
Vol. 29 no. 24 2013, pages 3241–3242
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt547

Databases and ontologies Advance Access publication September 23, 2013

BioServices: a common Python package to access biological

Web Services programmatically
Thomas Cokelaer1,*, Dennis Pultz2, Lea M. Harder2, Jordi Serra-Musach3,4 and
Julio Saez-Rodriguez1

1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus,
Cambridge, CB10 1SD, UK, 2Department of Biochemistry and Molecular Biology, University of Southern Denmark,
Odense 5230, Denmark, 3Translational Research Laboratory, Breast Cancer Unit, Catalan Institute of Oncology (ICO),
Bellvitge Institute for Biomedical Research (IDIBELL), Gran via 199, L’Hospitalet del Llobregat, Barcelona 08908,
Catalonia, Spain and 4Biomedical Research Institute of Girona, Girona 17007, Catalonia, Spain

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: Web interfaces provide access to numerous biological

databases. Many can be accessed to in a programmatic way thanks

to Web Services. Building applications that combine several of them

would benefit from a single framework.

Results: BioServices is a comprehensive Python framework that pro-

vides programmatic access to major bioinformatics Web Services

(e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional

Web Services based either on Representational State Transfer or

Simple Object Access Protocol/Web Services Description Language

technologies is eased by the usage of object-oriented programming.

Availability and implementation: BioServices releases and docu-

mentation are available at http://pypi.python.org/pypi/bioservices

under a GPL-v3 license.

Contact: cokelaer@ebi.ac.uk or bioservices@googlegroups.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on April 19, 2013; revised on August 16, 2013; accepted on

September 13, 2013

1 INTRODUCTION AND MOTIVATION

Many biological databases are accessible on the www (world

wide web) via server-side applications that span the entire spec-

trum of bioinformatics (e.g. genomics, sequence analysis).

Although manual requests allow quick retrieval of information,

programmatic access via Web Services scales up the number of

requests and permits the composition of complex workflows.

One strength of Web Services is that client-side applications do

not need any intimate knowledge of the database provided by the

service itself. Life sciences and bioinformatics have had a fecund

production of Web Services in recent years (Bhagat et al., 2010).

Web services integration within a single framework fosters the

development of applications. An example based on JAVA isMAPI

(Karlsson and Trelles, 2013) that has been a base for developing

biomedical applications. Programmatic access to Web Services

relies mostly on (i) REST (Representational State Transfer) and

(ii) SOAP (Simple Object Access Protocol; www.w3.org/TR/

soap). REST has an emphasis on readability: each resource corres-

ponds to a unique URL. There is no need for any external depend-

ency, as operations are carried out via standardHypertext Transfer

Protocol (HTTP) methods (e.g. GET, POST). SOAP uses exten-

sible mark-up language (XML)-based messaging protocol to

encode request and response messages using WSDL (Web

Services Description Language; www.w3.org/TR/wsdl) to describe

the service’s capabilities.
To build applications that integrate several Web Services, one

needs to have expertise in (i) HTTP requests, (ii) SOAP protocol,

(iii) REST protocol, (iv) XML parsing to consume the XML

messages and (v) related bioinformatics fields. Besides, inputs

and outputs of the services can be heterogeneous. Consequently,

the composition of workflows or design of external applications

based on several Web Services can be challenging.
The Python language has many useful features for researchers

(Bassi 2007): it is an object-oriented language with a precise and

concise syntax and has a versatile set of standard modules. There

is a growing and thriving community of scientific developers. An

example of a library dedicated to bioinformatics is BioPython

(Cock et al., 2009). It provides input/output functions, algorithms

and some access to Web Services (e.g. Entrez). However, a dedi-

cated framework to easily integrate bioinformatics Web Services

and to provide extensive access to them is missing.
We have, therefore, developed BioServices to provide pro-

grammatic access to major bioinformatics Web Services within

a single software framework using Python as a glue language. It

should alleviate the needs for technical knowledge to develop

more complex applications around existing resources.

2 APPROACH AND IMPLEMENTATION

To bring together various Web Services within BioServices, we

first designed two base classes called RESTService and

WSDLService so as to ease the wrapping of Web Services. As

shown in Figure 1, these two classes are then used by all services

available within BioServices. A SOAP/WSDL Web Service can

be wrapped concisely as follows:

from bioservices import WSDLService

class AWrapper(WSDLService):*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://pypi.python.org/pypi/bioservices
mailto:cokelaer@ebi.ac.uk
mailto:bioservices@googlegroups.com
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt547/-/DC1
,
www.w3.org/TR/soap
www.w3.org/TR/soap
since
www.w3.org/TR/wsdl
In order t
,
In order t


def __init__(self):

super(AWrapper, self).__init__(

"AWrapper", url¼"validURL?wsdl’’)

Similarly, REST services can be exposed concisely (replace

WSDLService by RESTService) as explained in the Developer
Section of the Supplementary Data. An example of SOAP/
WSDL service wrapped within BioServices is BioModels

(Li, 2010). Consider the following example:

1 from bioservices import BioModels

2 s¼BioModels()

3 s.methods # methods exposed by WSDL

4 s.serv.getAllModelsId()

5 s.getAllModelsId()

All methods exposed by the service are listed in the methods

attribute (line 3). They can be called directly via the serv attri-
bute. For example, all model identifiers can be retrieved (line 4).
Methods are then wrapped (line 5) to add robustness and

quality.
Web Services currently available in BioServices (see Table 1)

can be used independently but they can also be combined.

Amongst the various examples provided in the Supplementary
Data, a case study demonstrates how to retrieve a protein’s
UniProt identifier, its corresponding FASTA sequence, the
related Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways, the interactions with other proteins (PSICQUIC)
and so forth.
Two issues arise when manipulating several services, especially

for end-users: (i) heterogeneous data structures are returned and
(ii) a plethora of identifiers and keywords are required. Both
issues are unfortunately inherent to the diversity of the Web

Services used. Although some data structures are commonly
used (e.g. XML format), there is still a variety of data structures
to deal with. BioServices addresses the first issue by providing

extensive documentation and examples. As for the identifiers
issue, although BioServices does not provide mapping functions
by itself, it gives access to mapping functions from UniProt,

KEGG and UniChem (among others). See the online documen-

tation (http://pypi.python.org/pypi/bioservices) for examples.

3 CONCLUSION/RESULTS

BioServices provides a comprehensive access to bioinformatics

Web Services within a single Python library; the current release

(1.1.1) provides access to 18 Web Services (see Table 1). The

methodology used to encapsulate Web Services and their func-

tionalities combined with Python allow pipelines (that combine

several Web Services) to be implemented concisely. Besides, an

extensive online documentation (http://pypi.python.org/pypi/

bioservices) should help users and developers to deal with the

profusion of identifiers and data structures inherent to the diver-

sity of Web Services available. Releases are available on PyPi

(http://pypi.python.org/pypi/bioservices), the official Python re-

pository. Developers can obtain the source code from a public

server (https://www.assembla.com/spaces/bioservices/wiki).

Besides, bug reports and new feature requests are encouraged

(https://www.assembla.com/spaces/bioservices/tickets), and con-

tributors are welcome to join the user and developer community

(https://www.assembla.com/spaces/bioservices/wiki). Tests are

included with a large coverage to guarantee robustness regarding

potential modifications of the Web Services themselves. By cov-

ering a wide range of Web Services, BioServices can be used to

complement external libraries (e.g. BioPython, Galaxy; see

Supplementary Data) and foster the development of new

workflows.

Funding: Danish Research Councils (to L.M.H. and D.P.),

Lundbeck Foundation (to L.M.H.), Foundation Ferran Sunyer

i Balaguer (to J.S.M.), Biomedical Research Institute of Girona

(to J.S.M.) and EU BioPreDyn FP7-KBBE (grant 289434).

Conflict of Interest: none declared.

REFERENCES

Bassi,S. (2007) A primer on Python for life science researchers. PLoS Comput. Biol.,

3, e199.

Bhagat,J. et al. (2010) BioCatalogue: a universal catalogue of web services for the

life sciences. Nucleic Acids Res., 38, W689–W694.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Karlsson,J. and Trelles,O. (2013) MAPI: a software framework for distributed bio-

medical applications. J. Biomed. Semantics, 4, 4.

Li,C. et al. (2010) BioModels.net Web Services, a free and integrated toolkit for

computational modelling software. Brief. Bioinform., 11, 270–277.

Fig. 1. Interaction between external applications and existing Web

Services via BioServices. External applications can use BioServices to

compose or aggregate several Web Services (see Table 1 for available

services)

Table 1. Web Services accessible from BioServices

ArrayExpress (R) BioMart (R) BioModels (W)

ChEBI (W) ChEMBLdb (R) EUtils (W)

KEGG (R) HGNC (R) Miriam (W)

PDB (R) PICR (R) PSICQUIC (R)

QuickGO (R) Rhea (R) UniChem (R)

UniProt (R) NCBIBlast (R) WikiPathways (W)

Note: R stands for REST and W stands for SOAP/WSDL protocol.

3242

T.Cokelaer et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt547/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt547/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt547/-/DC1
,
etc
,
-
http://pypi.python.org/pypi/bioservices
1
-
http://pypi.python.org/pypi/bioservices
http://pypi.python.org/pypi/bioservices
1
http://pypi.python.org/pypi/bioservices
1
https://www.assembla.com/spaces/bioservices/wiki
2
https://www.assembla.com/spaces/bioservices/tickets
3
https://www.assembla.com/spaces/bioservices/wiki
2
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt547/-/DC1
,
,

