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Abstract

Huperzine A is a bioactive compound derived from traditional Chinese medicine plant Qian Ceng Ta (Huperzia serrata), and
was found to have multiple neuroprotective effects. In addition to being a potent acetylcholinesterase inhibitor, it was
thought to act through other mechanisms such as antioxidation, antiapoptosis, etc. However, the molecular targets
involved with these mechanisms were not identified. In this study, we attempted to exam the interactome of Huperzine A
using a cDNA phage display library and also mammalian brain tissue extracts. The drugs were chemically linked on the
surface of magnetic particles and the interactive phages or proteins were collected and analyzed. Among the various cDNA
expressing phages selected, one was identified to encode the mitochondria NADH dehydrogenase subunit 1. Specific
bindings between the drug and the target phages and target proteins were confirmed. Another enriched phage clone was
identified as mitochondria ATP synthase, which was also panned out from the proteome of mouse brain tissue lysate. These
data indicated the possible involvement of mitochondrial respiratory chain matrix enzymes in Huperzine A’s
pharmacological effects. Such involvement had been suggested by previous studies based on enzyme activity changes.
Our data supported the new mechanism. Overall we demonstrated the feasibility of using magnetic biopanning as a simple
and viable method for investigating the complex molecular mechanisms of bioactive molecules.
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Introduction

Huperzine A (Hup A) is a compound found in the traditional

Chinese medicine plant Qian Ceng Ta (Huperzia serrata) and has

been shown to have neuroprotective effects [1,2] in Alzheimer

disease (AD) patients. It is a potent inhibitor of acetylcholinester-

ase(AChE) [3]. However, many recent studies have also suggested

that it may have other mechanisms including cell protection

against apoptosis through reversing the down-regulation of the

expression of Bcl-2 and up-regulation of the expressions of Bax

and P53 [4,5,6], mitochondria protection against dysfunction by

preserving major mitochondria enzymes activity and reducing

reactive oxygen species (ROS) production [7], interfering with

amyloid precursor protein (APP) cleavage [8,9], etc [10].

However, the detailed molecular mechanisms of most of these

pharmacology effects were still not clear. It is generally accepted

that Hup A has multiple targets. In order to identify the potential

target molecules involved in these effects, Lun Yang and his

coworkers published an interesting study of virtual chemical-

protein interactome (CPI) analysis, in which they evaluated the

possible interactions between Hup A and 401 human protein

pockets using the DOCK program [11]. Besides the only validated

target AChE, several other putative targets were indicated to

suggest some ‘‘behind-the-scenes’’ therapeutic mechanisms of Hup

A.

But for systematic evaluation of all the drug’s molecular

interactions with protein targets in vivo, it remains as a formidable

challenge with limited success. In general, there are two

approaches: the phenotype-based target discovery and the

affinity-based target identification. DNA microarrays were widely

used in phenotype based target discovery approaches [12].

Potential drug interactive targets were implicated based on gene

expression changes after compound treatment [13,14]. But genes

that were not directly targeted but at upstream or downstream

could complicate the interpretation. The affinity based approach is

more direct. Potential targets were identified by direct or

cooperative binding to the drug itself. For example, Ornithine c-

amino transferase (OAT) was found as the protein target of

diazonamide A using a biotinylated form of the drug after affinity

purification. This study resulted in the new role of OAT as a

chemotherapeutic target [15]. Recently these affinity based

approaches were further improved or combined with more

sensible analytical methods with more sensitive binding detection

and more accurate protein identification [16]. Many new protein

targets were uncovered relying on these approaches. Glyoxalase I

was identified as a new target of indomethacin by using a

polyproline linker to attach small molecule on resins for affinity

purification [17]. Such a linker was thought to give the small

molecule adequate accessibility to their protein partners. Similarly,

the molecular target of resveratrol, a difficult candidate for target
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identification using conventional affinity strategies was uncovered

using the new method drug affinity responsive target stability

(DARTS) [18].

In this study, we also took the affinity based approach and

developed a magnetic particle mediated screening protocol to

maximize the drug-target interaction efficiency. At the same time,

the paramagnetic properties of the particles enable convenient and

efficient separation of the bound portions from the target mixtures.

Therefore, we were able to screen the different proteomes,

including a cDNA expression library, and total protein extracts

from animal tissues. Although since the detailed screening

conditions were different, the outcomes would be different too.

Among the wealth of information from different sources, we were

able to find certain convergent clues about the molecular

mechanism of Hup A.

Results

Preparation of Hup A - magnetic particle conjugates
(Hup-MPs)

Magnetic nanoparticles were synthesized in the presence of

branched polymerized lactic acid as templates as described by

Liu,et al [19]. The nanoparticle-polymer matrix was stabilized by

CDI crosslinking to yield magnetic particles (MPs). Drugs were

conjugated to the MPs via the free carboxyl groups on polymers

associated with MPs. Figure 1A showed the reaction scheme. CDI

was used as the linker and the resulted linkage should contain an

amide bond that can be detected by FTIR. As shown in Figure 1B,

the vibration peak at 3340CM21 increased with the amount of

Hup A linked and very weak peak was found without the Hup A

conjugation. For additional experiments, Drug-biotin-MPs were

also made by biotinylated Hup A and ethonalamine (as control)

and linked them to streptavidin-MP (Dynabeads M-280 from

Invitrogen).

Hup-MPs mediated interaction and magnetic separation
The Hup-MPs could be easily suspended in aqueous solutions,

which would allow interaction of the surface Hup A with

molecules in the solution. They can also be easily separated from

the solution under an external magnetic field, as shown in Figure 2.

Based on these schematics, we had used the Hup-MPs for

interactions with cDNA phage display libraries (Figure 2B), or

brain tissue lysate (Figure 2C). The phages or proteins that were

selected were further analyzed based on genomics or proteomics

approaches as described below.

Analysis of cDNA clones in a phage library that interacted
with Hup-MPs

Hup-MPs were incubated with a T7 phage cDNA library from

human liver cancer cell and bound phages were harvested by

magnetic separation and cultured for clonal expansion and next

round screening. 5 such consecutive rounds of screening were

done and phages collected after the last round of screening and

eluted with free Hup A solution were analyzed for their cDNA

clones. Parallel experiments were run using non-specific MP

controls (MPs without the surface Hup A). No phage clones were

selected after the 3rd round of bio-panning. All the procedures

above constitute one time screening effort. Table 1 listed all the

cDNA sequences found from 6 screening efforts and their putative

protein targets. Proteins in italic were highly enriched after each

screening effort. Interestingly, 2 of these genes were sequenced

repeatedly. The sequences were listed in Table 2. One encodes for

part of mitochondrion NADH dehydrogenase subunit 1(MT-

ND1) gene, and the other encodes for a section of X chromosome

gene.

Capillary electrophoresis confirmation of drug phage
interaction

To exclude the possible interferences from MPs to the

interaction between Hup A and selected phages, we used a

different analytical method: affinity capillary electrophoresis to

characterize the binding. Mixtures of drug and phage at different

Figure 1. The preparation of Hup-MPs. (a)The reaction scheme of Hup-MPs. (b)FTIR scanning map of MP linked with Hup A(black line: MP linked
with more drug; red line: MP linked with a little drug; blue line: MP linked with no drug).
doi:10.1371/journal.pone.0037098.g001
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ratios (the phage numbers were kept constant) were injected and

the resulted electrophoregram was shown in Figure 3A. The peak

marked by an open circle is the phage peak, and the peak

marketed by a filled circle is the unbound Hup A peak,

representing the difference between the dissociative drug concen-

tration and drug concentration in the electrophoresis buffer (Df).

As drug to phage ratio increased, the size of the unbound drug

peak also increased (the unbound drug peak was initially negative

because there was a fixed concentration of drug in the buffer). The

areas of these unbound drug peaks vs. the amount of drug added

were used to fit the Hammer-dreyer plot (Figure 3B). The fitted

plot indicated the added drug concentration Dt when the drug

peak area was zero, and the bound drug concentration Db was the

difference between Dt and Df. The binding constant Kd was

obtained by fitting the different Df and Db(Figure 3C and D). The

Kd for phage- MT-ND1 was 0.001488 mg/ml and the maximum

binding concentration Bmax was 0.0002452 mg/ml (Figure 3C).

For the phage-X chromosome gene, the Bmax was

0.0003608 mg/ml and Kd was 0.0009942 mg/ml (Figure 3D).

As a control, the binding between Hup A and unrelated phage was

also examined by capillary electrophoresis, and no binding could

be detected under the same experimental conditions.

SPR analysis of drug and MT-ND1 protein interaction
In order to exam the exact binding characteristics between Hup

A and the putative protein target, we cloned the MT-ND1 gene

(954 bp) into the expression vector pET44b(+). The recombinant

protein was expressed in Escherichia coli BL21(DE3) (Figure 4A)

and purified using the Ni-Resin NTP column and eluted in

200 mM imidazole solution. Western blot analysis confirmed it

was the mt-nd1 protein, as shown in Figure 4B.

The protein was immobilized on the Biacore NTA sensor chip.

Seven different concentrations of Hup A (4.6625, 9.325, 18.75,

37.5, 150, 300, 600 mM) were used for the binding analysis. The

KD value was determined to be about 4.961*1025 (Figure 4C).

SDS-PAGE analysis of Hup-MPs bound mouse brain tissue
extracted proteins

We also employed a similar strategy as plotted in Figure 2C to

examine the interaction between Hup-MPs (or empty MP

Figure 2. The schematic presentation of MP based strategy for identification of Hup A-target interactions. (a)The attachment of Hup A
on the surface of magnetic particles. (b)The strategy of Hup A interacted phages screen from cDNA phage display library. From 1 to 5 was one total
round of screening, several rounds of such screen were shown, and the final phages were eluted by Hup A and analyzed. (c)The strategy of Hup A
target proteins screen from mice brain tissue lysate. After gel running, the specific protein bands were cut down and identified by MS.
doi:10.1371/journal.pone.0037098.g002

Table 1. Blast result of the gene sequences displayed by all the screened phages.

Homo sapiens isolate cftr13838_B cystic fibrosis transmembrane conductance regulator ATP-binding cassette sub-family C member 7 (CFTR) gene, complete cds; and
CTTNBP2 (CTTNBP2) gene, partial cds

Homo sapiens microfibrillar-associated protein 2 (MFAP2), transcript variant 1, mRNA

Homo sapiens fibroblast growth factor 13 (FGF13) gene, complete Cds

Homo sapiens fibronectin1, mRNA (cDNA clone IMAGE:3506187), partial cds

Homo sapiens fibrinogen alpha chain, mRNA (cDNA clone IMAGE:4767540), complete cd

Human heparin cofactor II (HC-II) mRNA, complete cds

Homo sapiens TBXAS1 gene for thromboxane synthase, complete cds

Homo sapiens ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon subunit, mRNA (cDNA clone MGC:104243 IMAGE:6739745), complete cds(2nd time screening
effort)

The SDHB gene for succinate dehydrogenase complex subunit B iron sulfur (Ip), the PADI2 gene for type II peptidyl arginine deiminase, complete sequence

Homo sapiens mitochondrion, complete genome(partial sequence of NADH dehydrogenase subunit 1)(4th time screening effort)

Homo sapiens mitochondrion, complete genome (partial sequence of Cytochrome oxidase subunit I)

Predicted: Homo sapiens similar to ATP-dependent DNA helicase 2 subunit 1 (ATP-dependent DNA helicase II 70 kDa subunit) (Lupus Ku autoantigen protein p70)
(Ku70) (70 kDa subunit of Ku antigen) (Thyroid-lupus autoantigen) (TLAA) (CTC box-binding factor 75 kDa subunit)

Homo sapiens ferritin, light polypeptide (FTL), mRNA

Crassostrea gigas tbetaRI gene for TGF-beta Type I receptor, exons 1–10

Homo sapiens cDNA FLJ39418 fis, clone PLACE6017714, highly similar to prostacyclin receptor(5th time screening effort)

Homo sapiens ribosomal protein S13, mRNA (cDNA clone MGC:87221 IMAGE:4816284), complete cds

Homo sapiens full-length cDNA clone CS0DA007YC19 of Neuroblastoma

Homo sapiens polycystic kidney disease-associated protein (PKD1) gene, complete cds

Homo sapiens secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte activation 1) (SPP1), transcript variant 3, mRNA(3rd time screening effort)

Homo sapiens X-ray repair complementing defective repair in Chinese hamster cells 6 (Ku autoantigen, 70 kDa) (XRCC6), mRNA

Homo sapiens p8 protein (candidate of metastasis 1) (P8), mRNA

Homo sapiens cell growth inhibiting protein 42 mRNA, complete cds

Homo sapiens ERBB receptor feedback inhibitor 1 (ERRFI1), mRNA

Homo sapiens heat shock 70 kDa protein 8, mRNA (cDNA clone MGC:17984 IMAGE:3920744), complete cds

Homo sapiens nucleolar protein 1, 120 kDa, mRNA (cDNA clone MGC:3093 IMAGE:3349415), complete cds

doi:10.1371/journal.pone.0037098.t001
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controls) and protein solution extracted from mouse brain tissue.

Figure 5A showed the SDS-PAGE pattern of the proteins that

were bound to Hup-MPs or empty MPs and then competed off by

free Hup A. Lane 1 were the proteins bound to Hup-MPs, and

lane 2 were the proteins bound to MPs. By comparing these two

samples, we identified three major bands (at about 80 KD, 70 KD

and 50 KD), which were observed reproducibly in repeated

experiments. They were collected and sent out for mass

spectrometry (MS) analysis. A few proteins were identified and

listed in Table 3. Most notably there was the mitochondria ATP

synthase which was also found in our cDNA phage library

screening experiments. In order to further confirm the interaction

between Hup A and mitochondria ATP synthase, we used a

different Hup A conjugated MP using different linker structure the

HupA-biotin-MPs. Ethonalamine-biotin-MPs were also made as

the control. We isolated the mitochondria from mouse brain

tissues and obtained the protein lysate. HupA-biotin-MPs were

used to interact with the lysate and fish out the bound proteins.

Figure 5B showed the western blot analysis of the bound protein

eluted from HupA-biotin-MPs as compared to the control MPs.

By comparing lane 3 and 7, lane 4 and 8, we confirmed that

mitochondria ATP synthase did interact with HupA-biotin-MPs,

but not or very weakly with the control MPs.

Discussion

Bioactive molecules identified from natural products have been

an important source for drug discovery [20]. However in many

cases their targets and molecular mechanisms were not fully

understood. Furthermore, there have been many studies suggest-

ing the multi-target effects of natural products [21], especially

those derived from traditional Chinese medicine [22]. Therefore it

is important and necessary to discover as many molecular

mechanisms involved as possible. One way to investigate the

drug’s molecular mechanism is based on phenotype or pharma-

cological studies [12–14]. Another approach is to fish and identify

the molecular target of the compound [15–17]. There have been

studies developing various ‘fishing’ techniques such as drug affinity

pull-down [23], drug affinity responsive target stability (DARTS)

[18] and proteomics based affinity enrichment [24]. We described

in this study a different approach employing the magnetic

biopanning scheme (Figure 2), which is pretty straightforward

and fast. Maekawa N, et al. used a similar approach to purify 15d-

PGJ2’s interacting factors from crude cell extracts [25]. Under this

scheme, the magnetic particles were suspended in the reaction

solution, which would allow more complete interaction with the

reactants. After the interaction, the magnetic particles can be

easily pulled out using an outside magnetic field. But there is a

possibility that the chemical conjugation may affect the binding

characteristics of the compound [26]. Therefore it is very

important to include binding experiments without the MPs to

confirm the interaction between the drug itself and the possible

targets (Figure 3 and 4).

In this study, we used two different biological systems for the

biopanning. One is based on the cDNA phage display library. The

proteins were displayed on the surface of the phages in many

copies and have been widely used in binding studies [27–29]. The

cDNA gene fragments were expressed and the displayed peptides

may contain some binding domains in the natural protein. More

importantly, the phage clones that were identified from the

binding studies can be easily amplified for further panning studies

and sequenced for target identification. The other system we used

is the total proteins from brain tissue extracts. Since Hup A was

thought to act upon targets in the brain mostly, we took the whole

mouse brain tissue and isolated all the proteins. The bound

proteins were characterized using Mass Spectroscopy.

Unfortunately, the protein candidates selected from the two

systems had limited overlap, and the known target of Hup A,

acetylcholinesterase (AChE), did not appear in the candidates list.

There might be various reasons. For the cDNA phage screening, it

might be that the cDNA display library didn’t contain the AChE

interactive domain gene. For the tissue lysate study, we think there

is a possibility that the amine group on Hup A that we used to link

to the magnetic particles was critical for binding with AChE.

Although most studies had suggested the lactam ring and

ethylidene methyl [26] on Hup A were main binding moieties,

an earlier study had suggested that there were interactions

between the amine group of Hup A with the aromatic groups of

Trp 84 and Phe 330 of AChE and also ionic interactions between

the amine group with the carboxyl groups of Asp 72 and Glu 199

of AChE [30]. We had tried to look for bindings between Hup-

MPs with pure AChE purchased from Sigma. The interaction was

not significant based on SDS-PAGE analysis. The Hup-MPs

conjugation may have interfered with the binding between Hup A

and AChE, and our screening method may be biased towards

target bindings other than AChE. So the site of chemical

conjugation on the drugs would have to be evaluated individually

and carefully. In a similar effort to identify binding proteins of

diadenosine tetraphosphate, we did find the known target, GroEL

protein [31].

By comparing the results from both screening assays, we

identified the mitochondria ATP synthase, which was highly

enriched in one of phage screening efforts (Table 1) and also found

in bound fraction of proteins from eukaryote tissue lysates

Table 2. Gene sequences displayed by the repeatedly
screened phages and blast result.

Sequences identified in Hup-MPs
bound phage clones Blast results

AGTTACCCTAGGGATAACAGCGCAATCC
TATTCTAGAGTCCATATCAACAATAGGG
TTTACGACCTCGATGTTGGATCAGG
ACATCCCGATGGTGCAGCCGCTATT
AAAGGTTCGTTTGTTCAACGATTAA
AGTCCTACGTGATCTGAGTTCAGAC
CGGAGTAATCCAGGTCGGTTTCTAT
CTACTTCAAATTCCTCCCTGTACGA
AAGGACAAGAGAAATAAGGCCTACT
TCACAAAGCGCCTTCCCCCGTAAAT
GATATCATCTCAACTTAGTATTATA
CCCACACCCACCCAAGAACAGGGTT
TGTTAAGATGGCAGAGCCCGGTAAT
CGCATAAAACTTAAAACTTTACAGT
CAGAGGTTCAATTCCTCTTCTTAACAAC
ATACCCATGGCCAACCTCCTACTCCTCAT
TGTACCCATTCTAATCGCAATGGCATTCC
TAATGCTTACCGAACGAAAAATTCTAGGC
TATATACAA

gb|JF682349.1| Homo sapiens
mitochondrion, complete
genome (gene sequence in
italic is the start part of
Mitochondrion NADH
dehydrogenase subunit 1)

GCTTTGTTCTTTTTTTTTTTT
TTTTAGTCTGTTTTCTCTCTTGT
TTAGATTGACATAATTCTACTGAT
TGGTTCACTGACTCTGTCGTCTAT
CATTTCCACTCTTTTATTGAGCTC
ATTCAAAGAGTTTTTATTTTAGGT
TTTTTTTTTTTTTTT

emb|AL133545.10| Human DNA
sequence from clone RP11-
386N14 on chromosome X
Contains the DUSP21 gene for
dual specificity phosphatase 21,
the 59 end of the UTX gene for
ubiquitously transcribed
tetratricopeptide repeat gene X
chromosome and 3 CpG
islands, complete sequence

doi:10.1371/journal.pone.0037098.t002
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(Figure 5). This is significant and there is a good chance that it

could be a real target of Hup A.

Another possible protein target that was repeatedly found from

the phage library was the mitochondria NADH dehydrogenase

subunit 1. Interestingly it is also from the mitochondria and related

to the ATP production in the respiratory chain. We not only

confirmed the binding between that specific phage clone and Hup

A using capillary electrophoresis (Figure 3), but also characterized

the binding characteristics of the expressed protein and Hup A

using SPR (Figure 4C). The binding constant calculated was

4.961*1025, which is much higher than the binding constant

between Hup A and AChE [32]. However, recent pharmacolog-

ical studies had indeed pointed out the involvement of NADH

dehydrogenase, also called complex I, in Hup A’s activities

[33,34]. Gao X, et al reported that pretreatment with a certain

concentration of Hup A could help to maintain NADH

dehydrogenase activity and also promote ATP production when

mitochondria was exposed to Ab. So our data would support such

an activity and even provide some underlying molecular mech-

anisms.

There have been numerous studies exploring the mechanisms of

Hup A’s activity in vivo. In addition to be a potent inhibitor of

AChE [3], studies had suggested Hup A may also exert its

neuroprotective effects through many pathways, such as antiox-

idation [35–37], antiapoptosis [4–6], attenuating the metabolism

of the amyloid precursor protein(APP) [8,9], protecting Ischemia

Injury [10]. Based on our data and also some earlier pharmaco-

logical studies [33,34], we think there should be some interaction

between Hup A and mitochondria proteins. Since mitochondria is

an important organelle that’s involved in cell apoptosis [38], and

one of the most important pathologies for AD is neuron apoptosis

[39–41]. There was suggestions of relationships between mito-

chondria dysfunction and AD [42–47]. Hup A may affect

mitochondrial functions and help to prevent neuron apoptosis

for the treatment of AD and other neurodegenerative diseases.

Specifically, we think Hup A may interact with mitochondria main

Figure 3. The capillary electrophoresis confirmation on the binding between Hup A and the specific phages. (a)The capillary
electrophoresis map of the binding analysis between Hup A and the phage displaying mitochondria gene, drug concentration in the electrophoresis
buffer was 0.0008 mg/ml. Hup A concentration injected from top to bottom was 0.0001, 0.0002, 0.0004, 0.001 and 0.002 mg/ml. The corresponding
drug/phage ratio was indicated by the number on the right side.(N) Hup A peak; (#) phage peak, including the dissociative phage and drug-bound
phage. (b)The curve and trendline between Hup A trough area and concentration using zero interpolation of internal calibration method. (c)The
binding curve between Hup A and the specific phage displaying MT-ND1 gene. (d)The binding curve between Hup A and the phage displaying X-
chromosome gene.
doi:10.1371/journal.pone.0037098.g003
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matrix enzymes including NADH dehydrogenase and ATP

synthase, which may coexist as lipid raft complexes [48], and

improve their activities, promote electron transport on the

respiratory chain, and increase ATP production to supply energy

for neuronal repair. Such a molecular mechanism agrees well with

most published observations.

Furthermore, since we have identified quite a few possible

targets, especially the ones in italic as listed in Table 1 and 3. It

Figure 4. Kinetic analysis of SPR between Hup A and MT-ND1. (a)4–12% SAS-PAGE electrophoresis map of proteins expressed by BL21(DE3)
before and after inducement. 1–4 shows the different bands before and after inducement. 1,before inducement; 2,3,4,after inducement. (b)Western
blot result of the expressed protein.1–3 shows the bands of loaded proteins with increased volume. C shows the binding curve got from SPR analysis
between MT-ND1 and Hup A.
doi:10.1371/journal.pone.0037098.g004

Figure 5. The possible protein-binding partners of Hup A selected from tissue lysate. (a)SDS-PAGE silver staining of the screen results of
the possible protein-binding partners of Hup A. 1, Hup A elution solution of positive beads; 2, Hup A elution solution of control beads; 3, positive
beads themselves; 4, control beads themselves; 5, Marker. (b)Western blot analysis of the drug-mitochondria ATP synthase possible interaction.
1,mitochondria lysate after interaction with positive beads; 2, 2nd time washing solution of positive beads; 3,3rd time washing solution of positive
beads;4, positive beads themselves; 5, mitochondria lysate after interaction with negative beads; 6, 2nd time washing solution of negative beads;
7,3rd time washing solution of negative beads;8, negative beads themselves.
doi:10.1371/journal.pone.0037098.g005
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may be useful to look at the whole repertoire of selected possible

targets, which may include some naturally less abundant or

unstable proteins that could not be picked up using conventional

methods. Although the types of proteins and their abundance in

the two different systems were different, the proteins most likely to

be picked up were quite different. We only selected two candidates

as possible targets and carried out more binding validation studies.

The purposes of the study were not only trying to find the various

possible molecular targets of Hup A, but also to demonstrate the

feasibility of using magnetic biopanning as a viable method for

investigating the complex molecular mechanisms of bioactive

molecules. The detailed scheme would need to be optimized

further, including chemical conjugation site selection and binding

assay conditions. But such a method has potentials in the

identification of bioactive molecule-protein interaction, and will

probably contribute more in future interactome study of small

molecules.

Materials and Methods

Ethics Statement
Mice were housed in the specific pathogen-free Animal Centre

of Shanghai Jiao Tong University. All experimental procedures

were approved by the Animal Experimental License Number of

SYXK 2007-0025-0125 and done according to The Animal Care

& Welfare Committee of Shanghai Jiao Tong University.

Materials
Huperzine A, 1,19-Carbonyldiimidazole N,N9 (CDI), 18-Crown

-6 were purchased from Sigma-Aldrich. BrMmC 4-bromomethyl-

7-methoxycoumarin was bought from ACROS ORGANICS

(New Jersey USA).T7 SelectH10-3b phage cDNA library and

pET44b(+)vector were purchased from Novagen. Human liver

cDNA library was purchased from Beijing BioEev-Tech. Scien-

tific&Technical Co.,Ltd. RIPA lysis buffer was purchased from

SANTA CRUZ. Protease Inhibitors were purchased from Merck.

Ni-NTA Fast Start Kit was purchased from Qiagen. C57BL/6

mice were bought from Shanghai SLAC laboratory animal

Co.Ltd. MT-ND1 antibody(ab7425) was purchased from Abcam.

DyLight 680 Goat Anti-Rabbit IgG was purchased from KPL.

EZ-Link Sulfo NHS-SS Biotinylation Kit was purchased from

Thermo scientific. Mitochondria protein isolation kit was

purchased from Sangon Biotech(Shanghai)Co., Ltd.. ATP syn-

thase subunit bmonoclonal antibody(A21351) and Dynabeads M-

280 Streptavidin(112.05D) were purchased from Invitrogen. Goat

anti-mouse IgG(H+L) HRP(GAM007)was purchased from Multi-

sciences Biotech Co., LTD.. All other chemicals used were of

analytical grade.

Preparation of Hup-MPs
Magnetic nanoparticles were synthesized by co-precipitation

method in the presence of a polymer matrix as described By Liu et

al [19]. The nanoparticle-polymer matrix was then stabilized by

crosslinking the carboxyl groups on the polymer backbone using

small amount of CDI for 2 hours in acetone at RT and the

reaction was stopped with ethylenediamine. The resulted magnetic

particles (MP) can then be collected by applying a magnetic field.

They were washed 3 times by ddH2O and lyophilized for future

use.

Hup A were conjugated to the MPs by dissolving the MPs in

acetone and activated with excess amount of CDI. The activated

MPs were collected by magnetic separation, dissolved in PBS, and

mixed with Hup A in THF. They were reacted for 2 hours, and

the finally got Hup-MPs were collected by magnetic separation,

washed 3 times by PBS, and lyophilized.

FTIR analysis of the got Hup-MPs
The Hup-MPs particles were analyzed by FTIR spectro-

scopy(Paragon 1000, Perkin Elmer,USA).

Hup-MPs mediated interaction and selection from phage
and protein libraries

The Hup-MPs and MPs(MPs without Hup A were used as

control) were respectively dissolved in PBS, blocked with BSA

overnight, and washed 3 times by PBS. They were then incubated

with the solution containing either the T7 phage cDNA library or

tissue extracts for 2 hours at 4uC. The phage or protein bound

Hup-MPs or MPs were collected by magnetic separation and

washed using 0.1% Tween 20 in PBS 7 times. (In the phage

screening study, 5 consecutive screenings were done and the

washing buffers were changed to 0.2%, 0.3%, 0.4%, 0.5% Tween

20 concentration sequentially). The bound phages or proteins were

finally harvested by adding collected Hup-MPs or MPs to Hup A

solution and dissociation from the Hup-MPs or MPs by

competition.

Phage library preparation, amplification and analysis
The T7 phage library was obtained from Novagen and

amplified according to the protocol supplied. The selected phages

obtained after interacting with HupA-MPs were amplified by

infecting E. coli BL21(5403) and purified for the next round of

screening. After the screening effort, the selected phage clones

Table 3. Protein list identified by MS from the bands cut down from 4–12% SDS-PAGE silver staining gel.

Band number Protein (IPI) Protein description Biological functions

band 1 IPI00329801.12 Annex in A5[Mus musculus] an anticoagulant protein that acts as an
indirect inhibitor of the thromboplastin-
specific complex, which is involved in the
blood coagulation cascade and also to inhibit
the activity of phospholipase A1

band 2 IPI00345960.1 Ccdc55 Coiled-coil domain-containing
protein 55

unknown

band 3 IPI00130280.1
IPI00468481.2

Atp5a1 ATP synthase subunit alpha,
mitochondrial precursor
Atp5b ATP synthase subunit beta,
mitochondrial precursor

catalyzing ATP synthesis using an
electrochemical gradient of protons across the
inner membrane during oxidative
phosphorylation

doi:10.1371/journal.pone.0037098.t003
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competed down by dissociative Hup A were collected and the

cDNA inserts were amplified by PCR (upstream primer:59-

ggagctgtcgtattccagtc- 39 and downstream primer:59- aacccctcaa-

gacccgttta - 39) and analyzed by gene sequencing. The gene

sequences obtained were blasted in the NCBI nr database to

identify the target genes.

Capillary electrophoresis analysis of phage drug
interaction

The phages were purified through CsCl density gradient

centrifugation and dialyzed in PBS for 3 times. Capillary zone

electrophoresis experiments were done using the P/ACE TM

MDQ (Beckman Coulter) apparatus. The capillary was first filled

with Hup A containing buffer solution (Na2HPO4 40 mM,

NaH2PO4 40 mM, pH7.5) with fixed drug concentration (Df).

Then different mixtures of drug and phage at various ratios were

injected and analyzed. The drug concentrations in the mixtures

were 0.0001 mg/ml, 0.0002 mg/ml, 0.0004 mg/ml, 0.001 mg/

ml and 0.002 mg/ml while the amount of phages was constant.

The capillary electrophoresis conditions were 4.0 s injection time,

0.5 psi injection pressure, 6 KV separating voltage, 30 min

separating time, 214 nm UV testing wavelength. Hummel-dreyer

method was used to calculate the concentration of Hup A

combined with phages Db [49–51],which is equal to the difference

between the injected drug concentration and Df when the minus

peak of drug disappeared.

Expression and purification of MT-ND1
The mitochondrion NADH dehydrogenase subunit 1 gene was

cloned from human liver cDNA library by specific primers

(upstream: 59- tcccccggggcatacccatggccaac - 39, and downstream:

59- ccgctcgagggtttgagggggaatgct-39) and incorporated into the

SmalI and XholI sites of pET44b(+)(Novagen) expression vector,

which was then transformed into E. coli strain BL21(DE3)(Chemi-

cally Competent cells from Invitrogen). To obtain MT-ND1, the

transformed BL21(DE3) was cultured in the presence of 1 mM

IPTG for 20 hours at 28uC. After extraction, MT-ND1 were

harvested from E. coli supernatant by passing through Ni - NTA

column, and being eluted with 5 mM and 200 mM imidazole

solution (pH 7.0) respectively. The eluted proteins were further

purified by ultracentrifugation and dialyzed against PBS buffer

(pH 7.4).

Western-blot analysis of the expressed MT-ND1
The expressed protein after purification was detected by western

blot analysis. Briefly, the samples with different amount of protein

were mixed with loading buffer, boiled for 5 minutes, separated by

4–12% Bis-Tris gel through SDS-PAGE and electrotransferred to

a nitrocellulose(NC) membrane with the iBlotH Dry Blotting

System (Invitrogen). The NC membrane was subsequently blocked

with blocking buffer at room temperature for 2 hours, washed 3

times by TBST with 0.05% tween-20, and incubated at 4uC for

12 h with monoclonal rabbit anti-human MT-ND1 antibody.

After being washed 3 times, the membrane was labeled with

DyLight 680 Goat Anti-Rabbit IgG for 1 hour at room

temperature, washed 3 times again, and finally photographed by

LI-COR Odyssey* Infrared Imaging System.

Surface plasmon resonance (SPR) binding assay of the
interaction between Hup A and MT-ND1

SPR Binding analysis between Hup A and MT-ND1 was

carried out on a Biacore 6100 instrument (GE healthcare, USA)

using a Nitrilotriacetic acid (NTA) Chip (GE healthcare, USA)

[52,53]. The NTA chip was first activated with nickel ions by

passing 500 uM NiCl2 in NTA running buffer (10 mM HEPES,

150 mM NaCl, 50 uM EDTA, 0.005% v/v surfactant P-20,

pH 7.4) as instructed. Secondly, the purified proteins, after being

confirmed MT-ND1 by western blot assay were introduced for

480 seconds to allow the protein to be immobilized on the chip

surface. The surface was then washed using NTA running buffer

containing 3.5 mM EDTA for 240 seconds. Subsequently, drug

solutions with concentrations ranging from 4.6625 uM to 600 uM

were sequentially introduced to flow through the MT-ND1

immobilized surface for 180 seconds each. The binding data was

processed and the steady state affinity calculation was carried out

using the Biacore 6100 Evaluation Software (GE healthcare,

USA). The chip surface was regenerated using 0.35 M EDTA,

pH 8.3 at the end of each cycle.

SDS-PAGE analysis of tissue lysate
Mouse brain tissue was collected from 2 healthy C57BL/6 mice

(16 weeks old) after they were anesthetized by lethal injection of

ketamine and then were perfused intracardially with 25 ml of

normal saline. Brain tissues were rapidly put in ice cold RIPA lysis

buffer (containing protease inhibitor cocktail, pmsf and sodium

orthonavate), and homogenized, and centrifuged at 12,000 rpm

for 10 mins at 4uC to collect the supernatant.

The tissue lysate before and after interaction with Hup-MPs

were examined by 4–12% SDS-PAGE, operated according to the

protocol of NuPAGEH Novex 4–12% Bis-Tris gel from Invitrogen.

SilverQuest Silver Staining Kit was used to stain the gel after

electrophoresis.

Mass spectrometry identification of specific proteins
3 specific protein bands were fished out repeatedly in the 2

screen experiments and were cut down and sent to Shanghai

Applied Protein Technology Co., Ltd. for MS identification using

the LTQ, Thermo Finnigan apparatus. The analysis parameters

were as following: positive charge testing mode, micro spray

injecting way, 170uC capillary temperature, 0.15 mm*15 cm

column, 400–2000 DAL scanning scope.

Western blot assay of Hup A and mitochondria ATP
synthase binding

The binding between Hup A and mitochondria ATP synthase

was validated by western-blot analysis. Mitochondria was isolated

from mouse brain tissue using Mitochondria protein isolation kit

purchased from Sangon Biotech (Shanghai) Co., Ltd., and lyzed in

the specific buffer (20 mmol/L Tris-HCI,pH7.5, 2 mmol/L

EGTA, 2 mmol/L EDTA,1% Triton X-100, 1 ul/ml protease

inhibitor and DTT) on ice for 100 minutes. The supernatant after

centrifugation was dialyzed in PBS overnight at 4uC for further

use. 5 mg Hup A and 150 ul 50 mM ethanolamine (as control)

was biotinylated with 2 mg EZ-Link Sulfo-NHS-SS-Biotin ac-

cording to the kit’s protocol. Biotin-Hup A and biotin- ethanol-

amine were then loaded on the surface of 200 ul Dynabeads M-

280 with streptavidin. Half of the beads with Hup A or

ethanolamine were allowed to interact with 100 ul of the

mitochondria lysate at 700 rpm, 4uC for 3 hours, and then

washed 3 times by 500 ul PBS each time. The samples from the

positive beads (beads with Hup A) and the negative beads(beads

with ethanolamine), the supernatant after interacting with beads,

the washing buffer, and the beads themselves were lyophilized and

resuspended in 50, 30 and 25 ul ddH2O, loaded on 10% SDS-

PAGE. The target protein, mitochondria ATP synthase, was

identified using ATP synthase subunit b monoclonal antibody
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from mouse (A21351 from Invitrogen) and stained with goat anti-

mouse IgG(H+L) HRP.
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