCP based precipitation data were regridded to 0.5° by splitting up the 
original 1° grid cells into 0.5° grid cells.

Generation of global products (Prediction).  For the RS products, the trained machine learning models 
were applied to the gridded predictor variable fields for each 8-daily time step with a spatial resolution of 0.0833°. 
For the RS + METEO products, the trained machine learning models were run for each daily time step and for 
each plant functional type (PFT) at a 0.5° spatial resolution separately, and a weighted mean over the PFT fractions 
was obtained for each gridcell and time step. Note that the fraction of unvegetated (barren, permanent snow or ice, 
water) area was omitted in that calculation such that the definition of the calculated flux densities are per vegetated 
area (rather than grid cell or land area). The omission of deserts was necessary due to a lack of flux tower data. This 
complicates the assessment of globally integrated fluxes for sensible heat and net radiation where these fluxes typi-
cally show large positive and negative fluxes for hot and cold deserts, respectively. All computations were performed 
with MATLAB on a high-performance computing cluster at the Max Planck Institute for Biogeochemistry, Jena.

Spatial and temporal aggregation of FLUXCOM-RS products.  To facilitate broader reuse of the 
FLUXCOM-RS products originally at 0.0833° and 8-daily time step we derived monthly products at 0.0833° and 
0.5°. The monthly temporal aggregation is based on linearly interpolating the 8-daily data into daily data followed 

Item Information Prefix Values

<EF> Energy flux no prefix -LE, H, Rn

<SETUP> Upscaling set up no prefix -RS: for RS products
-RS_METEO: for RS + METEO products

<EBC> Energy balance 
correction EBC-

-ALL: for ensembles that include energy fluxes from all energy balance closure correction methods
-NONE: uncorrected energy fluxes
-BWR: energy fluxes corrected by Bowen’s ratio method
-RES: energy fluxes corrected by residual method
Note that EBC is always NONE for Rn, because it was never corrected.

<MLM> Machine learning 
method MLM-

-ALL: for ensembles that include energy fluxes from all machine learning methods
-ANN, MARS, or RF for energy fluxes from RS + METEO
-RF, ANN, MARS, GMDH, KRR, MTE, MTEV, MTEM, or SVM for energy fluxes from RS

<METEO> Meteorological data METEO-
-ALL: for RS + METEO ensembles that include energy fluxes from all meteorological data
-CERES_GPCP, CRUNCEP_v8, GSWP3, or WFDEI: for RS + METEO products using different meteorological data
-NONE: for all energy fluxes from RS (because RS does not use meteorological forcing data)

<sRESO> Spatial resolution no prefix -720_360: for 0.5°x0.5° native RS + METEO and spatially aggregated RS data
-4320_2160: for 0.0833°x0.0833° native RS data

<tRESO> Temporal resolution no prefix -monthly: for all data files

<YYYY> Year no prefix -the year for which the data is

Table 2.  Key to naming convention used for the folder structure and naming conventions.
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by calculating monthly averages. The spatial aggregation to 0.5° is based on taking the mean value of non-missing 
data points within each 0.5° cell.

Ensemble estimates.  For the RS setup, we generate ensemble products at 0.0833° and 0.5° spatial resolution 
for each flux (LE, H, Rn) by pooling all the different runs per machine learning method (9) and energy balance 
correction variants (3, only for LE and H). This yields 27 ensemble members for LE and H, and 9 for Rn for the 
RS ensembles.

For the RS + METEO setup, we generated ensembles for each climate forcing data by pooling the runs for 
three machine learning methods and energy balance correction variants (3, only for LE and H). For each cli-
mate forcing specific ensemble, this yields 9 ensemble members for LE and H, and 3 ensemble members for Rn. 
We additionally generated an overall RS + METEO ensemble by pooling runs for different climate forcing data, 
machine learning methods, and energy balance correction variants. For the overall RS + METEO ensemble this 
yields 36 ensemble members for LE and H, and 12 for Rn.

The ensemble products were generated for mean monthly fluxes where the ensemble estimate is the median 
over ensemble members for each gridcell and month. In addition, we included the median absolute deviation as 
a robust estimate of ensemble spread, i.e., uncertainty. For the RS ensemble, the ensemble spread captures uncer-
tainty related to the choice of machine learning method and the lack of energy balance closure seen in FLUXNET 
data. For the overall RS + METEO ensemble, the ensemble spread captures uncertainty related to the choice of 
machine learning method, the energy balance closure gap issue, and the choice of climate forcing data. Due to 
space restrictions and conciseness, results and technical validation (see below) focus on a parallel assessment of 
the RS and the RS + METEO ensemble. Occasionally we make use of all ensemble members where appropriate 
(see Figure captions).

Cross-consistency checks with the state-of-the-art estimates.  We compare the spatial patterns of 
mean annual LE and Rn fluxes as well as monthly time series of their continental means from the FLUXCOM 
ensemble against previous estimates. For LE, we compare FLUXCOM RS and RS + METEO ensembles against 
those from Model Tree Ensemble (MTE10), the Global Land Evaporation Amsterdam Model (GLEAM v3.1a40), 
and LandFlux-EVAL41. The MTE is based on only one machine learning method8 trained on monthly flux data9,10 
and may be regarded as a precursor to FLUXCOM. GLEAM (https://www.gleam.eu/) models evapotranspiration 
based on a Priestley-Taylor formulation42 with explicit soil moisture stress, and the interception by the Gash 
model43, and was informed by various satellite forcing data. LandFlux-EVAL (http://www.iac.ethz.ch/group/
land-climate-dynamics/research/landflux-eval.html) is the ensemble mean of 14 evapotranspiration products of 
different approaches. For the conversion between evapotranspiration and latent heat we assumed a constant latent 
heat of vaporization of 2.45 MJ mm−1.

For Rn, we compare against two satellite-based products from Clouds and the Earth’s Radiant Energy System 
(CERES, https://ceres.larc.nasa.gov/) SYN1d Ed4A product38 and Surface Radiation Budget (SRB, https://
eosweb.larc.nasa.gov/project/srb/srb_table) release 3.1. Both products combine diverse atmospheric satellite 
data extensively with data assimilation, while SRB can be regarded as a precursor to CERES. For comparison 
with FLUXCOM, the original 3-hourly data were aggregated to monthly means and resampled from 1° to 0.5° 
using the nearest neighbour method. In the RS + METEO setup, the CERES shortwave radiation was used as 
an input for one meteorological forcing variant (CERES-GPCP), i.e., for one fourth of the ensemble members 
of RS + METEO. Thus, the produced net radiation of the FLUXCOM RS + METEO ensemble is not fully inde-
pendent from the net radiation of CERES. However, the RS product did not use CERES data and is therefore 
independent.

The comparisons of all data products use the common 2001–2005 period and a common mask for vegetated 
land area. Differences in masking may lead to some differences in mean global numbers compared to those 
reported elsewhere. We compare mean annual fluxes across space and provide Pearson’s correlation coefficient, 
equations of a linear total least squares fit, and density scatter plots of mean annual fluxes using gridcells with a 
land fraction of at least 80% to minimize inconsistencies in cross-product comparisons. For continental mean 
monthly fluxes, we calculated the mean and median absolute deviation (MAD) across all ensemble members 
for each monthly time step. MAD was converted into a robust estimate of 1 standard deviation by multiplying it 
with 1.4826 (assuming a normal distribution44). The calculation of global and continental mean annual energy 
fluxes and their uncertainty also follows the procedure of first aggregating each ensemble member for the period 
2001–2013, but the common mask of valid data from the intersection with independent products was not used.

For an unbiased comparison of FLUXCOM sensible heat and net radiation fluxes with global values from 
the literature, we scaled FLUXCOM products to incorporate fluxes from non-vegetated area of the world. The 
non-vegetated land area not covered by FLUXCOM products corresponds to cold (mainly Greenland and 
Antarctica) and hot (mainly Sahara) deserts. For hot deserts, we estimated a mean sensible heat flux based on 
CERES net radiation and GPCP precipitation assuming that all precipitation is converted to latent heat and sub-
tracted from Rn. The average values were computed for grid cells where the fraction of hot desert exceeds 50% and 
resulted: 5.9356 MJ m−2 day−1 for Rn and 5.8264 MJ m−2 day−1 for H for the period 2001–2010. For cold deserts 
we obtained mean Rn as −0.1826 MJ m−2 day−1 from CERES, while H was derived by a previously calculated 
value45 of −33.2 W m−2 (−2.8685 MJ m−2 day−1) based on reanalysis. The global adjusted value of FLUXCOM 
for sensible heat or net radiation was then computed as a weighted average for the three area fractions: vege-
tated = 0.765, cold deserts = 0.108, hot deserts = 0.1265, where the vegetated value is directly from FLUXCOM.
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Data Records
The native FLUXCOM energy flux products amount to more than 4 TB of data. Products with daily or 8-daily 
temporal resolution or customized ensemble estimates are available on request to Martin Jung (mjung@
bgc-jena.mpg.de). Monthly energy flux data of all ensemble members as well as the ensemble estimates from the 
FLUXCOM initiative (http://www.fluxcom.org) described here46 are freely available (CC4.0 BY licence) from the 
data portal of Max Planck Institute for Biogeochemistry after registration. Choose ‘FluxCom’ in the dropdown 
menu of the database and select FileID 257. The users will be provided with an access to a ftp server. The ftp 
directory stores 214 GB of data and is structured in a consistent way with the file naming in Table 2. The folder 
structure was designed to facilitate easy download of relevant subsets of the archive and is as per the following 
convention:

<SETUP>/<TYPE>/<sRESO>/<tRESO> or <SETUP>/<TYPE>/<METEO>/<tRESO>

<SETUP> is either “RS” or “RS_METEO”. <TYPE> is either “ensemble” or “member”. At the third level, RS 
uses <sRESO> (“720_360” for 0.5° or “4320_2160” for 0.0833° resolution) and RS + METEO uses <METEO> 
(see Table 2). <tRESO> is always “monthly” for the currently available data in the portal. For the data at other 
temporal resolutions, which are available upon request, tRESO can also be daily, 8 daily, or annual.

The files are provided in network Common Data Form, version 4 (netCDF-4) data format (https://www.uni-
data.ucar.edu/software/netcdf/). The data files are named using the following convention:

<EF>.<SETUP>.<EBC>.<MLM>.<METEO>.<sRESO>.<tRESO>.<YYYY>.nc

The details of each of the <item> in the filenames are provided in Table 2.
For example, the file “LE.RS.EBC-ALL.MLM-ALL.METEO-NONE.720_360.monthly.2001.nc” is the 

RS-based ensemble latent heat energy of year 2001 that includes all fluxes produced using all energy balance clo-
sure correction methods and all machine learning methods and no meteorological data aggregated to 0.5° spatial 
resolution (size 720 along longitude and 360 along latitude) and monthly temporal resolution.

For all types (ensemble or member) of data, the variable names for latent heat energy, sensible heat, and net 
radiation are LE, H and Rn, respectively. The data files for both RS and RS + METEO -based ensembles include 
additional variables with suffix ‘_MAD’ (e.g., LE_MAD). This variable provides the data for uncertainty (median 
absolute deviation) among different ensemble members for each grid cell and month. The ‘_MAD’ uncertainty 
variable is also in the same time, latitude, longitude coordinates. The ensembles from RS + METEO products, 
that include runs with four different forcing inputs, also have a variable with ‘_n’ (e.g., LE_n in latitude, longitude 
coordinates). This variable stores the number of ensemble members included while calculating the median. The 

Fig. 2  Global distributions of mean annual (2001–2013) energy fluxes from the FLUXCOM RS and 
RS + METEO ensembles. The fluxes are expressed in MJ m−2 d−1, W m−2, and mm d−1, separated by ‘|’, in the 
color bars. Inset figures show zooms for different regions.
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number of ensemble members varies in space in RS + METEO ensembles, because of the difference in land-sea 
mask of different meteorological data used. The data for each variable is defined by 3 dimensions: ‘lat’ for lati-
tudes and ‘lon’ for longitudes in space, and ‘time’ for time. The data variables are defined by time, latitude, lon-
gitude coordinates. The header of the netCDF-4 data files includes the global attributes that lists the product 
(RS + METEO or RS), type of the data (either member or ensemble), the machine learning method(s), and mete-
orological data used (as per Table 2).

Additionally, we have included ancillary data (in a directory named “ancillary”) for land and vegetated area 
fraction per grid cell. The files are named using “<variable name>.<sReso>.nc” convention. The <variable 
name> is “landfraction” for the fraction of land within a grid cell, and “vegfraction” for the fraction of the land 
fraction that has vegetation cover. The <sReso> reflects the spatial resolution, and is “720_360” for fractions 
corresponding to 0.5° products, or “4320_2160” those corresponding to 0.0833° RS products.

Technical Validation
In this section, we present the main spatiotemporal features of the FLUXCOM energy fluxes. We validate patterns 
and magnitudes of fluxes against previous state-of-the-art estimates, and expectations from theory and literature.

Fig. 3  Global covariations of land-atmosphere energy fluxes, and their temporal variations and uncertainties in 
selected locations. RGB composite maps are with latent heat (LE) in the blue, sensible heat flux (H) in the red, 
and evaporative fraction (LE/Rn) in the green channel. Line plots show time series of LE (blue), H (red), and 
Rn (orange) for selected locations (0.5° grid cells, see map for RS) from 2001 to 2005 in MJ m−2 d−1. The shades 
around the lines indicate the uncertainty ranges (±1 robust standard deviation) of ensemble members.
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Consistent with current understanding, mean annual latent heat and net radiation fluxes are the highest in 
tropical and the lowest in high latitude regions of the world (Fig. 2). In contrast, mean annual sensible heat 
peaks in dry sub-tropical regions where latent heat fluxes are reduced due to expected water limitation on evap-
otranspiration which is known to increase the Bowen ratio (H/LE). These patterns are qualitatively consistent 
among the RS and RS + METEO ensemble products, while flux magnitude differences, e.g., larger net radiation 
of the RS product in the tropics, are also evident. In general, both RS and RS + METEO products show similar 
large-scale variations in energy fluxes but local-scale heterogeneities are better resolved in RS products (see the 
inset zoom-ins in Fig. 2) due to a 6-fold increase in spatial resolution.

The maps of Fig. 3 provide a visual impression of the global spatial co-variation of energy fluxes. In these RGB 
maps, hot and dry regions appear as red where latent heat is low and net radiation is preferentially converted to 
sensible heat. Wet tropical regions with high net radiation and latent heat but low sensible heat appear as cyan. 
Regions where latent heat is energy-limited but net radiation is intermediate or low appear in green. The parti-
tioning of Rn into LE and H components is similar for both RS + METEO and RS products (Fig. 3) with some 
regional differences visible. To illustrate local differences among the RS and RS + METEO ensemble products, as 
well as seasonal variations of energy fluxes and its uncertainties, we present time series of selected locations (0.5° 
grid cells) in Fig. 3. For example, in the selected location in North America (A), situated at the transition between 
water limited and energy limited regime of evapotranspiration, we see more H relative to LE in the RS ensemble 
compared to the RS + METEO ensemble. Similar patterns of slightly different net radiation partitioning in LE and 
H are also evident in other transitional locations in Africa (E) and Australia (F). Energy flux uncertainties (see 
shading in Fig. 3) vary spatially, seasonally, and interannually as well as between the RS and the RS + METEO 
ensemble products. Where uncertainties of the RS + METEO ensemble are larger compared to the RS ensemble, 
it suggests larger contributions of meteorological forcing data uncertainty. On the other hand, larger uncertainty 
of the RS ensemble may indicate larger contribution of machine learning method choice, perhaps due to poor 
constraints by flux tower stations. Overall, there is high level of consistency between the RS and RS + METEO 
ensemble products for seasonality and flux magnitudes as well as their uncertainties.

We further evaluate the spatial patterns of mean annual energy fluxes of the FLUXCOM ensemble against 
previous estimates. First, we evaluate the long-term mean LE from RS and RS + METEO against those from 
MTE10, GLEAM v 3.1a40, and LandFlux-EVAL41. Generally, the spatial variation of ET is very consistent between 
FLUXCOM products and previous global estimates (Fig. 4) with R2 values close to 1. All show the dominant 

Fig. 4  Comparison of the global distributions of mean latent heat (LE) fluxes from FLUXCOM against previous 
global estimates. Along the diagonal, maps of means for the period 2001–2005 from RS + METEO, RS, MTE, 
GLEAM v 3.1a, and LandFlux-EVAL are plotted along with the area weighted mean LE (µLE) as text. Above the 
diagonal, the difference maps for each of these products (column - row) are plotted. Below the diagonal, density 
scatter plots between these products are provided with darker shade indicating larger density of points. Here, 
black lines show the 1:1 line, red lines show the total (orthogonal) least square regression fit with the equation 
given in red text and the coefficient of determination (squared Pearson’s correlation coefficient, R2).
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gradient between the highest LE in the humid tropics and the lowest LE in cold and dry places. There are however 
sizeable systematic differences between products, in particular within the tropics. Both RS and RS + METEO 
show larger LE in the tropics than MTE and LandFlux-EVAL while GLEAM shows regionally similar LE mag-
nitudes in the wet tropics. The larger tropical LE in FLUXCOM propagates to 15–20% larger global means of LE 
compared to the other two estimates (see below for a broader comparison of global LE estimates). Due to the large 
LE flux in the wet tropics, even a comparatively small relative difference results in large absolute differences. In the 
tropical regions, the difference between RS and RS + METEO LE is also relatively large with larger LE in RS. But, 
globally, this difference is somewhat balanced by lower LE in RS in other regions. Semi-arid regions also tend to 
show comparatively large systematic differences across products.

For Rn, we compare the spatial patterns of FLUXCOM products against two satellite-based products from 
CERES38 and SRB. The spatial patterns of mean annual Rn from RS and RS + METEO agree better with CERES 
(R2 = 0.96) than the agreement between CERES and SRB (R2 = 0.93) (Fig. 5). The RS product and CERES show 
larger Rn in the tropics compared to RS + METEO. Large differences between SRB and all other products are evi-
dent both in tropical and extratropical regions, South America, large parts of North America and across Eurasia. 
CERES as well as SRB tend to show larger Rn in many extratropical regions compared to both FLUXCOM ensem-
ble products. This contributes to a 4–7% larger global vegetated Rn of CERES and SRB compared to FLUXCOM 
products.

We further compare the monthly variations of global and continental-scale energy fluxes (Fig. 6) against 
previous estimates. There is a very high agreement among all with respect to seasonality. In all continents except 
Africa, the previous estimates are within the 1 standard deviation of RS and RS + METEO FLUXCOM products. 
In Africa, LE is higher in FLUXCOM products, which contributes to the slightly larger global ET in FLUXCOM 
than previous estimates. For Rn, the differences are relatively smaller in all continents and uncertainties obtained 
from the FLUXCOM ensemble are small compared to those of LE and H. The uncertainty estimates of LE in 
both RS and RS + METEO energy fluxes show distinct seasonal variation in all continents. In Africa and South 
America, the uncertainty ranges are larger in all seasons. In other continents, the uncertainty ranges are larger in 
the peak season and generally scale with flux magnitude.

We have further summarized mean annual energy budgets with uncertainties for the vegetated area of the 
globe and over all continents (Fig. 7a). The global and continental energy budgets of the RS and RS + METEO 
products are consistent with each other. Globally, both RS and RS + METEO products show that most of Rn is 
partitioned to LE. Only Oceania (dominated by Australia) shows more sensible than latent heat. In Africa, LE is 
significantly larger than H due to the exclusion of the non-vegetated Sahara Desert, where H is expected to be 
much larger than LE.

The mean annual imbalance of the ensemble medians, defined as Rn-LE-H is close to zero. This indicates that 
the tower-to-globe scaling across all energy balance correction variants is robust and did not introduce sizeable 

Fig. 5  Comparison of the global distributions of mean net radiation (Rn) from FLUXCOM against previous 
global estimates. Along the diagonal, maps of the means for the period 2001–2005 from RS + METEO, RS, 
CERES, and SRB are plotted. See Fig. 4 for further explanations. Note that the color scale of the difference maps 
is the same as for the LE (Fig. 4) despite the larger flux magnitudes of Rn.
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biases. Inspecting relative uncertainties of the mean global and continental fluxes (Fig. 7b), we find that Rn is 
typically constrained by less than 5%, uncertainties for latent and sensible heat fluxes are typically on the order 
of 10–20%. The contributions of the different factors (energy balance correction, machine learning method, and 
meteorological forcing) to the total ensemble spread varies by flux and continent (Supplementary Information 1).

For comparisons with published global estimates, we scaled FLUXCOM values using estimates of H and Rn 
for hot and cold deserts (see Methods). We obtained mean global values of H of 2.80 ± 0.36 MJ m−2 day−1 for 
the RS products and 3.07 ± 0.41 MJ m−2 day−1 for the RS + METEO products, or, equivalently, 32.39 ± 4.17 and 
35.58 ± 4.75 W m−2 (uncertainties taken from Fig. 7a) respectively. These values are larger than the 27 W m−2 
reported by Trenberth et al.47 and somewhat smaller than the range of 36–40 W m−2 given by Siemann et al.45. 
FLUXCOM estimates are however in good agreement with the values of Wild et al.4 of 32 W m−2 as a best estimate 
derived as energy budget residual of observational data and the value of 38 ± 6 W m−2 estimated by L’Ecuyer et 
al.3 based on constraining the global energy and water cycles by multiple data streams. Scaled FLUXCOM Rn (see 
Methods) yields 75.49 ± 1.39 W m−2 and 77.52 ± 2.43 W m−2 for RS and RS + METEO, respectively, which is in 
excellent agreement with the best estimate of L’Ecuyer et al.3 of 76 W m−2.

Because latent heat, as evapotranspiration (ET), is also a critical component of the water cycle, we summa-
rize the continental and global ET from FLUXCOM (Fig. 8). Globally, the ET from RS and RS + METEO are 
75.6 ± 9.8 and 76 ± 6.8 × 103 km3 yr−1, respectively. These global ET are at the upper end of previously reported 
values (65–75 × 103 km3 yr−1). Several studies9,48–50 indicated global ET in the range of 65 to 70 × 103 km3 yr−1. 
More recently, global ET values in the range of 70–75 × 103 km3 yr−1 were reported51–53. Interestingly, global ET 
estimated from an energy balance perspective also tend to yield values at the upper end of commonly reported 

Fig. 6  Comparison of the temporal variations of global and continental latent heat energy (LE) and net 
radiation fluxes (Rn) from FLUXCOM with previous estimates. The shaded region across the RS + METEO and 
RS lines indicate the uncertainty (±1 robust standard deviation) of ensemble members. Note the different axes 
limits for LE and Rn.
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values such as Trenberth47 (73 × 103 km3 yr−1), L’Ecuyer3 (72 ± 5 × 103 km3 yr−1), and Wild4 (72 within a range of 
64–85 × 103 km3 yr−1).

Around three quarters of the global ET is equally distributed across Africa (23.2–25.5%), Asia (25.9–28.1%) and 
South America (23.7–26.1%), while the lowest contribution is from Oceania (4.4–5.1%), in both RS and RS + METEO 
(Fig. 8a). Both RS and RS + METEO show sizeable uncertainty ranges of global and continental ET (Fig. 8b). In all 
continents, the ensemble medians of RS and RS + METEO overlap. In Asia, Europe, Oceania, and North America, 
RS + METEO has larger uncertainties than RS, while the opposite is true in Africa and South America.

Usage Notes
For cross-consistency analysis and evaluation of LSM simulations, we suggest focusing on spatial patterns of 
mean annual and mean seasonal fluxes. For comparison with offline LSM simulations we recommend using 
products from the RS + METEO setup forced with corresponding meteorological forcing to minimize deviations 
due to different climate input data. However, as RS + METEO inputs prescribe seasonal and spatial land surface 
properties–through mean seasonal cycles and PFT-based tiling respectively–full consistency with forcing-specific 
LSM simulations cannot be achieved. For example, while fAPAR is prescribed by remote sensing covariates in 
FLUXCOM, it may be simulated by the LSM from the climate forcing. Since products from the RS setup are not 
subject to uncertain meteorological inputs, the RS products may be preferable for energy and water budget studies 
or for evaluating the choice of climate input driver on LSM simulations.

Patterns of interannual variations in these products are expected to be more uncertain than spatial patterns 
of mean annual or seasonal fluxes. Experiences from FLUXCOM carbon fluxes suggest that magnitudes of inter-
annual variations54 are also likely too small in the energy flux products, and a normalization of the monthly or 
annual anomalies is recommended when comparing for example with LSM simulations. For example, global grids 
of LSM and FLUXCOM anomalies could be normalized by their standard deviations of the globally integrated 
anomaly time series to preserve spatiotemporal patterns but to remove differences in variance. Note that interan-
nual variations in the RS + METEO products originate exclusively from direct effects of changing meteorological 
forcing with remotely sensed surface properties being constant between years. This is particularly important for 
studies on phenology or the impact of land surface changes on land-atmosphere energy fluxes, where we would 
recommend using RS setup products. Low frequency variations and trends require very cautious interpretation as 
factors expected to cause trends, most importantly the physiological effects of rising CO2, are not accounted for. 
Trends in land surface properties such as greening or browning are not accounted for in the RS + METEO setup 
since mean seasonal cycles of MODIS land products were used here. In comparison, the RS products do have 
these trends included, but due to issues with sensor age-based drift in MODIS reflectances, caution is warranted.

The energy flux densities of FLUXCOM product are defined per vegetated area in each grid cell. This needs 
to be considered when calculating global and continental budgets, in particular for sensible heat and net radia-
tion where these fluxes have sizeable magnitudes over non-vegetated areas (see Technical validation). The land 
fraction provided with the FLUXCOM data should be multiplied with the flux densities for a correct accounting 
of fluxes over land. Please note that FLUXCOM data should not additionally be multiplied with grid cell specific 
vegetated area fraction as we assume that varying vegetation cover is implicit in the used remote sensing data. 
The primary intended use of the provided vegetated area fraction data is for comparisons with LSM outputs, e.g. 
to ensure that the comparison includes only grid cells with (nearly) full vegetation cover in FLUXCOM and LSM 
simulations.

Fig. 7  Overview of the global and continental estimates of energy fluxes from FLUXCOM with uncertainties. 
(a) Bars represent ensemble median of long-term means (2001–2013) of ensemble members for net radiation 
(Rn, orange), latent heat (LE, blue), sensible heat (H, red), and the energy imbalance of the ensemble medians 
(Imb, Rn-LE-H, grey) and error bars refer to one robust standard deviation (not available for Imb). (b) Bars 
represent uncertainties relative to the ensemble median in %; the relative uncertainty of Imb is (Rn-LE-H)/Rn. 
Note that all estimates refer to the respective vegetated area.
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When using FLUXCOM ensemble members to address questions related to the energy balance and its uncer-
tainty, it must be considered that only certain combinations of energy balance corrected latent and sensible heat 
fluxes correspond to energy balance closure: i) LENONE and HRES, ii) LERES and HNONE, and iii) LEBWR and HBWR. 
All other combinations result in under or over-closure of the energy balance and should not be considered. The 
ensemble products presented here pool over all energy balance correction variants such that the energy balance 
is closed from a conceptual point of view. Remaining closure errors originate from upscaling errors from site to 
globe.

FLUXCOM ensemble products provide the median absolute deviation of ensemble members per grid cell and 
time step which might be scaled to a robust estimate of the standard deviation of a normal distribution by multi-
plying with 1.4826. A propagation of this spatially and temporally explicit uncertainty to a temporal aggregated 
(e.g. mean annual) or spatial (e.g. continental) uncertainty would require assumptions on error co-variances in 
space and time. In such cases, we recommend to perform the desired aggregation for each ensemble member sep-
arately and subsequently take the spread of the aggregated ensemble members as the uncertainty metric. If users 
require a different combination of ensemble members other than those presented here, have questions or want to 
give feedback, please contact Martin Jung (mjung@bgc-jena.mpg.de).

Code Availability
Python code to synthesise the results and to generate the figures of FLUXCOM results can be obtained through 
the public repository at https://git.bgc-jena.mpg.de/skoirala/fluxcom_ef_figures. MATLAB code for generating 
the flux products and ensemble estimates is available on request to Martin Jung (mjung@bgc-jena.mpg.de) for 
the sake of reproducibility. The collaborative nature of the FLUXCOM initiative and the demanding computing 
resulted in complex and large amounts of code that was customized to the HPC and file system of MPI-BGC and 
is therefore challenging to use. Code for processing MODIS satellite data is available on request to Kazuhito Ichii 
(ichii@chiba-u.jp).
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