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CSF GABA is reduced in first-episode psychosis and associates
to symptom severity
F Orhan1, H Fatouros-Bergman2, M Goiny1, A Malmqvist1, F Piehl3, Karolinska Schizophrenia Project (KaSP) Consortium5, S Cervenka2,
K Collste2, P Victorsson2, CM Sellgren1,4, L Flyckt2, S Erhardt1 and G Engberg1

Schizophrenia is characterized by a multiplicity of symptoms arising from almost all domains of mental function. γ-Aminobutyric
acid (GABA) is the primary inhibitory neurotransmitter in the brain and is increasingly recognized to have a significant role in the
pathophysiology of the disorder. In the present study, cerebrospinal fluid (CSF) concentrations of GABA were analyzed in 41 first-
episode psychosis (FEP) patients and 21 age- and sex-matched healthy volunteers by high-performance liquid chromatography. We
found lower CSF GABA concentration in FEP patients compared with that in the healthy volunteers, a condition that was unrelated
to antipsychotic and/or anxiolytic medication. Moreover, lower CSF GABA levels were associated with total and general score of
Positive and Negative Syndrome Scale, illness severity and probably with a poor performance in a test of attention. This study offers
clinical in vivo evidence for a potential role of GABA in early-stage schizophrenia.
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INTRODUCTION
Schizophrenia is characterized by positive and negative symp-
toms, as well as by cognitive deficits, in particular in domains
related to attention and verbal working memory.1,2 For half a
century, the dopamine hypothesis has dominated theories
regarding the pathophysiology of schizophrenia. However,
although many symptoms can be linked to dopaminergic
dysregulation, it has been suggested that causative abnormalities
may lie elsewhere.3 In this regard, focus has been directed to
glutamatergic dysregulation and, in particular, to an N-methyl-D-
aspartate receptor hypofunction.4–6 Thus, patients with schizo-
phrenia show elevated levels of post-mortem brain and cere-
brospinal fluid (CSF) kynurenic acid, an endogenous N-methyl-D-
aspartate receptor antagonist.7–10 Several lines of research have
also implicated the inhibitory neurotransmitter γ-aminobutyric
acid (GABA) in the pathophysiology of schizophrenia and a
number of studies have identified deficits in parvalbumin
containing GABA neurons in schizophrenia.11 One of the most
consistent post-mortem findings in schizophrenia is a decreased
expression of the 67 kDa isoform of glutamic acid decarboxylase, a
key enzyme in the biosynthesis of GABA.12–15 In line with this,
several studies have shown an association between GAD1, the
gene for the enzyme 67 kDa isoform of glutamic acid decarbox-
ylase, and schizophrenia.16–18 Furthermore, congruent with a
reduced expression of 67 kDa isoform of glutamic acid decarbox-
ylase, post-mortem studies reveal lower GABA levels in multiple
brain regions including the nucleus accumbens, thalamus,
amygdala and hippocampus in patients with schizophrenia.19–23

In contrast to genetic and post-mortem studies, in vivo studies
of GABA in schizophrenia have been inconclusive. Using proton
magnetic resonance spectroscopy (1H-), some studies found a
decrease,24–26 some an increase,27,28 and yet others found no

changes in GABA levels29–31 in patients with schizophrenia.
Differences in GABA levels between patients and unaffected
controls appear dependent on the brain area investigated, the
duration of illness, as well as on the medication.25–28,30,31 Recently,
a study using positron emission tomography utilizing [11C]
flumazenil suggested an impaired GABA neurotransmission in
patients with schizophrenia, a finding that was also associated
with positive symptoms.32 Further, several studies analyzing CSF
GABA in patients with schizophrenia, most of them performed
during the 1980s, have yielded mostly negative and partly
inconsistent results.33–41

Taken together, there is an increasing body of evidence from
genetic and post-mortem studies implicating an altered GABA
transmission as a significant component of schizophrenia
pathophysiology. However, robust evidence from CSF studies of
an involvement of GABA is still lacking. We here analyze CSF GABA
and four other amino acids, that is, glutamate, glycine, taurine and
tyrosine, with a sensitive analytical assay, in well-characterized
groups of healthy controls and patients with first-episode
psychosis (FEP), most of them drug naive to antipsychotic
medication. We hypothesize that CSF GABA is reduced in FEP
patients, and that low levels of GABA associate to worse
symptoms and cognitive deficits.

MATERIALS AND METHODS
Subject population
The study was approved by the Regional Ethics Committee in Stockholm
and conformed to the tenets of the Declaration of Helsinki. All subjects
were included from March 2011 through January 2014, after providing
written informed consent. This study formed part of the Karolinska
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Schizophrenia Project, a multidisciplinary research consortium that
investigates the pathophysiology of schizophrenia.

FEP patients
Forty-one FEP patients (25 male and 16 female) who met the Diagnostic
and Statistical Manual of Mental Disorders (DSM-IV) criteria for schizo-
phrenia (n= 12), schizophreniform disorder (n= 14), severe depression with
psychotic features (n= 1), delusional disorder (n=3), brief psychotic
disorder (n=1), psychotic disorder not otherwise specified (n=9) or
schizoaffective syndrome (n= 1) were recruited from psychiatric emer-
gency wards and 3 psychiatric outpatient clinics in Stockholm. Diagnosis
was established based on a structured clinical interview of the DSM-IV or a
consensus diagnostic procedure. All patients were re-assessed after
approximately 1.5 years and were then found to meet the criteria for
the following DSM-IV diagnoses: schizophrenia (n= 25), psychotic disorder
not otherwise specified (n= 5), delusional disorder (n=4), brief psychotic
disorder (n=1), schizoaffective syndrome (n=3) and no diagnosis (n= 3).
Exclusion criteria were neurologic or severe somatic illness, substance
abuse and autism spectrum disorder. Absence of major brain abnormalities
was confirmed using magnetic resonance imaging. All patients underwent
an extensive clinical characterization, including the Global Assessment of
Functioning (GAF; where symptom and functioning dimensions were
assessed separately), the Positive and Negative Syndrome Scale (PANSS),
Clinical Global Impression (CGI), Alcohol Use Disorders Identification Tests
and Drug Use Disorders Identification Tests. All patients included in this
study were somatically healthy and free from any substance abuse
disorder. Tobacco use was permitted and 11 of the 41 patients (27%) used
tobacco (smoking or snuff). Occasional medication with sedatives and
anxiolytics were allowed during the course of the study. At the time of CSF
sampling, 12 out of 41 patients (29%) were treated with benzodiazepines
(BZDs). Eighteen out of 41 patients (44%) were under antipsychotic
treatment at the time of CSF sampling (mean time (± s.e.m.) 7.2 ±1.82 days).
Patients with more than 1 month of treatment with antipsychotics were
not included in the study, with the exception of the inclusion of one
patient that had been treated for 57 days. Twelve out of 41 patients were
naive to all medications. Antipsychotics used were olanzapine, aripiprazole,
risperidone, quetiapine or haloperidol (see Supplementary Table S1).
Individual medication was maintained in all patients throughout the test
period, although the dosages of anxiolytics/hypnotics may have been
slightly adjusted. Duration of untreated psychosis was based on
information from the patients or his/her relatives. For most patients
(n=34), GAF, PANSS, cognitive testing and lumbar puncture were all
performed within a 10-day period (mean time (± s.e.m.): 5.5 ±0.4 days),
whereas seven of the patients underwent these investigations during a
period from 14 to 40 days (mean time (± s.e.m.): 19.4 ±3.6 days).

Healthy control subjects
Twenty-one healthy control subjects (11 males and 10 females) were
recruited by advertisement. Medical examination was made by routine
laboratory blood and urine tests, physical examination, as well as a brain
magnetic resonance imaging examination. The Mini International Neu-
ropsychiatric Interview was used to exclude previous or current psychiatric
illness. Further exclusion criteria were previous or current use of illegal
drugs and first-degree relatives with psychotic illness. All participants were
free from medication and any form of substance abuse evaluated with
Alcohol Use Disorders Identification Tests/Drug Use Disorders Identification
Tests at the time of the study. None of the subjects had any first-degree
relative with a psychiatric diagnose. In all but one case, no structural brain
abnormality was detected using magnetic resonance imaging, as
evaluated by an experienced neuroradiologist at the MR Centre, Karolinska
University Hospital, Solna. This individual exhibited signs of demyelinating
disease on magnetic resonance imaging, but did not fulfill criteria for a
clinically isolated syndrome or multiple sclerosis,as the clinical neurological
exam was normal and there was no history of relevant neurological
symptoms. CSF examination revealed oligoclonal bands, but no other
abnormalities. Test results were similar to other controls and therefore this
subject was not excluded from the analysis. For all healthy controls,
cognitive test session and lumbar puncture were all performed within
mean time (± s.e.m.): 14.5 ±3.01 days.

CSF collection
Efforts were made to reduce confounding factors of the lumbar puncture
procedure that could influence analysis of CSF amino acids.42 These efforts

include the use of a disposable atraumatic needle (22G Sprotte, Geisingen,
Germany) that was inserted at the L 4-5 level with all individuals in the
right decubitus position. Further, the same volume of CSF (18 ml) was
allowed to drip into a plastic test tube, protected from light. CSF
supernatant from all subjects was divided into 10 aliquots that were frozen
at − 80 °C within 1 h of sampling following centrifugation (Sigma 5810R,
Eppendorf, Hamburg, Germany at 3500 r.p.m. (1438 g) for 10 min) to
separate cells and supernatant, respectively. The majority of subjects
(n=37; 23 patients and 14 controls) underwent the lumbar puncture
between 0745 and 2200 h after a night’s sleep. Owing to clinical routines,
morning sampling was not possible in the remaining FEP patients (n= 18).
To control for this confounding factor, seven controls also underwent
lumbar puncture during the same time interval (that is, 1030 and 1315 h).
All subjects were instructed to avoid physical activity during the preceding
8 h; however, it was not feasible to monitor rest or posture in this regard.
Importantly, no correlation between CSF GABA levels and the point of time
for lumbar puncture was observed (Pearson; all: r=− 0.14, P= 0.28;
controls: r=− 0.06, P= 0.81; patients: r=− 0.17, P=0.29). This is in analogy
with BenMenachem et al.,43 showing no differences in CSF GABA in healthy
controls between lumbar puncture in the afternoon and next morning
sampling.
A fresh sample was analyzed for cell numbers, albumin, immunoglobulin

G content and the presence of immunoglobulin G and immunoglobulin M
antibodies to Borrelia, as well as with immune electrophoresis.

Analysis of CSF GABA
Samples were subsequently analyzed for GABA (and additional amino
acids, that is, glutamate, taurine, glycine and tyrosine) with a gradient
elution reversed-phase high pressure liquid chromatography system,
including a gradient pump (Spectra System P4000, Waltham, MA, USA), a
degasser (Spectra System SCM 400), a Luna 100 C18(2) column (50 × 2 mm
i.d., 5 μm particle size, Phenomenex, Torrance, CA, USA) and a fluorescence
detector (Jasco FP-920, Tokyo, Japan) operating at excitation and emission
wavelengths of 344 and 495 nm, respectively. The chromatographic
separation was performed at room temperature (22 °C). CSF from FEP
patients and healthy controls were derivatized for 60 s at room
temperature with O-phthaldialdehyde/2-mercaptoethanol reagent. The
reagent was prepared by dissolving 27 mg O-phthaldialdehyde in 0.5 ml
ethanol (99.5%), 4.5 ml borate buffer (0.4 M boric acid adjusted to pH 10.4
with sodium hydroxide) and 20 μl 2-mercaptoethanol was added.
Detection of amino acid gradients was performed with two degassed

mixture mobile phases. Mobile phase A consists of 0.04 M sodium acetate
buffer (pH 6.95) containing 2.5% (v/v) of methanol, 2.5% (v/v) of
tetrahydrofuran and mobile phase B consists of methanol. The flow rate
of the mobile phase was 0.7 ml min− 1 throughout the analysis and all
gradient changes were linear. The gradient conditions were as follows:
initial conditions are 100% mobile phase A; from time 0 to 11 min the
gradient changes to 70% mobile phase A and 30% mobile phase B; from
11 to 13 min the gradient changes to 10% mobile phase A and 90% mobile
phase B; from 14 min the gradient changes to 100% mobile phase A and
remains in this condition until the next injection. Samples of 20 μl were
manually injected into the system. The signals from the fluorescence
detector were transferred to a computer and analyzed by Datalys Azur
Software (Grenoble, France). Approximate retention time of GABA was
9.8 min (glutamate 1.2 min; taurine 5.5 min; tyrosine 11.5 min).

Cognitive testing
The Measurement and Treatment Research to Improve Cognition in
Schizophrenia Consensus Cognitive Battery44 was used to evaluate
cognitive function. This battery captures key cognitive domains relevant
to schizophrenia. The Measurement and Treatment Research to Improve
Cognition in Schizophrenia Consensus Cognitive Battery includes 10 tests
that measure 7 cognitive domains: Speed of processing (Brief Assessment
of Cognition in Schizophrenia: Symbol Coding, Category Fluency: Animal
Naming, Trail Making Test: Part A); Attention/vigilance (Continuous
Performance Test-Identical Pairs); Working memory (Wechsler Memory
Scale-3rd Edition: Spatial Span, Letter-Number Span); Verbal learning
(Hopkins Verbal Learning Test-Revised); Visual learning (Brief Visuospatial
Memory Test-Revised); Reasoning and problem solving (Neuropsychologi-
cal Assessment Battery: Mazes) and Social cognition (Mayer–Salovey–
Caruso Emotional Intelligence Test: Managing Emotions). One psychologist
(HFB) administered all the tests.
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Statistical analysis
The normality of data was determined using D’Agostino and Pearson’s
omnibus normality test. One-tailed tests of significance (Mann–Whitney
U-test) were performed in the comparison between CSF GABA levels in FEP
patients and healthy controls, and in the correlation analyses as a
directional change, that is, decreased GABA levels in FEP patients, could be
hypothesized at this stage. Two-tailed tests were performed to determine
the possible effects of various medications on CSF GABA (Table 2), as the
direction of any change in CSF GABA levels could not be anticipated. To
assess the relative importance of potential confounders, we used binary
logistic regression or χ2-test, as well as the R package ‘relaimpo’.45 Here
individual regressor’s contribution to a multiple linear regression model is
quantified using six different methods. Although the different methods
produced similar results, we here report an approach based on sequential
R2s that takes care of the dependence on orderings by averaging over
orderings using simple unweighted averages (lmg). Comparisons of
cognition between FEP patients and controls were analyzed using the
unpaired t-test with equal s.d. Reported correlation coefficients are
Pearson’s r. Bonferroni correction was used in the comparison of different
cognitive tests between healthy controls and FEP patients, giving an
α-threshold of 0.005 (0.05/10). Only those cognitive tests that remained
significant after the Bonferroni correction was used for the correlation with
CSF GABA in FEP patients giving an α-threshold of 0.0083 (0.05/6). With
regard to the correlation studies between CSF GABA and cognitive tests in
healthy controls, the α-threshold was set to 0.005 (0.05/10). Symptom
ratings were highly correlated (see Supplementary Table S2) and therefore
not corrected for repeated measure. To confirm the association between
CSF GABA and clinical symptoms, we applied a principal component
analysis (Supplementary Information). All analyses were performed using
Prism version 6.0 (GraphPad Software, La Jolla, CA, USA), SPSS Statistics
version 20.0 (IBM, Armonk, NY, USA), or R statistics (R Development Core
Team, Vienna, Austria). Statistical significance was considered when
Po0.05.

RESULTS
Participants
Clinical and demographic characteristics of participants are
presented in Table 1. There was no significant difference in age,
gender or body mass index between patients and healthy
controls. Duration of untreated psychosis was 10.5 ± 1.88 (mean±
s.e.m.) months and total PANSS score was 73.9 ± 3.42 (mean± s.e.
m.). Eighteen patients (44%) received antipsychotic medication, 12
patients (29%) BZDs, 10 patients (24%) zopiclone, 5 patients (12%)
antidepressants and 11 patients (27%) received phenothiazine
derivatives. Twenty-nine patients (71%) received a combination of
some of these drugs at the time of CSF sampling. Twelve out of 41
patients (29%) were naive to all medications (see Supplementary
Table S1).

CSF GABA in FEP patients versus healthy controls
The CSF levels of GABA in FEP patients and healthy controls are
displayed in Figure 1.
The CSF GABA concentration was significantly lower in FEP

patients compared with healthy controls (median 2.88 μM,
interquartile range 2.02–6.57 μM, n= 41 vs median 4.11 μM,
interquartile range 2.68–5.13 μM, n= 21, P= 0.042). No significant
associations were found between CSF GABA levels and age,
gender, body mass index or tobacco use (see Supplementary
Table S3). CSF GABA levels did not differ between FEP patients
that were naive to antipsychotic treatment and those on
antipsychotic treatment (P= 0.85). Neither did CSF GABA levels
differ between treated and untreated FEP patients with regard to
BZDs (P= 0.30), zopiclone (P= 0.47), antidepressants (P= 0.37),
phenothiazine derivatives (P= 0.62) or all drugs combined
(P= 0.15) (see Table 2). To further investigate the impact of
potential confounders, an R package relaimpo was also made
assessing the relative importance of the regressors diagnosis (yes/
no), medication (yes/no), age, gender, body mass index and
tobacco use (yes/no) in a linear model predicting CSF GABA levels.

Table 1. Demographic and clinical characteristics of the study
population

Characteristic Mean± s.e.m. (n)a P-value

Healthy controls
(n=21)

FEP patients
(n=41)

Age (years) 25.9± 1.11 (21) 29.2± 1.06 (41) 0.06b

Gender (male/female) 11/10 25/16 0.52c

BMI (kg/m2) 22.2± 0.55 (20) 23.1± 0.62 (39) 0.33b

% Tobacco users 0% 27% —

DUP (months) — 10.5± 1.88 (37) —

Days of antipsychotic
treatment

— 7.2± 1.82 (18) —

Medication
Antipsychotics 0% 44% —

Benzodiazepines 0% 29% —

Zopiclone 0% 24% —

Antidepressants 0% 12% —

Phenothiazine
derivatives

0% 27% —

PANSS
Positive — 19.5± 0.86 (41) —

Negative — 15.9± 1.21 (41) —

General — 38.5± 1.87 (41) —

Total — 73.9± 3.42 (41) —

Level of functioning
GAF symptoms — 35.6± 1.99 (41) —

GAF functioning — 46.2± 2.17 (41) —

CGI score — 4.4± 0.17 (41) —

Abbreviations: BMI, body mass index; CGI, Clinical Global Impression;
DUP, duration of untreated psychosis; FEP, first-episode psychosis;
GAF, Global Assessment of Functioning; PANSS, Positive and Negative
Syndrome Scale. aUnless otherwise indicated. bBinary Logistic regression.
cχ2-test.

Figure 1. GABA in the CSF of healthy controls (HC, n= 21) and (FEP,
n= 41) patients. Each point represents the concentration of a
single CSF sample and the horizontal lines represent the median
for each group. Statistical differences between controls and
FEP patients were determined using Mann–Whitney U-test.
*Po0.05. CSF, cerebrospinal fluid; FEP, first-episode psychosis;
GABA, γ-aminobutyric acid.
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All metrics allocated the largest share of R2 to case status
(sequential R2s approach with averaging over orderings using
simple unweighted averages: 45%) followed by age (25%),
whereas the remaining predictors accounted for 15% or below
(Supplementary Figure S1). Given the wide bootstrap confidence
intervals, together with a previous study showing an age effect on
GABA levels, we adjusted the original analysis for age, but the
significant association between case status and CSF GABA levels
remained (P= 0.047).
We also analyzed additional amino acids, that is, glutamate,

taurine, glycine and tyrosine, in our samples. The CSF concentra-
tion of these was not significantly different between patients and
healthy controls (Supplementary Figure S2). Further, the gluta-
mate/GABA ratio was not significantly different between patients
and controls (P= 0.16).

Cognitive performance in FEP patients versus healthy controls and
correlations between cognitive performance and CSF GABA in FEP
patients
Compared with healthy controls, FEP patients showed a reduction
in performance in all cognitive domains tested, the most salient
related to attention, speed of processing and visual/verbal
learning. Six of the cognitive domains remained significant after
Bonferroni correction (Table 3). Moreover, a positive correlation
was found between CSF GABA and scores of the attention/
vigilance test Continuous Performance Test-Identical Pairs perfor-
mance in FEP patients (r= 0.37, P= 0.01; which remained border-
line significant following the Bonferroni correction (significance
threshold of Po0.0083) (Table 4). No associations were found
between CSF GABA and other cognitive domains tested. In
healthy controls, correlations between CSF GABA and cognition
were also observed with regard to the cognitive domains visual
learning (r=− 0.44, P= 0.02) and social cognition (r=− 0.59,
P= 0.002). Only the correlation with social cognition remained
after Bonferroni correction (threshold of Po0.005).

Correlations between CSF GABA and symptoms in FEP patients
Symptoms among patients were profiled using PANSS, CGI and
GAF. We observed negative correlations between CSF GABA and
total score on PANSS (r=− 0.30, P= 0.03) in FEP patients (Table 4).
For the general psychopathology subscale of PANSS, we found a
similar correlation (r=− 0.31, P= 0.02). Correlation analyses using
the subscale measuring positive symptoms reached a nearly
significant association (r=− 0.26, P= 0.0503), whereas the subscale
negative symptoms did not (r=− 0.19, P= 0.12). Moreover, CSF

GABA was found to correlate positively to scores of the symptom
dimension of GAF (r= 0.31, P= 0.02). With regard to scores of the
functioning dimension of GAF a trend towards statistical
significance was observed (r= 0.24, P= 0.06). A negative correla-
tion between CSF GABA and CGI scores (r=− 0.38, P= 0.007) was
detected.
Notably, ratings for PANSS, GAF and CGI scales were highly

correlated (see Supplementary Table S2), making a Bonferroni
correction for repeated measures inappropriate. To overcome the
problem with adequate control of type I and II errors, a principal
component analysis was performed (for details, see Suppl-
ementary Information) followed by linear regression modeling of
extracted individual principal component scores. This confirmed
an association between symptoms and low CSF GABA levels
(β=− 0,27; P= 0.020; Table 4).

DISCUSSION
The present study shows a reduction in CSF GABA levels in
patients with FEP compared with healthy controls. Further-
more, CSF GABA concentration, which was unrelated to anti-
psychotic and/or anxiolytic medication, was found to correlate
with general and total score of PANSS, as well as to illness
severity, such that lower CSF GABA levels predicted higher
symptom levels.
Mounting clinical and experimental data suggest a role of GABA

in the pathophysiology of schizophrenia (cf. Introduction).
However, evidence for this is mainly indirect and analyses of
GABA in CSF of patients with schizophrenia have failed to give a
conclusive result in this regard. Although Van Kammen et al.41

found significantly lower CSF GABA levels in young women with
schizophrenia, most previous studies analyzing GABA in the CSF
from patients with schizophrenia have failed to observe any
difference compared with controls.33–40 These studies, all per-
formed in the 70s or 80s, have been limited by the lack of a
control group of age-matched healthy volunteers or by the
sensitivity of the GABA assay (enzymetric fluorometric method,
ion-exchange column chromatography or radio-receptor assay).
Thus, discrepancies between present data, utilizing a well-
characterized cohort, healthy volunteers as controls and top-of-
the-art high-performance liquid chromatography analysis of GABA
and previous literature may be explained by differences in study
design and methods of GABA analysis.
The present finding of lower CSF GABA levels in FEP patients

likely reflects a reduced overall GABAergic neurotransmission in
the brain. The observed direction of changes is in line with
previous post-mortem studies showing a reduced GABA synthesis
in schizophrenia (cf. Introduction). Further, in excellent agreement
with present findings, a recent positron emission tomography
study, utilizing the GABA-A receptor ligand [11C]flumazenil,
indicate an impaired GABA transmission in the orbital frontal
cortex in patients with schizophrenia.32 Our findings also reveal
negative correlations between CSF GABA and total and general
PANSS, such that low CSF GABA levels predicted high general
severity of illness. In addition, low CSF GABA concentrations were
associated with reduced scores of the symptom and functioning
dimensions of GAF, as well as with high CGI scores, indicating that
symptoms and illness severity associate with lower levels of CSF
GABA. In line with a large body of studies, investigating cognitive
functions in schizophrenia, FEP patients showed a significant
reduction in performance compared with healthy controls in all
parts of our cognitive test battery (Table 3). Moreover, CSF GABA
levels were found to be positively correlated with Continuous
Performance Test-Identical Pairs (although it did not fully meet the
Bonferroni-corrected significance threshold of Po0.008), a
cognitive test that measures attention, a cognitive domain
impaired in patients with schizophrenia.2,46,47 A relationship
between CSF GABA and cognitive performance is in line with a

Table 2. CSF GABA levels (μM) with regard to medication

Medication Patient on drug Patient off drug P-valuea

CSF GABA
Mean± s.e.m. (n)

CSF GABA
Mean± s.e.m. (n)

Antipsychoticsb 3.1± 0.29 (18) 3.2± 0.37 (23) 0.85
Benzodiazepinesc 2.8± 0.25 (12) 3.4± 0.32 (29) 0.30
Zopiclone 3.5± 0.42 (10) 3.1± 0.29 (31) 0.47
Antidepressantsd 2.6± 0.48 (5) 3.3± 0.26 (36) 0.37
Phenothiazine
derivativese

3.0± 0.31 (11) 3.3± 0.31 (30) 0.62

Any treatmentf 3.0± 0.20 (29) 3.7± 0.60 (12) 0.15

Abbreviations: CSF, cerebrospinal fluid; GABA, γ-aminobutyric acid.
aUnpaired t-test with equal s.d. bAll antipsychotics combined. cAll
benzodiazepines combined. dAll antidepressants combined. eAll phe-
nothiazine derivatives combined. fEither antipsychotics, benzodiazepines,
zopiclone, antidepressants and phenothiazine derivatives or a combination
of these. Patients off drug were all drug naive.
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recent magnetic resonance spectroscopy study showing that
GABA predicts working memory.24 Notably, in contrast to patients,
healthy controls showed a negative correlation between CSF
GABA and performance in the social cognition test. This finding is
in line with several clinical reports showing that increased GABA
transmission, induced by BZDs or vigabatrin (an inhibitor of GABA
transaminase, thereby increasing GABA levels throughout the
brain) is associated with cognitive impairments.48–50

A strength of the present study is that the majority of the
patients were drug naive with respect to antipsychotics at the
time of the lumbar puncture. No differences in CSF GABA levels
were observed between patients on treatment and those without
antipsychotic treatment (Table 2), indicating that low CSF GABA
levels are not a result of antipsychotic treatment. Owing to a lack
of power in this subgroup analysis, we cannot fully exclude drug
effects in this regard. However, the observation that antipsycho-
tics do not lower brain GABA levels is in line with an magnetic
resonance spectroscopy study investigating patients with a
6-month treatment with atypical antipsychotics.31 Furthermore,
increased CSF GABA levels were observed following 30 days of
treatment with sulpiride as well as following treatment with
different neuroleptics for many years in long-stay hospitalized
patients with schizophrenia.36 In addition, Gattaz et al.51observed
no change in free CSF GABA levels in patients with schizophrenia
after three months of haloperidol treatment. Altogether, it seems
implausible that the lower levels of CSF GABA seen in FEP patients
are a consequence of antipsychotic treatment.
A limitation of the present study is the fact that 29% of the FEP

patients were on BZDs, drugs well known to primarily affect
GABAergic neurotransmission. However, previous studies have
shown that intravenous injection of diazepam to neurological
patients is associated with an increase in CSF GABA levels52 and, in
consonance, administration of diazepam to rats and mice results
in increased brain GABA concentrations.53,54 Taken together, given
previous results on the effects of BZDs or antipsychotic drugs on
brain GABA concentrations it appears unlikely to be that the
presently observed reduction in CSF GABA levels in FEP is the
result of such medications. This is strengthened by the fact that
CSF GABA levels did not differ between the drug-naïve patients
and those patients that were on BZD treatment at the time of
lumbar puncture (Table 2) and by the fact that our extended
bootstrap linear modeling did not indicate medications as an
important co-factor.
A question of importance is if the lower CSF GABA in patients

with schizophrenia contributes to the pathophysiology and

specific symptoms of the disease. BZDs, known to increase
GABAergic transmission via a modulatory action at the GABA-A
receptor, are frequently used as adjunctive medication in first-
episode patients. It is generally accepted that these drugs are
primarily used for anxiolysis and do not affect positive or negative
symptoms of the disease. Although a few studies report some
favorable effects of BZDs on psychotic symptoms,55 recent meta-
analysis give no evidence for antipsychotic efficacy of additional
benzodiazepine medication.56 Further, administration of GABA-A
receptor antagonists is not typically associated with psychotomi-
metic symptoms. Similarly, clinical trials with GABA-B receptor
agonists, such as baclofen or γ-hydroxybutyric acid, have given no

Table 3. Comparison of different cognitive tests between healthy controls and FEP patients

Test Cognitive domain Mean± s.e.m. P-valuea

Healthy Controls (n= 21) FEP patients (n=40)

CPT-IP Attention/vigilance 3.0± 0.08 2.19 ± 0.11 o0.0001b

TMT Speed of processing 23.2± 1.13 32.8± 2.13 0.003b

BACS-SC Speed of processing 61.2± 1.18 46.0± 1.87 o0.0001b

Fluency Speed of processing 25.2± 1.28 21.6± 0.90 0.02
WMS-III Working memory (non-verbal) 18.5± 0.60 15.9± 0.50 0.003b

LNS Working memory (verbal) 15.5± 0.55 13.3± 0.50 0.008
NAB: MAZES Reasoning and problem solving 22.9± 0.89 19.1± 0.88 0.007
BVMT-R Visual learning 29.5± 1.10 22.4± 1.10 o0.0001b

MSCEIT Social cognition 98.0± 1.23 89.9± 2.0 0.007
HVLT-R Verbal learning 28.7± 0.65 24.0± 0.73 o0.0001b

Abbreviations: BACS-SC, Brief Assessment of Cognition in Schizophrenia Symbol Coding; BVMT-R, Brief Visuospatial Memory Test-Revised; CPT-IP, Continuous
Performance Test-Identical Pairs; FEP, first-episode psychosis; HVLT-R, Hopkins Verbal Learning Test-Revised; LNS, Letter-Number Span; MSCEIT, Mayer–Salovey–
Caruso Emotional Intelligence Test; NAB: MAZES, Neuropsychological Assessment Battery: Mazes; TMT, Trail Making Test; WMS-III, Wechsler Memory Scale-3rd
Edition. aUnpaired t-test with equal s.d. bSignificant after Bonferroni-corrrection, α-value= 0.005.

Table 4. Correlations between CSF GABA, clinical symptoms and
cognitive performance in FEP patients

r P-valuea

PANSS
Positive − 0.26 0.05
Negative − 0.19 0.12
General − 0.31 0.02b

Total − 0.30 0.03b

Severity of illness
GAF symptom dimension 0.31 0.02
GAF functioning dimension 0.24 0.06
CGI score − 0.38 0.007

Cognitive tests
CPT-IP 0.37 0.01c

TMT − 0.038 0.41
BACS-SC − 0.028 0.43
WMS-III 0.016 0.46
BVMT-R − 0.095 0.28
HVLT-R − 0.12 0.24

Abbreviations: BACS-SC, Brief Assessment of Cognition in Schizophrenia
Symbol Coding; BVMT-R, Brief Visuospatial Memory Test-Revised; CGI,
Clinical Global Impression; CPT-IP, Continuous Performance Test-Identical
Pairs; CSF, cerebrospinal fluid; FEP, first-episode psychosis; GABA,
γ-aminobutyric acid; GAF, Global Assessment of Functioning; HVLT-R,
Hopkins Verbal Learning Test-Revised; PANSS, Positive and Negative
Syndrome Scale; TMT, Trail Making Test; WMS-III, Wechsler Memory
Scale-3rd Edition. aPearson’s correlation. bSignificant also after principal
component analysis. cBonferroni-corrrected, α-value= 0.0083.
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unanimous picture for antipsychotic effects of these drugs.57,58

Indeed, the most common adverse effects observed of vigabatrin is
behavioral disturbances, ranging from irritability and confusion to
psychotic reactions.59 Thus, the many experimental and post-
mortem studies, suggesting a role of GABA in the pathophysiology
of schizophrenia is not supported by the clinical experience of
medication with GABA receptor agonists. Although CSF GABA
correlated to PANSS scores, illness severity and attention, it remains
to be evaluated whether the reduction in CSF GABA is primarily
involved in the generation of positive/negative symptoms.
For decades, studies have implicated a reduced GABAergic

transmission as part of the pathophysiology of schizophrenia. To
the best of our knowledge, the present study is the first to show
that FEP patients display low CSF GABA levels and that this
condition is associated with the severity of illness, psychotic
symptoms and probably attentional deficits.
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