
METHOD ARTICLE

 An R-based reproducible and user-friendly

preprocessing pipeline for CyTOF data [version 2; peer review:

2 approved]

Helena L. Crowell 1,2*, Stéphane Chevrier 3*, Andrea Jacobs3,
Sujana Sivapatham3, Tumor Profiler Consortium, Bernd Bodenmiller3*,
Mark D. Robinson 1,2*

1Institute of Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland
2SIB Swiss Institute of Bioinformatics, Zurich, 8057, Switzerland
3Department of Quantitative Biomedicine, University of Zurich, Zurich, 8057, Switzerland

* Equal contributors

First published: 22 Oct 2020, 9:1263
https://doi.org/10.12688/f1000research.26073.1
Latest published: 08 Aug 2022, 9:1263
https://doi.org/10.12688/f1000research.26073.2

v2

Abstract
Mass cytometry (CyTOF) has become a method of choice for in-depth
characterization of tissue heterogeneity in health and disease, and is
currently implemented in multiple clinical trials, where higher quality
standards must be met. Currently, preprocessing of raw files is
commonly performed in independent standalone tools, which makes
it difficult to reproduce. Here, we present an R pipeline based on an
updated version of CATALYST that covers all preprocessing steps
required for downstream mass cytometry analysis in a fully
reproducible way. This new version of CATALYST is based on
Bioconductor’s SingleCellExperiment class and fully unit tested. The R-
based pipeline includes file concatenation, bead-based normalization,
single-cell deconvolution, spillover compensation and live cell gating
after debris and doublet removal. Importantly, this pipeline also
includes different quality checks to assess machine sensitivity and
staining performance while allowing also for batch correction. This
pipeline is based on open source R packages and can be easily be
adapted to different study designs. It therefore has the potential to
significantly facilitate the work of CyTOF users while increasing the
quality and reproducibility of data generated with this technology.

Keywords
CyTOF, Preprocessing, Normalization, Debarcoding, Compensation,
Gating, Batch correction, Reproducibility

Open Peer Review

Approval Status

1 2

version 2

(revision)
08 Aug 2022

view

version 1
22 Oct 2020 view view

Marie Trussart , Walter and Eliza Hall

Institute of Medical Research, Parkville,

Australia

1.

Felix Hartmann , Stanford University,

Palo Alto, USA

Sean C. Bendall , Stanford University,

Stanford, USA

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://f1000research.com/articles/9-1263/v2
https://f1000research.com/articles/9-1263/v2
https://orcid.org/0000-0002-4801-1767
https://orcid.org/0000-0002-9216-7910
https://orcid.org/0000-0002-3048-5518
https://doi.org/10.12688/f1000research.26073.1
https://doi.org/10.12688/f1000research.26073.2
https://f1000research.com/articles/9-1263/v2
https://f1000research.com/articles/9-1263/v2#referee-response-146797
https://f1000research.com/articles/9-1263/v1
https://f1000research.com/articles/9-1263/v2#referee-response-73591
https://f1000research.com/articles/9-1263/v2#referee-response-73588
https://orcid.org/0000-0002-7258-7272
https://orcid.org/0000-0002-4174-2276
https://orcid.org/0000-0003-1341-2453
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.26073.2&domain=pdf&date_stamp=2022-08-08

Corresponding author: Helena L. Crowell (helena.crowell@uzh.ch)
Author roles: Crowell HL: Conceptualization, Formal Analysis, Methodology, Software, Visualization, Writing – Original Draft
Preparation, Writing – Review & Editing; Chevrier S: Conceptualization, Data Curation, Formal Analysis, Investigation, Project
Administration, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Jacobs A: Investigation, Writing – Review &
Editing; Sivapatham S: Investigation, Writing – Review & Editing; Bodenmiller B: Funding Acquisition, Project Administration, Writing –
Review & Editing; Robinson MD: Funding Acquisition, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: MDR and HLC were supported by the Swiss National Science Foundation [310030_175841, CRSII5_177208], and MDR
acknowledges support from the University Research Priority Program Evolution in Action at the University of Zurich. SC, AJ, SS and BB
were jointly funded by a public-private partnership involving Roche, ETH Zurich, University of Zurich, University Hospital Zurich, and
University Hospital Basel.
Copyright: © 2022 Crowell HL et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Crowell HL, Chevrier S, Jacobs A et al. An R-based reproducible and user-friendly preprocessing pipeline for
CyTOF data [version 2; peer review: 2 approved] F1000Research 2022, 9:1263 https://doi.org/10.12688/f1000research.26073.2
First published: 22 Oct 2020, 9:1263 https://doi.org/10.12688/f1000research.26073.1

This article is included in the RPackage

gateway.

This article is included in the Bioconductor

gateway.

Page 2 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

mailto:helena.crowell@uzh.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.26073.2
https://doi.org/10.12688/f1000research.26073.1
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/bioconductor
https://f1000research.com/gateways/bioconductor

Introduction
Over the past decade, mass cytometry (CyTOF) has advanced our understanding of a wide range of cellular proc-
esses, particularly in the field of immunology and tumor biology1,2, by enabling the simultaneous measurement
of 40+ parameters at the single cell level. Currently, mass cytometry is transitioning from an exploratory
research approach toward a diagnostic tool used in clinical laboratories and this transition is associated with
an increased need for standardization3. Various studies have already suggested improvements on the experi-
mental workflows to increase the robustness of mass cytometry data by working with frozen antibody cocktails
or by including shared reference samples in each independent experiment to enable for batch correction4,5.
Similarly, advanced downstream analyses benefit from the large number of analysis tools and algorithms
implemented in R, which allow for fully reproducible analyses6.

Between data generation and downstream data analysis, data preprocessing is an multi-step procedure
required to convert raw FCS files into data objects that can be input to downstream statistical analysis and
visualization7. Upon data collection, the first step consists in concatenating files from sequential CyTOF acquisi-
tions and removing events with unstable signal, which are usually caused by uneven flow rate or introduction of
air in the fluidic system. As a second step, CyTOF data need to be corrected for time dependent signal drift,
which is mostly due to cone contamination, mass calibration drift or loss of detector sensitivity over time. This
correction is performed by acquiring metal tagged polystyrene beads together with the cell suspension, where
bead signals can be used as a reference to normalize the cell signals8. Another potential artefact in CyTOF data is
due to signal spillover between channels. Although lower than what is usually observed in fluorescent flow cytom-
etry, spillover in mass cytometry can still account for up to 4% of the signal in some channels and needs to be
corrected using signal compensation9. Sample barcoding prior to staining is a common approach used in mass
cytometry to combine multiple samples in a single experiment to minimize experimental variation due to staining
and CyTOF acquisition. In this case, individual cells have to be assigned to their respective sample via a proc-
ess called single cell debarcoding10. In large studies where samples are collected over a long period of time by
different users, on different machines or at different sites, an important step is to correct for batch effects, which
can be achieved by including a shared control sample in each independent batch11,12. Finally, only live, intact
single cells are relevant for the downstream analysis. Beads, doublets, debris and dead cells are excluded by
gating on scatter plots7.

Each step of the preprocessing pipeline requires expert decisions to determine the best parameters to achieve
an optimal signal correction and cell selection. Moreover, all the chosen parameters should be recorded for
reproducibility purposes. Despite these requirements, many current preprocessing pipelines still rely on switch-
ing between platforms that include, for example, MATLAB applications and (at least partially) closed source
online platforms (e.g., Cytobank13). This approach necessitates uploading the data to different platforms and
carrying out certain steps in a purely manual fashion, which makes it time-consuming and difficult to reproduce.
This is particularly limiting in a clinical setting, where reproducibility and large-scale data analysis are required.
Thus, we propose a semi-automated R-based preprocessing pipeline for CyTOF data that is: i) fully reproducible;
ii) includes quality checks and, iii) has limited need for supervision once the original setup has been made. This
pipeline is developed around an updated version of CATALYST, an R package designed for preprocessing and
differential analysis of mass cytometry data9,14. This new version of CATALYST is based on Bioconductor’s
SingleCellExperiment class, the standard for high dimensional single cell data analysis. This pipeline can
easily be adapted to each CyTOF user’s needs and will accelerate CyTOF data preprocessing while improving
the quality of mass cytometry data generated.

Data description
The data used in this pipeline were generated in the context of the Tumor Profiler project, a multi-center observa-
tional study investigating the relevance of different innovative technologies, including CyTOF, imaging mass

           Amendments from Version 1
Minor text revisions have been made to clarify and be consistent in the terminology used (e.g., acquisition vs. run
vs. batch). We have further adapted reference-related metadata to systematically include 7 previously acquired
experiments (rather than sometimes 7, other times 8). Under “Batch alignment”, we have also included a figure to
compare the expression distributions before and after batch correction.

In order to improve the workflow’s usability, various updates have been made to CATALYST. E.g., to enable analysis of
samples with panel discrepancies, the prepData() function now supports flexible mechanisms to consolidate these (e.g.,
via a table of channel aliases, or by renaming channels according to a reference sample). Furthermore, the normCytof()
function now has an additional argument to specify custom DNA channel masses. Accordingly, the workflow now uses
most current software versions, namely, R v4.2 with Bioconductor v3.15.

Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

cytometry, single-cell DNA and RNA sequencing, as well as ex vivo drug testing to improve the diagnostic of
advanced cancer patients15.

The samples of interest included tumor biopsies and blood samples collected at the University Hospital Zurich
in spring 2020. These samples were assessed by mass cytometry in the context of a set of references including
commercially available cell lines, PBMCs from healthy donors and PHA activated PBMCs. PBMCs from
patients and healthy donors were collected based on a ficoll gradient16, and tumor samples were dissociated as
previously described17. Once in single-cell suspension, all samples were stained for 5 min on ice with
Cell-IDTM Cisplatin-194Pt (#201194, Standard BioTools) to identify dead cells and subsequently fixed with PFA 1.6%
(#15710, Electron Microscopy Sciences). Samples were stored as dry pellet at −80°C until CyTOF measurement.

The dataset used in this study was obtained from a single CyTOF experiment, also called batch, where nine
references, two blood samples and two tumor samples were barcoded with a 20-well barcoding plate17. Reference
samples were selected to contain positive and negative populations for each marker included in the study’s anti-
body panel. This design was chosen to enable for quality control and batch correction across independent experi-
ments based on quantile scaling as described in 11. Pooled cells were stained with a 40-Ab panel designed to
perform an in-depth characterization of the samples’ immune compartment. DNA intercalation was performed
with a 1h incubation in Cell-IDTM Intercalator-Ir (#201192B, Fluidigm). Finally, the cell suspension
was diluted 1:10 in Maxpar® Cell Acquisition Solution (#201240, Fluidigm) and 10% of EQ Four Element
Calibration Beads (#201078, Fluidigm), and acquired on a Helios™ upgraded CyTOF 2 system at a flow rate of
150 events per second.

Throughout this workflow, we will make use of a set of metadata for standard preprocessing steps (normalization,
debarcoding and compensation), as well as various quality controls previously acquired over seven independent
experiments. An overview of the metadata used is given in Table 1.

Table 1. Overview of metadata files used throughout this pipeline, including each file’s description,
dimensionality (if appropriate), and purpose for preprocessing or quality control.

Description Purpose
normalization_beads.fcs
Beads identified using CATALYST during the normalization
step of a previous CyTOF experiment.

Used as reference beads to correct for changes
in signal sensitivity over time.

ref_bead_counts.csv
A table of mean dual counts for the 6 different bead channels
(columns) obtained from 7 previous CyTOF experiments (rows).

Used as a reference to assess the measurement
sensitivity.

debarcoding_scheme.csv
A binary barcoding scheme of 6-choose-3 = 20 barcodes with
columns corresponding to barcode channel masses (101, 104,
105, 106, 108, 110) and rows corresponding to barcodes (7
empty, 9 references, 2 PBMC and 2 tumor samples)

Used for single-cell deconvolution of multiplexed
samples.

spillover_matrix.csv
A spillover matrix calculated with CATALYST from beads single-
stained with each of the 40 antibodies included in the panel
used in this study. The matrix contains, for each measurement
channel (rows), the percentage of signal received by all other
channels (columns).

Used for correction of spillover.

ref_cell_counts.csv
A table of the number of cells measured in 7 previous
experiments, each including 4 cell line, 3 PBMC and 2 tumor
references samples (63 samples in total).

Used to assess reference sample cell yields in the
current in comparison to previous experiments

sample_cell_counts.csv
A table of the number of cells measured in 7 previous
experiments, each including 2 PBMC and 2 tumor samples (28
samples in total).

Used to assess sample cell yields in the current in
comparison to previous experiments

ref_marker_levels.csv
A table of the 98th expression percentiles for each target
(columns) across 7 previous experiments (rows).

Used to assess the staining efficiency of the
current experiment

Page 4 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Data organization
Most data used and returned throughout this workflow are kept in an object of Bioconductor’s
SingleCellExperiment (SCE) class from the SingleCellExperiment package18. This data structure can
store all single-cell related data (measurement data and transformations thereof; cell, feature and experiment-wide
metadata; dimensionality reductions), allowing for synchronized and thus less error-prone data manipulation.

The key component of SCEs are matrix-like assays, where rows are features (targets) and columns are obser-
vations (cells), that store the measurement data and any data derived thereof. Metadata associated with cells
are stored under colData, feature metadata under rowData, and any experiment-wide metadata may
be stored in the metadata slot. Lastly, the SCE can store an arbitrary number of dimensionality reduc-
tions under reducedDims. For a more detailed description of usage and structure of SCEs, we refer to the
SingleCellExperiment package’s documentation.

Results
The pipeline presented here describes all steps required to process raw mass cytometry data to a state where
the user may proceed with downstream analyses (e.g., dimensionality reduction, differential analysis, trajec-
tory inference). The process includes the concatenation of the individual acquisitions, the exclusion of part of
the acquisition with unstable signal, the correction for time-dependent signal drift via bead normalization, the
correction for signal spillover via compensation, the selection of cells of interest via automated gating, and
the correction for batch effects. The workflow is exemplified on data from a single CyTOF experiment collected
via three successive acquisitions (individual FCS files) of 15 barcoded samples mixed with calibration beads.

Throughout, raw measurement data (FCS files) as well as all metadata (for debarcoding, normalization, compen-
sation, and quality control) are expected to be located inside a data/ subdirectory (relative to where the code is
being run); otherwise, the presented file paths require modification.

We use CATALYST9 to perform key preprocessing steps, including: concatenation, normalization, debarcoding
and compensation; openCyto19 and flowWorkspace20 for gating; ggplot221, ggcyto22 and patchwork for visualiza-
tion; flowCore23, `r CRANpkg(“reshape2”)´24 and dplyr25 for data accession and manipulation; and mvtnorm to
compute polygonal live gates. Thus, our workflow is limited to the following dependencies:

library(CATALYST)
library(dplyr)
library(flowCore)
library(flowWorkspace)
library(ggcyto)
library(ggplot2)
library(mvtnorm)
library(openCyto)
library(patchwork)
library(reshape2)

Besides standard preprocessing steps, we include quality control (QC) steps to assess CyTOF sensitivity, stain-
ing efficacy, and cell yield; these rely on results from previous experiments (n = 7) as a reference. For consistent
visualization, we define a common plotting theme for boxplots that are used to compare the current to previous
experiments:

qc_theme <- list(
 theme_bw(base_size = 8), theme(
 panel.grid.minor = element_blank(),
 panel.grid.major.x = element_blank(),
 plot.title = element_text(face = "bold"),
 axis.text = element_text(color = "black"),
 axis.text.x = element_text(angle = 45, hjust = 1)))

Constructing a SingleCellExperiment
By default, flowCore’s read.FCS() function, which underlies read.flowSet() for reading in a set of FCS
files, transforms channel intensities and removes events with extreme values. To omit this behavior, we recommend

Page 5 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/SingleCellExperiment
https://bioconductor.org/packages/3.15/openCyto
https://bioconductor.org/packages/3.15/flowWorkspace
https://CRAN.R-project.org/package=ggplot2
https://bioconductor.org/packages/3.15/ggcyto
https://CRAN.R-project.org/package=patchwork
https://bioconductor.org/packages/3.15/flowCore
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=mvtnorm
https://bioconductor.org/packages/3.15/flowCore

reading in files with arguments transformation = FALSE and truncate_max_range = FALSE; by
default, files will be read in by CATALYST's prepData() function with these settings.

As described above, the SCE class allows the keeping of multiple data transformations in a single object. Thus,
when applying a transformation to arrive at expression-like data, we can store the transformed data in a
separate assay without overwriting the raw ion count data. In this way, any data generated and used through-
out preprocessing (e.g., normalized, compensated or batch-corrected counts and their arcsinh-transformed
counterparts) can be in principal retained, and written to intermediate FCS files for backup or quality control outside
of R. However, it is worth noting that this procedure could lead to a shortage of memory for large datasets, in which
case overwriting the data at each step is advisable; if not specified otherwise, CATALYST overwrites by default.

A SCE can be constructed using CATALYST's prepData() function, which accepts a path to a directory with
one or many FCS files, a character vector of FCS filenames, a single or list of flowFrame(s), or a flowSet
(flowCore package23). By default (transform = TRUE), an arcsinh-transformation with cofactor = 5
is applied to the input (count) data, and the resulting expression matrix is stored in the exprs assay slot of the
output SCE:

construct ’SingleCellExperiment’
fcs <- list.files("data", "acquisition", full.names = TRUE)
(sce <- prepData(fcs, transform = TRUE, cofactor = 5))

class: SingleCellExperiment
dim: 63 368152
metadata(2): experiment_info chs_by_fcs
assays(2): counts exprs
rownames(63): 75As CD15 ... 208Pb CD45
rowData names(4): channel_name marker_name marker_class use_channel
colnames: NULL
colData names(1): sample_id
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):

Initially, our SCE has two assays containing dual ion counts (assay counts) and cofactor-5 arcsinhtrans-
formed counts (assay exprs). The cofactor used for transformation is stored inside the object’s internal
metadata (int_metadata(sce)$cofactor), and the FCS file of origin for each cell under cell meta-
data column sample_id (accessible via colData(sce)$sample_id or, equivalently, sce$sample_
id). In our dataset, FCS files correspond to acquisitions rather than biological samples. Thus, we rename the cell
metadata variable sample_id to file_id to avoid ambiguity:

i <- match("sample_id", names(colData(sce)))
names(colData(sce))[i] <- "file_id"

The total number of cells across all acquisitions corresponds to the number of columns in the SCE
(ncol(sce): 368152). We can summarize the number of cells in each file by tabulating the file_ids:

data.frame(
 file_id = levels(sce$file_id),
 n_cells = tabulate(sce$file_id))

file_id n_cells
1 V1 48675
2 V2 125607
3 V3 193870

In both mass and flow cytometry, each feature has both a channel and target associated with it. As can be seen
from printing the sce variable above, prepData() defaults to using targets as rownames (when available).
We can retrieve each feature’s measurement channel using the channels() accessor, and use channel metals
and masses to extract the indices of features that are relevant to different preprocessing steps. Namely, we assign
channels measuring DNA to the variable dna (here, Ir191 and Ir193), and channels for live gating (here, Ir191
for DNA and Pt194 for cisplatin) to live:

Page 6 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/flowCore

store character vector or channels names
chs <- channels(sce)
store DNA & live channel indices
dna <- grep("^Ir", chs)
live <- grep("191|194", chs)

Filtering for stable signal
High quality data generation requires a stable signal throughout the acquisition. Various issues can lead to signal
change over time, including unstable flow rate, introduction of air or introduction of metal contamination
in the system. These changes in signal intensity can vary in terms of duration and intensity, and can affect all
or only a subsets of channels simultaneously. In order to detect regions of the acquisition affected by signal
instability, we display the signal for selected channels as a function of time in a scatter plot (Figure 1).

plot channels of interest vs. time
coi <- chs[c(dna[1], which(rowData(sce)$use_channel))]
plotScatter(sce, chs = c("Time", coi), label = "both") +
 labs(y = "expression") +
 scale_x_continuous(
 expression("Time ("*10^6~"ms)"),
 labels = function(u) u/1e6) +
 theme_bw(base_size = 8) + theme(
 aspect.ratio = 2/3,
 panel.grid = element_blank(),
 axis.text = element_text(color = "black"),
 strip.background = element_rect(fill = NA))

Figure 1. Scatter plots of DNA channel Ir191 and the 41 channels measuring antigens against time. Bins are
colored by cell density; y-axis corresponds to cofactor-5 arcsinh-transformed dual counts.

Page 7 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

In this particular experiment, we do not observe time-related signal instability. In case part of the acquisition
should be excluded, this could be done by manually gating on the region with stable signal, and subsequent
subsetting to only retain cells that fall within the gate’s boundaries (argument pop = "+"). Vice versa, it is pos-
sible to select a region with unstable signal, and remove it from the SCE object (pop = "-"). For the sake
of completeness, we include how a region of unstable signal could be excluded via manual gating:

construct 'GatingSet'
ff <- sce2fcs(sce[dna,], assay = "exprs")
gs <- GatingSet(flowSet(ff))

apply rectangular gate to exclude unstable signal
min_t <- ...
max_t <- ...
gs_add_gating_method(
 gs, alias = "stable",
 pop = "-", parent = "root",
 dims = paste0("Time,", chs[dna[1]]),
 gating_method = "boundary",
 gating_args = sprintf("min=c(%s,0),max=c(%s,10)", min_t, max_t))

plot scatter of DNA vs. Time
ggcyto(gs,
 aes_string("Time", chs[dna[1]])) +
 geom_hex(bins = 128) +
 geom_gate("stable") +
 facet_null() + theme_bw() +
 ggtitle(NULL) + theme(
 legend.position = "none",
 panel.grid = element_blank())

subset selected events
sce <- sce[, gh_pop_get_indices(gs, "stable")]

Normalization
In the case of mass cytometry, signal drift during acquisition due to a progressive loss of sensitivity must be
accounted and normalized for. A widely established strategy is to mix samples with polystyrene beads embed-
ded with metal lanthanides, allowing monitoring of instrument performance throughout data acquisition8.
These beads are in turn used to estimate and correct for the signal’s time drift. When independent experiments
have to be analyzed in the same context, variation due to changes in instrument performance over time com-
bined with intervals between scheduled maintenance have to be taken into account as well. In this case, the bead
signal should be normalized to a set of reference beads from an earlier experiment. This ensures that different
experiments are normalized to the same level, independent of the CyTOF’s sensitivity.

A MATLAB tool to perform normalization outside of R was available until recently at nolanlab/beadnormali-
zation; current R implementations are available through CATALYST and premessa. CATALYST provides an
extension of bead-based normalization as described by Finck et al. 8, with automated identification of bead sin-
glets (used for normalization), as well as of bead-bead and cell-bead doublets (to be removed), thus eliminating
the need for manual gating. This is implemented as follows:

1. beads are initially identified as those events that have their highest signals in the bead channels

2. cell-bead doublets are removed by applying a separation cutoff on the distance between the lowest bead
and highest non-bead channel signal

3. events passing all vertical gates defined by the lower bounds of bead signals are removed (these include
bead-bead and bead-cell doublets)

4. bead-bead doublets are removed by applying a default median ± 5 mad rule to events identified in step 2;
the remaining bead events are used for normalization

Page 8 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://github.com/nolanlab/bead-normalization
https://github.com/nolanlab/bead-normalization
https://bioconductor.org/packages/3.15/CATALYST
https://github.com/ParkerICI/premessa

The above procedure is carried out by a single function, normCytof(), which takes as input a SCE and a set
of arguments that control the normalization parameters and output format. Here, we specify dna = 191 (Ir191)
and beads = "dvs", corresponding to DVS Science beads (lanthanides Ce140, Eu151, Eu153, Ho165,
Lu175). Secondly, we provide the path to a set of reference beads (argument norm_to) that are used to compute
baseline intensities for normalization. Lastly, we set overwrite = FALSE to retain both raw and normalized
data, and remove_beads = TRUE to exclude bead and doublet events:

specify path to reference beads
ref_beads <- file.path("data", "normalization_beads.fcs")
apply bead-based normalization
system.time(res <- normCytof(sce, beads = "dvs", dna = 191,
 norm_to = ref_beads, remove_beads = TRUE, overwrite = FALSE))

user system elapsed
20.134 1.343 21.963

When remove_beads = TRUE (the default), normCytof() will return a list of three SCEs containing
filtered, bead and remove events, respectively, as well as two ggplot objects:

names(res)

[1] "data" "beads" "removed" "scatter" "lines"

The first SCE (res$data) contains the filtered data with the additional assay slot "normed" housing normal-
ized expressions. The remaining two SCEs are data subsets that contain any events identified as beads (slot
beads) and all removed events (including beads, bead-bead and bead-cell doublets; slot removed), respec-
tively; thus, the beads themselves are a subset of the removed events. Here, we compare the number and
percentage of cells contained in each subset:

view no. of remaining, bead & removed events
ns <- sapply(res[1:3], ncol)
ps <- sprintf("%1.2f", ns/ncol(sce)*100)
data.frame(t(cbind("# events" = ns, "% of total" = ps)))

data beads removed
events 337525 27544 30627
% of total 91.68 7.48 8.32

As a first quality control plot, res$scatter (Figure 2) renders scatter plots of bead channels (x-axis) ver-
sus DNA (y-axis), where events identified as beads as well as their expression range are highlighted in color; bead
events should have low DNA intensity (since they are not cells) and high intensities across all bead channels.

Figure 2. Scatter plots for bead channels vs. DNA. Events identified as beads are colored in blue; for each bead
channel, expression ranges across all bead events are indicated as rectangular gates. Events were downsampled to at
most 10,000 for visualization.

Page 9 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Secondly, res$lines (Figure 3) displays smoothed median bead intensities before and after normalization;
these typically decrease with time prior to normalization, and should be approximately constant and centered
around the baseline after normalization. In our dataset, normalization is performed based on previously
acquired reference beads. Thus, baseline values correspond to the reference bead’s mean bead channel intensi-
ties. As shown in Figure 3, the bead channel levels are considerably lower after normalization, indicating higher
sensitivity in the current experiment. Importantly, the slight decrease in signal over time is no longer present
after normalization.

Figure 3. Running-median smoothed bead intensities vs. time before and after normalization; colored by
bead channel.

In order to assess the sensitivity of the CyTOF during acquisition and identify potential issues that would have
remained undetected during the tuning of the instrument, we compute the mean bead channel counts across events
identified as beads (res$beads subset). A logical vector of which channels correspond to beads is stored under
rowData column bead_ch, which we can use to subset the counts assay to include bead channels only.

compute mean bead channel counts for current experiment
is_bead <- rowData(res$beads)$bead_ch # get bead channels
bead_cs <- counts(res$beads)[is_bead,] # subset counts
rownames(bead_cs) <- chs[is_bead] # use channels as names
(bead_ms <- rowMeans(bead_cs)) # compute means

Ce140Di Eu151Di Eu153Di Ho165Di Lu175Di
2842.462 2111.367 2660.618 2538.095 2323.409

To assess the measurement sensitivity during the current experiment, we compare the mean bead channel
counts computed above to those obtained from 7 previously acquired experiments available in metadata table
ref_bead_counts.csv. The resulting boxplot (Figure 4) shows that the current experiment’s sensitivity is
relatively high, but well in the range of previous experiments.

Page 10 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

read in reference mean bead channel counts
ref <- read.csv(file.path("data", "ref_bead_counts.csv"))

join into single tidy data.frame
df <- bind_rows(ref, bead_ms, .id = "group")
df <- melt(df, id.var = "group")

boxplot of reference vs. current experiment's mean bead channel counts
ggplot(df, aes(variable, value)) +
 geom_boxplot(data = df[df$group == 1,]) +
 geom_point(data = df[df$group == 2,],
 col = "red", pch = 4, stroke = 1) +
 labs(x = "bead channel", y = "mean count") +
 qc_theme + ggtitle(
 "QC on bead channel counts",
 "[-] = reference | x = current experiment")

After normalization, we overwrite the input dataset with the filtered subset that no longer includes bead events, or
bead-bead and bead-cell doublets:

sce <- res$data

Debarcoding
In mass cytometry, samples are often labeled with unique sample-specific barcodes and pooled together for
processing and measurement, an approach termed multiplexing26. The most widely used barcoding scheme
is based on Zunder et al.10, and relies on binary palladium-based mass-tag cell barcoding. Here, each sample
i = 1,..., n is either positive or negative for each of m palladium isotopes, resulting in an m-choose-k barcoding
scheme, where k is the number of positive barcodes. For example, labeling of three out of six palladium isotopes

will result in
6

20
3

m
k

= =
 unique barcodes. In order to recover the individual samples for further analysis, the

pooled dataset is debarcoded (or deconvoluted) computationally.

The single cell debarcoding (SCD) algorithm first sorts each cell’s barcode intensities to assign preliminary
barcode IDs such that a cell is assigned to the barcode population for which its barcode intensities are high-
est. Next, intensities within each barcode population are scaled using the 95th expression quantiles, and thereby

Figure 4. Bead channel count quality control. Boxplot comparing the mean dual ion counts (y-axis) across bead
channels (x-axis) obtained for the current experiment (red crosses) to those from 7 previously acquired reference
experiments (boxes).

Page 11 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

brought to a comparable scale. Finally, events whose separation between highest negative and lowest positive
barcode intensity is below a threshold value (separation cutoff) are left unassigned.

In the initial SCD algorithm, sample yields are determined by a single global cutoff on the separation between
positive and negative barcode populations. Naturally, this procedure is suboptimal when yields as a function of
the applied cutoff do not decline simultaneously. To optimize cell yields in such cases, CATALYST provides an
option to automatically estimate or specify sample-specific separation cutoffs.

The SCD algorithm is implemented in CATALYST as a three-step procedure: i) preliminary barcode assign-
ment (assignPrelim()); ii) automated estimation of sample-specific separation cutoffs (estCutoffs());
and, iii) application of cutoffs to arrive at final barcode assignments (applyCutoffs()).

Preliminary barcode assigment
For our dataset, a 6-choose-3 = 20 barcoding scheme was used (Figure 5). Five barcodes were unused
(empty_1-5), resulting in 15 samples (9 references, 6 samples of interest). We first read the corresponding
debarcoding_scheme.csv into R:

read in debarcoding scheme
fn <- file.path("data", "debarcoding_scheme.csv")
bc_key <- read.csv(fn, row.names = 1, check.names = FALSE)

all barcodes are positive for exactly 3 barcoding channels
all(rowSums(bc_key) == 3)

[1] TRUE

During this first debarcoding step, each event is preliminarily assigned to a barcode according to its top-k
expressed barcode channels. Here, events whose expression is highest for a combination of barcode channels
that does not appear in the debarcoding scheme (bc_key) will be given barcode ID 0 (for “unassigned”). Thus,
we can remove empty barcodes from the bc_key variable such that events assigned to these barcodes are left
unassigned from the start. Alternatively, one could perform debarcoding using the non-subsetted key, and filter
out empty barcodes downstream.

remove empty barcodes from debarcoding scheme
is_empty <- grepl("empty", rownames(bc_key))
bc_key <- bc_key[!is_empty,]
bc_ids <- rownames(bc_key)

For preliminary barcode assignment, we use CATLAYST's assignPrelim() function, providing the input
data (sce) and debarcoding scheme (bc_key). If not specified otherwise, assignPrelim() will default to
using the exprs assay slot (argument assay). Because we ran normCytof() with overwrite = FALSE,

Figure 5. 6-choose-3 palladium isotope debarcoding scheme. Rows correspond to palladium isotopes (barcode
channels), columns to barcode identifiers (samples). Each sample is negative (white) or positive (grey) for 3 out of 6
barcode channels, resulting in 20 unique barcode combinations.

Page 12 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/CATALYST

this assay contains arcsinh-transformed raw counts; we set assay = "normexprs" in order to use the
normalized values instead:

do preliminary barcode assignments
system.time(sce <- assignPrelim(sce, bc_key, assay = "normexprs"))

user system elapsed
14.290 0.347 14.770

In the returned SCE, feature metadata (rowData) column is_bc indicates whether or not a channel corresponds
to a barcode channel:

view barcode channels
channels(sce)[rowData(sce)$is_bc]

MCB1 MCB2 MCB3 MCB4 MCB5 MCB6
"Pd102Di" "Pd104Di" "Pd105Di" "Pd106Di" "Pd108Di" "Pd110Di"

For each event, barcode identifiers are stored in colData column bc_id. After this preliminary round of
assignment, 57980/337525 events (17.18%) have been left unassigned:

tabulate number of (un)assigned events
table(sce$bc_id == 0)

##
FALSE TRUE
279545 57980

Furthermore, for each cell, the barcode channel expressions are scaled relative to the 95th expression percen-
tiles of its respective barcode population. The scaled data is stored in assay slot scaled. Based on these scaled
barcode channel intensities, a separation value is computed as the distance between highest negative and lowest
positive barcode channel; separations are stored in colData column delta.

Estimation of separation cutoffs
To decide on separation cutoffs, we consider yields upon debarcoding as a function of the applied cutoff
(Figure 6). Commonly, this function will be characterized by an initial weak decline, where doublets are
excluded, and subsequent rapid decline in yields to zero. In-between, low numbers of counts with intermediate
barcode separation give rise to a plateau. Ideally, the applied separation cutoffs should provide a balance between
high cell yield and low assignment uncertainty, marking the approximate midpoint of the yield function’s
plateau region.

plotYields(sce, which = "0")

Figure 6. Yield plot for a 6-choose-3 debarcoding scheme. Shown is the distribution of barcode population
separations (histogram) and cell yields by sample (lines) as a function of the applied separation cutoff. Left axis
corresponds to cell yield in percent; right axis to the total number of cells.

Page 13 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Instead of a single global cutoff, we estimate a sample-specific cutoff to account for barcode population yields
that decline in an asynchronous fashion. To this end, we fit both a linear and a three-parameter log-logistic model
to each yield function. For the linear fit, we estimate the cutoff as the value for which yields have declined to
50%. For the log-logistic fit, we compute the cutoff as the value for which there is minimal yield decline by
minimizing each yield function’s 1st derivative. For each barcode, the final cutoff estimate is computed as the
mean of both estimates, weighted with the goodness (residual sum of squares) of each fit (see Methods for
details). Thus, the choice of thresholds for the distance between negative and positive barcode populations is:
i) automated and ii) independent for each barcode. Nevertheless, reviewing barcode-specific yield plots and, in
rare cases, refining the estimated separation cutoffs is advisable (see Figure 7).

Cutoff estimation is performed by CATALYST's estCutoffs() function, which takes as input a SCE as
returned by assignPrelim(); that is, preliminary barcode assignments are required to estimate separation
cutoffs. estCutoffs() will store sample-specific cutoff estimates under metadata slot sep_cutoffs,
but will leave barcode assignments unchanged.

sce <- estCutoffs(sce)
metadata(sce)$sep_cutoffs

CellLine_R1 CellLine_R2 CellLine_R3 CellLine_R4 PBMC_R1 PBMC_R2
0.13829607 0.13688845 0.09161274 0.12437132 0.13039323 0.18047875
PBMC_R3 Tumor_R1 Tumor_R2 PBMC_S1 PBMC_S2 PBMC_S3
0.26517442 0.21014175 0.20543502 0.10439323 0.12902725 0.24858493
Tumor_S1 Tumor_S2 Tumor_S3
0.18442675 0.14690041 0.20818048

We can visually inspect the estimated cutoffs using plotYields() with argument which specifying the
barcode ID of interest (Figure 7). In our example, the cutoff estimate nicely marks the midpoint of the yield
function’s plateau or, equivalently, the valley between peaks of cell yields. To decrease the stringency of the
applied cutoff, and thus increase the resulting cell yield, we could set the sample’s cutoff to e.g. 0.1. Vice versa,
a more stringent cutoff of e.g. 0.2 would decrease the cell yield but yield a purer population.

As an alternative to inspecting the cutoff estimate for each sample in R, we could specify which = bc_ids
to obtain a list of yield plots for all barcodes; the generated set of plots may be written to a single PDF file via
providing plotYields() with an out_path to allow for easy reviewing of the separating cutoffs currently
stored within the object.

plotYields(sce, which = "PBMC_R1")

Figure 7. Yield plot for an exemplary sample, including the estimated separation cutoff. Shown is the
distribution of barcode population separations (histogram) and cell yields (line) for the sample as a function of the
applied sample-specific separation cutoff. Left axis corresponds to cell yield in percent; right axis to the total number
of cells.

Page 14 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Besides a cutoff on the separation between positive and negative barcode populations, to trim outliers, the
SCD algorithms applies an additional cutoff on the Mahalanobis distance (argument mhl_cutoff), a metric
that quantifies the distance of a given event to the expression distribution of the barcode population it has been
assigned to.

In Figure 6, we can observe that population yields decline synchronously with increasing separation cutoffs,
and that we might consider applying a global separation cutoff, e.g., at ∼ 0.15. For this data, yields are in fact
similar, independent of whether we apply sample-specific cutoffs or a single global one. Nevertheless, applying
sample-specific cutoffs is recommended in order to maximize cell yields while minimizing uncertainty in
barcode assignments.

store preliminary barcode IDs
bc_ids0 <- sce$bc_id

apply global & sample-specific separation cutoff(s)
sce_glob <- applyCutoffs(sce, sep_cutoffs = 0.15, mhl_cutoff = 30)
sce_spec <- applyCutoffs(sce, mhl_cutoff = 30)

compare cell yields for both cutoff strategies
c(global = mean(sce_glob$bc_id == 0),
 specific = mean(sce_spec$bc_id == 0))

global specific
0.3573839 0.3584979

After debarcoding, we compare the number of events assigned to each barcode population before and after
applying separation cutoffs, and filter out events that have been left unassigned (barcode ID 0). As shown in
Figure 8, after applying the separation cutoffs, the number of unassigned cells (0) increases, while the number
of cells assigned to each barcoding well decreases. We also observe a higher decrease in assigned cells for
tumor samples, which underwent a dissociation process and contain more debris. Conversely, highly viable
cell lines and PBMCs have a higher recovery yield.

proceed with sample-specific filtering
sce <- sce_spec

compute number of events per population
before vs. after applying separation cutoffs
barplot(rbind(table(bc_ids0), table(sce$bc_id)),
 beside = TRUE, ylab = "cell count",
 las = 2, cex.axis = 0.5, cex.names = 0.5)
legend("topright", fill = c("black", "grey"),
 legend = c("before filtering", "after filtering"))

remove unassigned events
sce <- sce[, sce$bc_id != 0]

Figure 8. Barplot of cell counts before (black) and after (grey) applying separation cutoffs.

Page 15 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Compensation
Mass cytometry utilizes heavy metals (usually from the lanthanide series) as reporters to label antibodies. As
a result, channel crosstalk originating from spectral overlap and autofluorescence is significantly less pronounced
in mass cytometry compared to flow cytometry. Yet, spillover due to abundance sensitivity, isotopic impurities,
and oxide formation still exists, giving rise to artefactual signal that can impede data interpretability.

A combined experimental-computational pipeline to correct for spillover in mass cytometry data has been pro-
posed by Chevrier et al.9 and is implemented in the CATALYST package. In brief, compensation is achieved via
the following three-step approach outlined here (see for details).

1. Identification of single positive populations via deconvolution of single-stained beads (assignPrelim(),
estCutoffs(), applyCutoffs()).

2. Estimation of a spillover matrix (SM) from the populations identified (computeSpillmat()).

3. Compensation via multiplication of measurement intensities by the SM’s inverse, the compensation
matrix (compCytof()).

We will apply a pre-acquired spillover matrix (metadata file spillover_matrix.csv). Thus, we enter
at step 3, which involves only compensating the input dataset using CATALYST's compCytof() function.
By default, compCytof() will reuse the cofactor stored in int_metadata(sce)$cofactor for com-
puting arcsinh-transformed data from the compensated counts, thus applying the same transformation as
during data preparation and normalization:

read in pre-computed spillover matrix
sm <- file.path("data", "spillover_matrix.csv")
sm <- read.csv(sm, row.names = 1)
apply NNLS compensation
system.time(
 sce <- compCytof(sce, sm, method = "nnls",
 assay = "normcounts", overwrite = FALSE))

user system elapsed
63.538 5.880 70.095

To visually inspect how compensation affects signal intensities, we can generate scatter plots pre- and
post-compensation; an exemplary pair of channels is shown in Figure 9. In such a plot, we can observe a slight
positive association between the signals of spill-affected channels, which should be removed upon compensation.

i <- grep("173|174", chs, value = TRUE)
p1 <- plotScatter(sce,
 chs = i,
 label = "channel",
 assay = "normexprs") +
 ggtitle("Uncompensated")
p2 <- plotScatter(sce,
 chs = i,
 label = "channel",
 assay = "compexprs") +
 ggtitle("Compensated") +
 ylab(NULL)
wrap_plots(p1, p2)

Page 16 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/CATALYST

Gating
Many events acquired in mass cytometry may in fact be debris, doublets or dead cells, and should be fil-
tered out through a gating step. Here, we suggest a strategy that first applies an elliptical gate on cell events,
defined as double positive for the DNA channels Ir191/Ir193. This allows the exclusion of debris and doublets.
As a second step, we discard cells that are positive for the dead cell marker Pt194.

These two steps are performed using the openCyto R package19, and the resulting gates are visualized on scatter
plots of the channels subjected to gating using ggcyto22. For consistent visualization, we again define a common
plotting theme for scatter plots of channels chs that include the gating boundaries for the specified gate_id:

.scatter <- function(gs, chs, gate_id = NULL,
 subset = ifelse(is.null(gate_id), "root", "_parent_")) {
 p <- ggcyto(gs, max_nrow_to_plot = 1e5,
 aes_string(chs[1], chs[2]), subset) +
 geom_hex(bins = 100) + facet_wrap(~ name, ncol = 5) +
 (if (is.null(gate_id)) list() else geom_gate(gate_id)) +
 ggtitle(NULL) + theme_bw(base_size = 8) + theme(
 aspect.ratio = 1,
 legend.position = "none",
 panel.grid.minor = element_blank(),
 strip.background = element_rect(fill = NA),
 axis.text = element_text(color = "black"),
 axis.text.x = element_text(angle = 45, hjust = 1))
 suppressMessages(p + coord_equal(expand = FALSE,
 xlim = c(-1, 11), ylim = c(-1, 11)))
}

Gating on cells
In order to apply sample-specific gates, we first convert the SCE into a flowSet with a separate frame for each
sample (argument split_by = "bc_id"). As gating should be performed on expression-like data (not ion
counts), we further specify assay = "exprs" to retain the arcsinh-transformed assay slot. Thirdly, since con-
version from SCE to flowCore data structures requires matrix transposition (rows correspond to targets in
the SCE, but to events in flowFrame/Sets), we retain only those channels that are relevant when gating of
(live) cells: DNA and dead channels, whose indices are stored in variables dna and live.

subset DNA & live channels
sub <- sce[union(dna, live),]

add metadata variable 'i' to track cell indices
colData(sub) <- DataFrame(
 bc_id = sub$bc_id,
 i = seq_len(ncol(sce)))

Figure 9. Scatter plots for two exemplary channels before (left) and after correction for spillover (right).

Page 17 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/openCyto
https://bioconductor.org/packages/3.15/ggcyto

split SCE by sample
fs <- sce2fcs(sub,
 assay = "compexprs",
 split_by = "bc_id",
 keep_cd = TRUE)

construct 'GatingSet'
gs <- GatingSet(fs)

We apply an elliptical gate (gating_method = "flowClust.2d") to exclude the two lowest density percen-
tiles (quantile = 0.98). Because the input gating set contains a separate frame for each barcode, the gate will
be computed separately for each sample. In case of a single DNA channel (e.g., Rh103), one-dimensional gates
(i.e., thresholds on minimum and maximum values) would be applicable instead.

apply elliptical gate on DNA channels
gs_add_gating_method(gs,
 alias = "cells",
 pop = "+", parent = "root",
 dims = paste(chs[dna], collapse = ","),
 gating_method = "flowClust.2d",
 gating_args = "K=1,quantile=0.98,target=c(5,5)")

We use ggcyto to produce scatter plots of the DNA channels, with geom_gate("cells") to visualize the
gates computed above (Figure 10):

plot scatter of DNA channels split by sample
.scatter(gs, chs[dna], "cells")

Figure 10. Scatter plots of DNA channels, split by sample and including elliptical cell gates.

Page 18 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/ggcyto

Gating on live cells
The wrapper function .live_gate() defines a polygonal gate comprised of a line and a bivariate standard nor-
mal density Z, such that cells pass gating when i) their expression is within the qth quantile of Z; and, ii) their
expression falls below a line parameterized by intercept i and slope s. In this way, the gate is centered around
the expression peak, while excluding cells whose dead channel intensities increases with DNA content.

define live cell gate plug-in
x = expression matrix, q = quantile, i = intercept, s = slope
.live_gate <- function(x, q = 0.99, i = 1, s = 0.5) {
 # specifying gating function
 .gating_fun <- function(fr, pp_res, channels = NA, id = "", ...) {
 # subset channels of interest
 x <- exprs(fr[, channels])
 # scale data for comparison w/ ’qnorm()’
 x0 <- scale(x)
 # set boundary level as q-th quantile of standard normal
 z <- qnorm(q)
 # find p(x) for that level
 pd <- dmvnorm(c(z, z))[1]
 px <- dmvnorm(x0)
 # find points above boundary level
 keep1 <- px > pd
 # find points below line y = a + b * x
 keep2 <- (i + s * x0[, 1]) > x0[, 2]
 # intersection of points below line & above threshold level
 pts <- x[keep1 & keep2,]
 # get boundary points (convex hull)
 pts <- pts[chull(pts),]
 # return gate
 polygonGate(.gate = pts, filterId = id)
 }
 # register gate
 suppressMessages(
 foo <- register_plugins(
 fun = .gating_fun,
 methodName = "liveGate",
 dep = "mvtnorm",
 "gating"))
}

In contrast to the cell gates above, we apply live gates with sample-specific gating parameters. To this end, we spec-
ify a list l containing quantiles q, intercepts i and slopes s for each sample. These parameters are updated itera-
tively to remove dead cells while retaining cell yields as high as possible (Figure 11). After manual adjustments, we
arrive at the following sample-specific gating parameters:

set default parameters for all samples
l <- lapply(c(q = 0.99, i = 0.9, s = 0.4), function(u)
 setNames(rep(u, length(gs)), sampleNames(gs)))

adjust parameters for specific samples
l$i[["PBMC_R2"]] <- 1.2
l$i[["PBMC_R3"]] <- 1.2
l$i[["PBMC_S1"]] <- 1.2
l$s[["PBMC_S2"]] <- 0.2
l$i[["PBMC_S2"]] <- 0.6
l$i[["PBMC_S3"]] <- 1.8
l$s[["Tumor_S2"]] <- 0.3
l$i[["Tumor_S2"]] <- 0.6
l$s[["Tumor_S3"]] <- 0.3
l$i[["Tumor_S3"]] <- 0.4

Page 19 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

for (i in sampleNames(gs)) {
 # register & apply live gate with sample-specific parameters
 .live_gate(x, q = l$q[i], i = l$i[i], s = l$s[i])
 gs_add_gating_method(gs[i],
 alias = "live",
 pop = "+",
 parent = "cells",
 dims = paste(chs[live], collapse = ","),
 gating_method = "liveGate")
}
.scatter(gs, chs[live], "live")

Figure 11. Scatter plots of DNA and dead cell channels, split by sample and including the live cell polygon
gates.

We display the yield of "cell" and "live" gates on each samples to quickly assess the cell losses occurring
at the two gating steps (Figure 12). As expected the "cell" gate leads to a systematic loss of around 1% of cells
across all the samples. The "live" gate leads to a stronger reduction of cell yield in the tumor samples, consistent
with the fact that those samples, which underwent enzymatic dissociation, contain more dead cells.

extract gating frequencies
df <- gs_pop_get_stats(gs,
 type = "percent",
 nodes = c("cells", "live"))
df <- rename(df, gate_id = "pop")

barplot of cell yields after cell/live gating
ggplot(df, aes(sample, percent, fill = gate_id)) +
 geom_bar(width = 2/3, stat = "identity", position = "dodge") +
 scale_x_discrete(limits = bc_ids, expand = c(0, 2/3)) +
 scale_y_continuous(labels = seq(0, 100, 25),
 limits = c(0, 1), expand = c(0, 0)) +
 labs(y = "cell yield (%)") + qc_theme

Page 20 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

We extract a logical vector indicating whether a given event is included in or excluded by the "live" gate
applied above by applying gh_pop_get_indices to each sample in gs. Secondly, we extract the cell indices
from gs and subset the SCE to keep only cells that passed the "live" gate.

fs <- gs_pop_get_data(gs, "live") # get data from ’GatingSet’
es <- lapply(fs, exprs) # get expression matrices
es <- do.call("rbind", es) # join into single data.frame
sce <- sce[, es[, "i"]] # subset retained cells

Finally, we can again visualize scatter plots of dead channels against DNA as a quality control for the retained
subset of cells (Figure 13).

Figure 12. Barplot of cell and live gating yields. For each barcode ID (x-axis), frequencies are relative to the total
number of cells in the population before gating; bars are colored by gate ID.

Figure 13. Scatter plots of dead cell channel against DNA, including the subset of cells remaining after live
cell gating.

Page 21 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Quality control
Having completed the standard preprocessing steps, we proceed to investigate how the current experiment com-
pares to prior experiments in terms of the number of cells in each reference and sample, and the expression lev-
els of each target. Large parts of the metadata generated by now may no longer be needed, and unnecessarily
increases output file sizes for large-scale datasets. Therefore, we will retain only two key cell metadata variables:
sample_id containing the FCS filename each cell originates from, and bc_id containing the barcode pop-
ulation assignments. We secondly rename these variable to make the following quality control steps more
intuitive.

drop all cell metadata except file of origin & barcode IDs
colData(sce) <- colData(sce)[c("file_id", "bc_id")]

rename cell metadata variable
i <- match("bc_id", names(colData(sce)))
names(colData(sce))[i] <- "sample"

In the debarcoding scheme used for deconvolution of the multiplexed samples (Section Debarcoding), bar-
code identifiers were chosen to contain all information relevant for each sample. This setup allows us to extract
sample metadata directly from the bc_ids. Alternatively, and especially for more complex experimental
designs, this information could be stored in a separate metadata table. Such a table could then be used to match
the bc_ids with the listed samples, and add arbitrary metadata information (e.g., batch, patient ID, treatment).

In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor), group (R
for reference or S for sample of interest), and replicate number; and follow a consistent naming scheme:
“<type>_<group><replicate>”. We can easily extract these components and store them in the SCE’s cell
metadata (colData):

sce$type <- gsub("_.*", "", sce$sample)
sce$group <- gsub("[^R|S]", "", sce$sample)
i <- match(unique(sce$sample), sce$sample)
colData(sce)[sample(i, 10),]

DataFrame with 10 rows and 4 columns
file_id sample
<factor> <character>
1 V1 CellLine_R2
2 V1 Tumor_R1
3 V1 PBMC_R2
4 V1 CellLine_R3
5 V1 Tumor_S3
6 V1 Tumor_R2
7 V1 PBMC_S2
8 V1 PBMC_S3
9 V1 CellLine_R4
10 V1 PBMC_S1
type group
<character> <character>
1 CellLine R
2 Tumor R
3 PBMC R
4 CellLine R
5 Tumor S
6 Tumor R
7 PBMC S
8 PBMC S
9 CellLine R
10 PBMC S

Page 22 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Quality control (QC) on reference cell counts
As a first quality control, we compare the cell counts of each reference sample (R) to those obtained from 7 previous
experiments (Figure 14). Since the references are obtained from pre-barcoded aliquots of cells, the number of
reference cells acquired gives direct information regarding the cell yield throughout the whole experiment: From
cell barcoding to acquisition on the CyTOF. As shown in Figure 14, the current experiment tends to have a lower
yield compared to average experiments.

boxplot of current vs. reference cell counts
ref <- read.csv(file.path("data", "ref_cell_counts.csv"))
run <- c(table(sce$sample[sce$group == "R"]))

join into single tidy data.frame
df <- bind_rows(ref, run, .id = "group")
df <- melt(df, id.var = "group")

ggplot(df, aes(variable, value)) +
 geom_boxplot(data = df[df$group == 1,]) +
 geom_point(data = df[df$group == 2,],
 col = "red", pch = 4, stroke = 1) +
 labs(x = "sample", y = "cell count") +
 qc_theme + ggtitle(
 "QC on reference cell counts",
 "[-] = reference | x = current experiment")

Figure 14. Reference cell count quality control. Boxplot comparing the reference cell counts obtained for the
current experiment (red crosses) to those from 7 previously acquired experiments.

QC on sample cell counts
Secondly, we compare the cell counts for the 4 samples of interest (2 PBMC, 2 tumor samples) to the
number of cells recorded for 14 tumor and PBMC samples each (28 samples in total) acquired in previous
experiments (Figure 15). This step provides a first quality assessment of the samples of interest. Here, samples
with too few cells will be less reliable, and potentially less representative of the original tissue, making conclusions
from downstream analyses more difficult to draw.

Page 23 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

ref <- read.csv(file.path("data", "sample_cell_counts.csv"))
run <- table(sce$sample[sce$group == "S"], dnn = "sample")
run <- as.data.frame(run, responseName = "count")
run$type <- sce$type[match(run$sample, sce$sample)]
df <- bind_rows(ref, run, .id = "group")

ggplot(df, aes(type, count)) +
 geom_boxplot(data = df[df$group == 1,]) +
 geom_point(data = df[df$group == 2,],
 col = "red", pch = 4, stroke = 1) +
 labs(x = "type", y = "cell count") +
 qc_theme + ggtitle(
 "QC on sample cell counts",
 "[-] = reference | x = current experiment")

Figure 15. Sample cell count quality control. Boxplot comparing the sample cell counts obtained for the current
experiment (red crosses) to those from 7 previously acquired experiments.

QC on mean marker intensities
As the third and final quality control, we compare the 98th expression quantiles across all targets of inter-
est over the pooled references to those obtained from 7 previously acquired experiments available in metadata
table ref_marker_levels.csv (Figure 16). We chose the 98th percentile to account for the fact that some
populations are rare, and we are particularly interested in assessing signal stability for positive cells rather than
the median of the population. Since the pooled references are identical from one experiment to another, this
gives a direct indication of the current experiment’s staining efficacy and enables early identification of antibody
degradation over time.

read in reference data
ref <- file.path("data", "ref_marker_levels.csv")
ref <- read.csv(ref, check.names = FALSE)

compute 98th expression quantiles
for reference samples in current experiment
es <- assay(sce, "compexprs")
es <- es[names(ref), sce$group == "R"]
run <- rowQuantiles(es, probs = 0.98)

Page 24 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

join into single tidy data.frame
df <- bind_rows(ref, run, .id = "group")
df <- melt(df, id.var = "group")

ggplot(df, aes(variable, value)) +
 geom_boxplot(data = df[df$group == 1,]) +
 geom_point(data = df[df$group == 2,],
 col = "red", stroke = 0.5) +
 labs(x = "target", y = "98th expression quantile") +
 qc_theme + ggtitle(
 "QC on marker levels",
 "[-] = referece | o = current experiment")

Figure 16. Mean marker expression quality control. Boxplot comparing the mean marker expression obtained for
the current experiment (shown in red) to those from 7 previously acquired experiments.

Batch alignment
Each CyTOF experiment contains the same set of references. Similar to the approach used by Schuyler et al.11,
we use these references as anchors to calculate a channel-specific correction factor by dividing the 98th percen-
tile measured in the current experiment by the average 98th percentile obtained across the first seven experiments
of the project. The signal observed in each channel for the samples of interest is then divided by these correction
factors derived from the reference samples.

compute 98th count quantiles via back-transformation
(using same cofactor as always) & average across replicates
cf <- int_metadata(sce)$cofactor
qs <- colMeans(sinh(ref)*cf)

initialize correction factor of 1 for all channels
cfs <- setNames(rep(1, nrow(sce)), rownames(sce))

Page 25 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

compute batch correction factors for relevant channels
cs <- assay(sce, "compcounts")
csR <- cs[colnames(ref), sce$group == "R"]
run <- rowQuantiles(csR, probs = 0.98)
cfs[colnames(ref)] <- run / qs

apply marker-specific batch correction (bc)
cs <- sweep(cs, 1, cfs, "/")
assay(sce, "bccounts") <- cs

apply arcsinh-transformation
assay(sce, "bcexprs") <- asinh(cs/cf)

To visually assess the effect of the batch correction applied above, we compare the expression distributions
before and after scaling (Figure 17). We additionally include 98th expression percentiles of both the (un)corrected
samples as well as of the references used for computing correction factors. Percentiles are aligned with the
references’ upon correction while, even for the most affected channels (largest deviation from the references
and, consequently, highest batch correction factors), distributions are very similar before and after scaling.

subset most affected channels
top <- names(rev(sort(abs(cfs-1))))[seq(6)]
sub <- sce[top, sce$group == "R"]

construct table of expressions
before & after correction
as <- c(before = "compexprs", after = "bcexprs")
es <- lapply(as, function(a)
 data.frame(
 id = a,
 t(assay(sub, a)),
 check.names = FALSE))
df <- do.call(rbind, es)
df <- melt(df, id.var = "id")
df$id <- factor(df$id, as, names(as))

compute 98th percentiles of samples
q98_df <- df %>%
 group_by(id, variable) %>%
 summarize_at("value", quantile, 0.98)

compute 98th percentiles of references (average across 7)
ref_df <- data.frame(variable = colnames(ref), value = colMeans(ref))[top,]
ref_df <- bind_rows(.id = "id", list(before = ref_df, after = ref_df))

ggplot(df, aes(value, ..density../max(..density..), col = id)) +
 facet_wrap(~ variable) +
 geom_density(size = 0.5, show.legend = FALSE) +
 geom_vline(data = ref_df, aes(xintercept = value), lty = 2) +
 geom_point(data = q98_df, aes(value, 0.5, col = id), size = 2) +
 scale_color_manual(NULL, values = c("royalblue", "tomato")) +
 scale_x_continuous(limits = c(-0.5, NA)) +
 labs(x = "expression", y = "scaled density") +
 qc_theme + theme(
 aspect.ratio = 2/3,
 panel.grid = element_blank(),
 legend.key.size = unit(0.5, "lines"))

Page 26 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Discussion
In this workflow, we have presented a pipeline for reproducible and highly-automated preprocessing of CyTOF
data, based on an updated version of CATALYST. Our pipeline covers four standard steps: Normalization for
signal time-drift using bead standards (Section Normalization), single-cell deconvolution of multiplexed
samples (Section Debarcoding), correction for spillover via compensation (Section Compensation), and gating
for live cells (Section Gating). Moreover, we have included various quality control steps that compare the current
experiment to a set of reference data (Section Quality control). These steps ensure that measurement sensitivity,
gating cell yields, sample cell counts, and expression levels lie within the expected range.

A key advantage of both using and developing Bioconductor packages is that they utilize common data struc-
tures, thereby greatly facilitating interaction between them. For example, many of the data structures used in
scRNA-seq data analysis have only become established relatively recently. Meanwhile, the cytometry community
has been relying on the FCS file format for data storage, and flowCore’s flowFrame/flowSet as well as
flowWorkspace’s GatingSet classes for computational analyses. While there exists a lot of infrastructure
around these data structures, they impede method development for newly emerging standards, and act as a
barrier for interpolation of analyses across currently developed packages. This is particularly visible in the
context of other fast growing single-cell data types such as scRNA-seq data analysis, where most current
methods are being developed around Bioconductor’s SingleCellExperiment class. To name just two
examples, an extensive collection of visualization tools for SCEs is available through scater27, including a
variety of dimensionality reduction methods; and methods for differential abundance (DA) analysis (to detect
subpopulations that are differently abundant between conditions) and differential state (DS) analysis (to test for
subpopulation-specific expression changes across conditions) are implemented in diffcyt28.

The SCE class allows storing multiple assays that can, for example, contain raw counts, expression-like data
obtained upon arcsinh-transformation, as well as any intermediate data matrices obtained after normalization,
compensation and batch correction. Moreover, any event (cell) and feature (marker) metadata generated in the
process can be added to the object’s colData/rowData, alongside an arbitrary number of dimensionality
reductions. Thus, SCEs present an overall more compact and less error-prone data structure for both
preprocessing and downstream analysis when compared to storing the various data matrices or metadata in
separate variables, which would have to be combined for certain computations, separately subsetted and saved
to independent outputs.

There is an obvious benefit for the mass cytometry community to take advantage of these new infrastructure
developments. However, it is equally important to maintain backward compatibility with well-established
standards in the field. For example, it can be desirable to write out intermediate outputs (FCS files) after each pro-
processing step, or make use of available tools that build around flowCore’s flowFrame and flowSet
classes, or other classes derived thereof (e.g., flowWorkspace’s GatingSet). Thus, while CATALYST’s transition
to a more recent and an arguably advantageous data structure is motivated by the ability to leverage many exist-
ing and newly-developed tools, a complete dismissal of the large infrastructure that is available in the realm
of cytometry data analysis is impossible at this time. To facilitate conversion between SCEs and conventional

Figure 17. Batch alignment quality control. Expression distributions before (blue) and after (red) quantile scaling
using 7 previously acquired experiments as reference. Included are the 6 most affected channels (i.e., highest absolute
correction factors). Dashed lines indicate 98th expression percentiles averaged across references; points represent the
respective distributions’ 98th percentiles.

Page 27 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/flowCore
https://bioconductor.org/packages/3.15/flowWorkspace
https://bioconductor.org/packages/3.15/scater
https://bioconductor.org/packages/3.15/diffcyt
https://bioconductor.org/packages/3.15/flowWorkspace

cytometry data structures, CATALYST provides the sce2fcs() function, which allows the user to specify
which assay data to retain, whether to drop or keep available cell metadata and dimensionality reductions, and
(optionally) to split the input dataset by a non-numeric variable (to, e.g., export each sample to a separate FCS file).

Although the current version of this pipeline constitutes a comprehensive approach to generate high-quality
data for downstream analysis, further developments could be added in the future. In particular, it could be
useful to implement an automated way of identifying and removing part of the data with unstable signal,
similar to the approach proposed by flowClean29, an R package designed to exclude fluorescent anomalies in flow
cytometry data. Given that selection of anomalies in the dataset by the user is subjective, or that they may be
altogether undetectable by eye, the advantage of such an approach would be to further standardize the process
while decreasing manual work.

Recently, batch normalization has become of increased importance in order to enable integration of datasets
acquired at different times, by different users and on different instruments. Here, we use scaling normalization
where references are used as anchors to correct all samples included in the analysis in a channel specific way,
similar to the strategy proposed by Schuyler et al.11. While this approach requires a well-defined experimental
procedure where references with positive and negative subsets for each marker have to be included in each
experiment, it does not make any assumptions on sample compositions. Thus, since the dataset used in this
pipeline was acquired on the same instrument and stained with the same frozen antibody panel as previous
experiments, scaling by expression quantiles provides an efficient way to correct for batch effects.

To increase the flexibility of batch correction in cases where the experimental variation is higher, CATALYST
could integrate different methods that have the potential to increase batch correction efficiency. For example,
CytoNorm12 computes quantiles for every metacluster and for every marker after aggregation of control samples
from each batch. Such an approach could be more appropriate in cases where the references’ expression distribu-
tions are less aligned. An alternative method, CytofRUV30, exploits the concept of pseudo-replicates to remove
unwanted variation (RUV) between proteins and cells. Here, cells are grouped into subpopulations using
FlowSOM31 clustering. Groups of cells present across all batches are considered to be pseudo-replicates, and
their deviation (residuals) from the average signal across batches is used to estimate and correct for the batch
effects.

Although various methods to correct for batch effects in both the presence and absence of references have
been proposed, a systematic comparison of batch correction tools for mass cytometry data is missing. Thus,
whether the approach used in this study to align batches on the basis of shared references is the most accurate
remains unresolved.

Our pipeline is entirely R-based and does not rely on switching between platforms. Thus, it omits the need for
heavy data transfers between online cloud services, graphical user interfaces (GUI), and programming environ-
ments for different parts of preprocessing and downstream analysis. As a result, each step in the analysis is fully
reproducible and any parameters used throughout can be easily modified and documented. This transition
from manual, GUI-based to largely automated, programmatic data processing is indispensable for clinical and
other large-scale studies, where sample throughput is high and reproducibility ever so important.

Since its first submission to Bioconductor in 2017, CATALYST has undergone continuous maintenance and devel-
opment. The most noteworthy changes include implementation of a comprehensive visualization suite based on
Nowicka et al.14 ’s workflow for differential discovery; and, the transition from custom data structures to using
Bioconductor’s SingleCellExperiment class for differential analysis with Bioconductor v3.11, and for
preprocessing with v3.12. Taken together, these developments have transformed CATALYST into a one-stop
tool for cytometry data analysis, enabling both data preprocessing and in-depth downstream analysis.

Methods
Normalization
Identification of bead events. Commonly, bead events are identified by manual gating on scatter plots of DNA
vs. bead channels where DNA should be low, and expression should be high across all bead channels. Instead, we
propose a programmatic way to identify beads that includes detection of bead-bead and cell-bead doublets.

Our normalization strategy leverages the already established SCD algorithm for preliminary tagging of events
as beads. In this context, the debarcoding scheme is a 2×(2+m) matrix (Figure 18). Here, columns correspond to
the two DNA channels and m barcode channels; rows correspond to barcodes 0 (no bead) and 1 (is bead), where
non-bead events are positive for DNA channels only (barcode 11000. . .), while bead events are negative for DNA
and positive for all bead channels (barcode 00111. . .):

Page 28 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://bioconductor.org/packages/3.15/flowClean
https://github.com/saeyslab/CytoNorm
https://github.com/mtrussart/CytofRUV
https://bioconductor.org/packages/3.15/FlowSOM

Upon initial assignment of bead events, we apply a median ± n median absolute deviation (MAD) rule to remove
low- and high-signal events from the bead population used for estimating normalization factors. As n decreases,
bead populations become more narrow and bead-bead doublets are excluded. The extent to which bead populations
are trimmed can be adjusted via argument trim (default 5).

Notably, slight over-trimming does not affect normalization. It is therefore recommended to choose a trim
value that is small enough to assure removal of doublets at the cost of reduced bead population sizes.

Correcting for signal-decrease over time. To correct for the effect of event acquisition time on signal inten-
sity, we follow the method proposed by Finck et al.8. In essence, bead intensities are smoothed using a median
sliding-window with width k (default 500 bead events). At each timepoint, the slope of a line with intercept zero
is computed by minimizing the squared error between smoothed bead and mean bead intensities (= baseline).
Alternatively, a reference set of beads from which to compute the baseline can be provided. Slopes for
non-bead timepoints are obtained via constant interpolation of these slopes. Here, large slopes correspond to
significant deviation from the baseline, and small slopes indicate that the signal is already similar to the
baseline. Thus, raw bead counts are normalized by multiplication with the fitted slopes at each timepoint.

Debarcoding
Preliminary barcode assignment. The debarcoding process commences by assigning each event a preliminary
barcode ID. This requires specification of a binary barcoding scheme (or debarcoding key)

() {0,1}
n m

ijB b ×= ∈

where i = 1, ..., n is the barcode index, j = 1, ..., m a barcode channel, and n, m denote the number of unique
barcodes and barcoding channels, respectively. Further, let k

i
 denote the number of positive barcoding channels

for barcode i: 1 .m
ji ijk b=∑=

If k
i
 = k ∀ i = 1, ..., n (i.e., every barcode has the same number of positive barcoding channels), the k channels

with the highest signal in a given event are considered to be positive, the remaining m − k to be negative. The sep-
aration δ of positive and negative events is then defined as the difference between the kth highest and (m − k)th
lowest scaled intensity for that event.

Seperation cutoff estimation. When the separation between positive and negative barcoding channels is low, we
cannot be confident in the barcode assignment.

For the estimation of cutoff parameters, we consider yields upon debarcoding as a function of the applied cut-
offs. Commonly, this function will be characterized by an initial weak decline, where doublets are excluded,
and subsequent rapid decline in yields to zero. In between, low numbers of counts with intermediate barcode
separation give rise to a plateau. To facilitate robust estimation, we fit a linear and a three-parameter log-logistic
function32 to the yields function with drc’s LL.R function33 (Figure 19). As an adequate cutoff estimate, we target
a point that marks the end of the plateau regime and on-set of yield decline to appropriately balance confidence
in barcode assignment and cell yield.

Figure 18. Schematic of the debarcoding scheme used by ‘CATALYST‘’s ‘normCytof()‘ function to identify bead
events. Rows correspond to barcodes, columns to DNA and bead channels. Each barcode is either positive (grey) or
negative (blank) for a given channel; cells (barcode 11000...) are positive for DNA and negative for bead channels, bead
events (barcode 00111...) are negative for DNA and positive for bead channels.

Page 29 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://CRAN.R-project.org/package=drc

We define the linear model cutoff estimate c
LM

 as the value for which the cell yield Y has declined to half of the
initial Yield β

0
:

0 1 0 0 1/ 2 /(2)linear linearY c cβ β β β β= + ⋅ = ⇔ = − ⋅

where β
0
, β

1
 are the intercept and slope of the linear model fit, respectively.

We define the log-logistic model cutoff estimate c
LLM

 as the value for which the log-logistic function’s decline
is minimized relative to its value:

log-logistic

()
0.1arg min

()

f x
c

x f x

′
= >

The final cutoff estimate c is defined as the weighted mean between these estimates:

(1)linear log logisticc w c w c −= ⋅ + − ⋅

where w is the goodness of the linear fit relative to the log-logistic fit:

RSS

RSS RSS

log logistic

log -logistic linear

w −=
+

Compensation
Retrieval of real signal. As in conventional flow cytometry, we model spillover linearly, with the channel
stained for as predictor, and spill-effected channels as response. Thus, the intensity observed in a given chan-
nel j are a linear combination of its real signal and contributions of other channels that spill into it. Let I denote
the (unknown) real and J the observed signal. Further, let s

ij
 be the proportion of channel j signal that is due to

channel i, and w
j
 the set of channels that spill into channel j. Then

j j ij
i w j

J I s
∈

= + ∑

In matrix notation, measurement intensities may be viewed as the convolution of real intensities and a spillover
matrix () ,

n p
ijSM s ×

+= ∈ � where n denotes the number of samples (cells) and p the number of features (channels):
J = I · SM. The real signal I can then be retrieved via:

1I J SM J CM−= ⋅ = ⋅

where SM−1 is termed compensation matrix (CM).

Figure 19. Schematic description of automated separation cutoff estimation. Bar graphs represent the
distribution of cells relative to the barcode distance, dotted line scorresponds to yield upon debarcoding as a function
of the applied separation cutoff. The yield curve is fitted with a linear regression (blue) and a three parameter log-
logistic function (red). The final cutoff estimate (black dashed line) is defined as the mean of estimates derived from
both fits, weighted with the goodness of the respective fit.

Page 30 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

While mathematically exact, the solution to this equation will yield negative values, and does not account for
the fact that ion counts are strictly non-negative. A computationally efficient way to adress this is to instead use
non-negative linear least squares (NNLS), which optimizes the least squares criterion under the constraint of
non-negativity:

min{() ()} | 0
TJ SM I J SM I I− ⋅ ⋅ − ⋅ ≥

To solve for I, we apply the Lawson-Hanson algorithm34,35 for NNLS implemented in the nnls package.

Spillover estimation. Because any signal not in a single stain experiment’s primary channel j results from chan-
nel crosstalk, each spill entry s

ij
 can be approximated by the slope of a linear regression with channel j sig-

nal as the response, and channel i signals as the predictors, where i ∈ w
j
. computeSpillmat() offers two

alternative ways for spillover estimation (20).

The default method approximates this slope with the following single-cell derived estimate: Let i+ denote
the set of cells that are positive in channel i, and

c
ijs be the channel i to j spill computed for a cell c that has

been assigned to this population. We approximate
c
ijs as the ratio between the signal in unstained spillo-

ver receiving and stained spillover emitting channel, I
j
 and I

i
, respectively. The expected background in

these channels, jm−
 and im−

, is computed as the median signal of events that are i) negative in the chan-
nels for which spill is estimated (i and j); ii) not assigned to potentionally interacting channels; and, iii) not
unassigned, and subtracted from all measurements:

i
j jc

ij i
i i

I m
s

I m

−

−

−
=

−

Each entry s
ij
 in SM is then computed as the median spillover across all cells c ∈ i+:

med(|)
c

ij ijs s c i+= ∈

In a population-based fashion, as done in conventional flow cytometry, s
ij
 is computed as the slope of a line through

the medians (or trimmed means) of stained and unstained populations, jm+
 and im+

, respectively. Background
signal is computed as above and subtracted, according to:

j j

ij
i i

m m
s

m m

+ −

+ −

−
=

−

On the basis of their additive nature, spill values are estimated independently for every pair of interacting chan-
nels. Hereby, we take into account only interactions that are sensible from a chemical and physical point of
view: M ± 1 channels (abundance sensitivity), M + 16 channels (oxide formation), and channels measuring
isotopes (impurities; Figure 21).

Figure 20. Population versus single-cell based spillover estimation. In a population-based setting (left), spillover
is estimated as the slope of a line through the centers of positive (red) and negative (blue) populations. In a single-
cell based setting (right), slopes are computed independently for each cell in the positive population, and spillover is
estimated as their median.

Page 31 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Alternatively, interactions = "all" will compute a spill estimate for all n · (n − 1) possible interactions,
where n denotes the number of measurement parameters. Estimates falling below the threshold specified by th
will be set to zero. Lastly, note that diagonal entries s

ii
 = 1 for all i ∈ 1, ..., n, so that spill is relative to the total

signal measured in a given channel.

Data availability
Underlying data
The CyTOF data as well as all metadata required to run the full pipeline presented herein are available from
Figshare as well as the Tumor Profiler website at https://tu-pro.ch/download/catalyst.

Figshare: An R-based reproducible and user-friendly preprocessing pipeline for CyTOF data. https://doi.org/
10.6084/m9.figshare.c.5063984.v1

This project contains the following underlying data:

• CyTOF_acquisition_1-3.fcs (40-Ab panel CyTOF data of 2 blood and 2 tumor samples, and 9 reference
samples selected to contain positive and negative populations for each marker included in the study’s
Ab- panel. Samples were multiplexed with a 20-well barcoding plate, and obtained from a single experiment
provided as 3 FCS files.)

• normalization_beads.fsc (Beads identified using ‘CATALYST‘ during the normalization step of a pre-
vious CyTOF experiment. – Used as reference beads to correct for changes in signal sensitivity over time
across multiple CyTOF experiments.)

• ref_bead_counts.csv (A table of mean dual counts for the six different bead channels (columns) obtained
from 7 previous experiments (rows). – Used as a reference to assess the measurement sensitivity for
the current experiment.)

• debarcoding_scheme.csv (A binary barcoding scheme of 6-choose-3 = 20 barcodes with columns
cor- responding to barcode channel masses (101, 104, 105, 106, 108, 110) and rows corresponding to

Figure 21. Heatmap of channel interactions expected to exhibit spillover. Included are only interactions that
are sensible from a chemical and physical point of view: adjacent mass channels (abundance sensitivity), +16 mass
channels (oxidation), and channels measuring isotopes (impurities).

Page 32 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://tu-pro.ch/download/catalyst
https://doi.org/10.6084/m9.figshare.c.5063984.v1
https://doi.org/10.6084/m9.figshare.c.5063984.v1

barcodes (7 empty, 9 references, 2 PBMC and 2 tumor samples) – Used for single-cell deconvolution of
multiplexed of samples.)

• spillover_matrix.csv (A spillover matrix calculated with ‘CATALYST‘ from beads single-stained with
each of the 40 antibodies included in the panel used in this study. The matrix contains, for each meas-
urement channel (rows), the percentage of signal received by all other channels (columns). – Used for
correction of spillover.)

• ref_cell_counts.csv (A table of the number of cells measured in 7 previous experiments, each including
4 cell line, 3 PBMC and 2 tumor references samples (63 samples in total). – Used to assess reference
sample cell yields in the current in comparison to previous experiments.)

• sample_cell_counts.csv (A table of the number of cells measured in 7 previous experiments, each
including 2 PBMC and 2 tumor samples (28 samples in total). – Used to assess sample cell yields in the
current in comparison to previous experiments.)

• ref_marker_levels.csv (A table of the 98th expression percentiles for each target (columns) across 7
previous experiments (rows). – Used to assess the staining efficiency of the current experiment.)

Data are available under the terms of the [Creative Commons Attribution 4.0 International license](http://creativecom-
mons.org/licenses/by/4.0} (CC-BY 4.0).

Software availability
Analyses were run in R v4.2.036, with Bioconductor v3.1537, and all software packages used throughout this
workflow are publicly available through the Comprehensive R Archive Network (https://cran.r-project.org) or the
Bioconductor project (http://bioconductor.org). Specific package versions are captured in the following session
information:

sessionInfo()

R version 4.2.0 (2022-04-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Monterey 12.2
##
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats4 stats graphics
[4] grDevices utils datasets
[7] methods base
##
other attached packages:
[1] reshape2_1.4.4
[2] patchwork_1.1.1
[3] openCyto_2.8.0
[4] mvtnorm_1.1-3
[5] ggcyto_1.24.0
[6] ncdfFlow_2.42.0
[7] BH_1.78.0-0
[8] RcppArmadillo_0.11.1.1.0
[9] ggplot2_3.3.6
[10] flowWorkspace_4.8.0
[11] flowCore_2.8.0
[12] dplyr_1.0.9
[13] BiocStyle_2.24.0
[14] vespa_0.99.0
[15] CATALYST_1.21.1

Page 33 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://cran.r-project.org
http://bioconductor.org

[16] SingleCellExperiment_1.18.0
[17] SummarizedExperiment_1.26.1
[18] Biobase_2.56.0
[19] GenomicRanges_1.48.0
[20] GenomeInfoDb_1.32.2
[21] IRanges_2.30.0
[22] S4Vectors_0.34.0
[23] BiocGenerics_0.42.0
[24] MatrixGenerics_1.8.0
[25] matrixStats_0.62.0
[26] RColorBrewer_1.1-3
[27] testthat_3.1.4
##
loaded via a namespace (and not attached):
[1] scattermore_0.8
[2] SpatialExperiment_1.6.0
[3] R.methodsS3_1.8.2
[4] tidyr_1.2.0
[5] knitr_1.39
[6] irlba_2.3.5
[7] multcomp_1.4-19
[8] DelayedArray_0.22.0
[9] R.utils_2.11.0
[10] data.table_1.14.2
[11] rpart_4.1.16
[12] RCurl_1.98-1.7
[13] doParallel_1.0.17
[14] generics_0.1.2
[15] ScaledMatrix_1.4.0
[16] callr_3.7.0
[17] cowplot_1.1.1
[18] TH.data_1.1-1
[19] usethis_2.1.6
[20] ggpointdensity_0.1.0
[21] spatstat.data_2.2-0
[22] xml2_1.3.3
[23] assertthat_0.2.1
[24] viridis_0.6.2
[25] xfun_0.31
[26] evaluate_0.15
[27] DEoptimR_1.0-11
[28] fansi_1.0.3
[29] tmvnsim_1.0-2
[30] Rgraphviz_2.40.0
[31] igraph_1.3.1
[32] DBI_1.1.2
[33] spatstat.geom_2.4-0
[34] purrr_0.3.4
[35] ellipsis_0.3.2
[36] ks_1.13.5
[37] ggnewscale_0.4.7
[38] ggpubr_0.4.0
[39] backports_1.4.1
[40] bookdown_0.26
[41] cytolib_2.8.0
[42] BiocWorkflowTools_1.22.0
[43] RcppParallel_5.1.5
[44] deldir_1.0-6
[45] sparseMatrixStats_1.8.0
[46] vctrs_0.4.1
[47] remotes_2.4.2
[48] abind_1.4-5
[49] cachem_1.0.6

Page 34 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

[50] withr_2.5.0
[51] ggforce_0.3.3
[52] aws.signature_0.6.0
[53] robustbase_0.95-0
[54] prettyunits_1.1.1
[55] mnormt_2.0.2
[56] mclust_5.4.10
[57] goftest_1.2-3
[58] cluster_2.1.3
[59] crayon_1.5.1
[60] drc_3.0-1
[61] edgeR_3.38.1
[62] pkgconfig_2.0.3
[63] labeling_0.4.2
[64] tweenr_1.0.2
[65] vipor_0.4.5
[66] nlme_3.1-157
[67] pkgload_1.2.4
[68] devtools_2.4.3
[69] rlang_1.0.2
[70] lifecycle_1.0.1
[71] sandwich_3.0-1
[72] rsvd_1.0.5
[73] rprojroot_2.0.3
[74] polyclip_1.10-0
[75] flowClust_3.34.0
[76] graph_1.74.0
[77] Matrix_1.4-1
[78] carData_3.0-5
[79] Rhdf5lib_1.18.2
[80] zoo_1.8-10
[81] beeswarm_0.4.0
[82] base64enc_0.1-3
[83] ggridges_0.5.3
[84] GlobalOptions_0.1.2
[85] processx_3.5.3
[86] pheatmap_1.0.12
[87] viridisLite_0.4.0
[88] png_0.1-7
[89] rjson_0.2.21
[90] bitops_1.0-7
[91] R.oo_1.25.0
[92] ConsensusClusterPlus_1.60.0
[93] KernSmooth_2.23-20
[94] rhdf5filters_1.8.0
[95] DelayedMatrixStats_1.18.0
[96] shape_1.4.6
[97] stringr_1.4.0
[98] brew_1.0-7
[99] spatstat.random_2.2-0
[100] jpeg_0.1-9
[101] rstatix_0.7.0
[102] ggsignif_0.6.3
[103] aws.s3_0.3.21
[104] beachmat_2.12.0
[105] scales_1.2.0
[106] memoise_2.0.1
[107] magrittr_2.0.3
[108] plyr_1.8.7
[109] hexbin_1.28.2
[110] zlibbioc_1.42.0
[111] hdrcde_3.4
[112] compiler_4.2.0

Page 35 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

[113] dqrng_0.3.0
[114] plotrix_3.8-2
[115] clue_0.3-61
[116] rrcov_1.7-0
[117] cli_3.3.0
[118] XVector_0.36.0
[119] ps_1.7.0
[120] FlowSOM_2.4.0
[121] MASS_7.3-57
[122] mgcv_1.8-40
[123] tidyselect_1.1.2
[124] stringi_1.7.6
[125] RProtoBufLib_2.8.0
[126] yaml_2.3.5
[127] BiocSingular_1.12.0
[128] locfit_1.5-9.5
[129] latticeExtra_0.6-29
[130] ggrepel_0.9.1
[131] grid_4.2.0
[132] tools_4.2.0
[133] parallel_4.2.0
[134] CytoML_2.8.0
[135] circlize_0.4.15
[136] rstudioapi_0.13
[137] git2r_0.30.1
[138] foreach_1.5.2
[139] gridExtra_2.3
[140] farver_2.1.0
[141] Rtsne_0.16
[142] DropletUtils_1.16.0
[143] BiocManager_1.30.18
[144] digest_0.6.29
[145] pracma_2.3.8
[146] Rcpp_1.0.8.3
[147] car_3.0-13
[148] broom_0.8.0
[149] scuttle_1.6.2
[150] fda_6.0.3
[151] IDPmisc_1.1.20
[152] httr_1.4.3
[153] ComplexHeatmap_2.12.0
[154] flowStats_4.8.0
[155] colorspace_2.0-3
[156] rainbow_3.6
[157] brio_1.1.3
[158] XML_3.99-0.9
[159] fs_1.5.2
[160] tensor_1.5
[161] splines_4.2.0
[162] RBGL_1.72.0
[163] spatstat.utils_2.3-1
[164] scater_1.24.0
[165] sessioninfo_1.2.2
[166] fds_1.8
[167] jsonlite_1.8.0
[168] corpcor_1.6.10
[169] R6_2.5.1
[170] pillar_1.7.0
[171] htmltools_0.5.2
[172] nnls_1.4
[173] glue_1.6.2
[174] fastmap_1.1.0
[175] BiocParallel_1.30.3

Page 36 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

[176] deSolve_1.32
[177] BiocNeighbors_1.14.0
[178] codetools_0.2-18
[179] pcaPP_2.0-1
[180] pkgbuild_1.3.1
[181] utf8_1.2.2
[182] lattice_0.20-45
[183] spatstat.sparse_2.1-1
[184] tibble_3.1.7
[185] flowViz_1.60.0
[186] ggbeeswarm_0.6.0
[187] curl_4.3.2
[188] colorRamps_2.3.1
[189] gtools_3.9.2.1
[190] magick_2.7.3
[191] survival_3.3-1
[192] limma_3.52.1
[193] roxygen2_7.2.0
[194] rmarkdown_2.14
[195] desc_1.4.1
[196] munsell_0.5.0
[197] GetoptLong_1.0.5
[198] rhdf5_2.40.0
[199] GenomeInfoDbData_1.2.8
[200] iterators_1.0.14
[201] HDF5Array_1.24.1
[202] gtable_0.3.0
[203] spatstat.core_2.4-4

Consent
Written informed consent for publication of the tumor and blood samples was obtained from the patients
(BASEC-Nr.2018-02050, approved by the Kantonal Ethics Commisions of Zurich and Basel).

Author contributions
HLC and SC developed methodology, ran analyses, and drafted the manuscript. HLC implemented code in
CATALYST. SC tested and gave input on the package. AJ and SS performed experiments. MDR and BB gave
feedback on the manuscript. All authors read and approved the final manuscript and agreed to its content.

Acknowledgments
The authors would like to acknowledge support from the Biobank team of the Department of Dermatology at
University Hospital Zurich, who provided us with the samples used in this study.

Tumor Profiler Consortium members and affiliations
Rudolf Aebersold2, Faisal S Al-Quaddoomi7,14, Jonas Albinus6, Ilaria Alborelli22, Sonali Andani2,5,14,24,27,
Per-Olof Attinger9, Marina Bacac13, Daniel Baumhoer22, Beatrice Beck-Schimmer34, Niko Beerenwinkel3, Christian
Beisel3, Lara Bernasconi25, Anne Bertolini7,14, Bernd Bodenmiller31, Ximena Bonilla2,5,14,24, Ruben Casanova31,
Stéphane Chevrier31, Natalia Chicherova7,14, Maya D’Costa8, Esther Danenberg32, Natalie Davidson2,5,14,24,
Monica-Andreea Dra˘gan3, Reinhard Dummer26, Stefanie Engler31, Martin Erkens11, Katja Eschbach3, Cinzia
Esposito32, André Fedier15, Pedro Ferreira3, Joanna Ficek2,5,14,24, Anja L Frei27, Bruno Frey10, Sandra Goetze6, Linda
Grob7,14, Gabriele Gut32, Detlef Günther4, Martina Haberecker27, Pirmin Haeuptle1, Viola Heinzelmann-Schwarz15,21,
Sylvia Herter13, Rene Holtackers32, Tamara Huesser13, Anja Irmisch26, Francis Jacob15, Andrea Jacobs31, Tim M
Jaeger9, Katharina Jahn3, Alva R James2,5,14,24, Philip M Jermann22, André Kahles2,5,14,24, Abdullah Kahraman14,27,
Viktor H Koelzer27, Werner Kuebler23, Jack Kuipers3, Christian P Kunze20, Christian Kurzeder18, Kjong-Van
Lehmann2,5,14,24, Mitchell Levesque26, Sebastian Lugert8, Gerd Maass10, Philipp Markolin2,5,14,24, Julien Mena2,
Ulrike Menzel3, Nicola Miglino1, Emanuela S Milani6, Holger Moch27, Simone Muenst22, Riccardo Murri33,
Charlotte KY Ng22,30, Stefan Nicolet22, Marta Nowak27, Patrick GA Pedrioli2, Lucas Pelkmans32, Salvatore
Piscuoglio15,22, Michael Prummer7,14, Mathilde Ritter15, Christian Rommel11, María L Rosano-González7,14,
Gunnar Rätsch2,5,14,24, Natascha Santacroce3, Jacobo Sarabia del Castillo32, Ramona Schlenker12, Petra C
Schwalie11, Severin Schwan9, Tobias Schär3, Gabriela Senti25, Franziska Singer7,14, Sujana Sivapatham31,

Page 37 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Berend Snijder2, Bettina Sobottka27, Vipin T Sreedharan7,14, Stefan Stark2,5,14,24, Daniel J Stekhoven7,14, Tinu M
Thomas2,5,14,24, Markus Tolnay22, Vinko Tosevski13, Nora C Toussaint7,14, Mustafa A Tuncel3, Audrey Van Drogen6,
Marcus Vetter17, Tatjana Vlajnic22, Sandra Weber25, Walter P Weber16, Rebekka Wegmann2, Michael Weller29,
Fabian Wendt6, Norbert Wey27, Andreas Wicki1,15,19, Bernd Wollscheid6, Shuqing Yu7,14, Johanna Ziegler26, Marc
Zimmermann2,5,14,24, Martin Zoche27, Gregor Zuend28

1Cantonal Hospital Baselland, Medical University Clinic, Rheinstrasse 26, 4410 Liestal, Switzerland
2ETH Zurich, Department of Biology, Wolfgang-Pauli-Strasse 27, 8093 Zurich, Switzerland
3ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
4ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich,
Switzerland
5ETH Zurich, Department of Computer Science, Institute of Machine Learning, Universitätstrasse 6, 8092
Zurich, Switzerland
6ETH Zurich, Department of Health Sciences and Technology, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
7ETH Zurich, NEXUS Personalized Health Technologies, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
8F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
9F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
10 Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
11Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse
124, 4070 Basel, Switzerland
12Roche Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Roche
Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
13Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich, Wagistrasse 10,
8952 Schlieren, Switzerland
14Swiss Institute of Bioinformatics, Zurich, Switzerland
15University Hospital Basel and University of Basel, Department of Biomedicine, Hebelstrasse 20, 4031 Basel,
Switzerland
16University Hospital Basel and University of Basel, Department of Surgery, Brustzentrum, Spitalstrasse 21, 4031
Basel, Switzerland
17University Hospital Basel, Brustzentrum & Tumorzentrum, Petersgraben 4, 4031 Basel, Switzerland
18University Hospital Basel, Brustzentrum, Spitalstrasse 21, 4031 Basel, Switzerland
19University Hospital Basel, Centre for Neuroendocrine & Endocrine Tumours, Spitalstrasse 21/Petersgraben 4,
4031 Basel, Switzerland
20University Hospital Basel, Department of Information- and Communication Technology, Spitalstrasse 26,
4031 Basel, Switzerland
21University Hospital Basel, Gynecological Cancer Center, Spitalstrasse 21, 4031 Basel, Switzerland
22University Hospital Basel, Institute of Medical Genetics and Pathology, Schönbeinstrasse 40, 4031 Basel,
Switzerland
23University Hospital Basel, Spitalstrasse 21/Petersgraben 4, 4031 Basel, Switzerland
24University Hospital Zurich, Biomedical Informatics, Schmelzbergstrasse 26, 8006 Zurich, Switzerland
25University Hospital Zurich, Clinical Trials Center, Rämistrasse 100, 8091 Zurich, Switzerland
26University Hospital Zurich, Department of Dermatology, Gloriastrasse 31, 8091 Zurich, Switzerland
27University Hospital Zurich, Department of Pathology and Molecular Pathology, Schmelzbergstrasse 12, 8091
Zurich, Switzerland
28University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
29University Hospital and University of Zurich, Department of Neurology, Frauenklinikstrasse 26, 8091 Zurich,
Switzerland
30University of Bern, Department of BioMedical Research, Murtenstrasse 35, 3008 Bern, Switzerland
31University of Zurich, Department of Quantitative Biomedicine, Winterthurerstrasse 190, 8057 Zurich, Switzerland
32University of Zurich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
33University of Zurich, Services and Support for Science IT, Winterthurerstrasse 190, 8057 Zurich, Switzerland
34University of Zurich, VP Medicine, Künstlergasse 15, 8001 Zurich, Switzerland

Page 38 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

References

1. Simoni Y, Chng MHY, Li S, et al.: Mass cytometry: a powerful tool 
for dissecting the immune landscape. Curr Opin Immunol. 2018;
51: 187–196.
PubMed Abstract | Publisher Full Text 

2. Spitzer MH, Nolan GP: Mass Cytometry: Single Cells, Many
Features. Cell. 2016; 165(4): 780–791.
PubMed Abstract | Publisher Full Text | Free Full Text 

3. Behbehani GK: Applications of Mass Cytometry in Clinical
Medicine: The Promise and Perils of Clinical CyTOF. Clin Lab
Med. 2017; 37(4): 945–964.
PubMed Abstract | Publisher Full Text 

4. Schulz AR, Baumgart S, Schulze J, et al.: Stabilizing Antibody
Cocktails for Mass Cytometry. Cytometry A. 2019; 95(8): 910–916.
PubMed Abstract | Publisher Full Text 

5. Hartmann FJ, Babdor J, Gherardini PF, et al.: Comprehensive
Immune Monitoring of Clinical Trials to Advance Human
Immunotherapy. Cell Rep. 2019; 28(3): 819–831.e4.
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Palit S, Heuser C, de Almeida GP, et al.: Meeting the Challenges
of High-Dimensional Single-Cell Data Analysis in Immunology.
Front Immunol. 2019; 10: 1515.
PubMed Abstract | Publisher Full Text | Free Full Text 

7. Olsen LR, Leipold MD, Pedersen CB, et al.: The anatomy of single
cell mass cytometry data. Cytometry A. 2019; 95(2): 156–172.
PubMed Abstract | Publisher Full Text 

8. Finck R, Simonds EF, Jager A, et al.: Normalization of mass
cytometry data with bead standards. Cytometry A. 2013; 83(5):
483–494.
PubMed Abstract | Publisher Full Text | Free Full Text 

9. Chevrier S, Crowell HL, Zanotelli VRT, et al.: Compensation of
Signal Spillover in Suspension and Imaging Mass Cytometry.
Cell Syst. 2018; 6(5): 612–620.e5.
PubMed Abstract | Publisher Full Text | Free Full Text 

10. Zunder ER, Finck R, Behbehani GK, et al.: Palladium-based mass
tag cell barcoding with a doublet-filtering scheme and single-
cell deconvolution algorithm. Nat Protoc. 2015; 10(2): 316–333.
PubMed Abstract | Publisher Full Text | Free Full Text 

11. Schuyler RP, Jackson C, Garcia-Perez JE, et al.: Minimizing Batch
Effects in Mass Cytometry Data. Front Immunol. 2019; 10: 2367.
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Van Gassen S, Gaudilliere B, Angst MS, et al.: CytoNorm: A
Normalization Algorithm for Cytometry Data. Cytometry A.
2020; 97(3): 268–278.
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Kotecha N, Krutzik PO, Irish JM: Web-based analysis and
publication of flow cytometry experiments. Curr Protoc Cytom.
2010; 53: 10–17.
PubMed Abstract | Publisher Full Text | Free Full Text 

14. Nowicka M, Krieg C, Crowell HL, et al.: CyTOF workflow:
differential discovery in high-throughput high-dimensional
cytometry datasets [version 3; peer review: 2 approved].
F1000Res. 2019; 6: 748.
PubMed Abstract | Publisher Full Text | Free Full Text 

15. Irmisch A, Bonilla X, Chevrier S, et al.: The Tumor Profiler Study:
Integrated, multi-omic, functional tumor profiling for clinical
decision support. Cancer Cell. 2020; 39(3): 288–293.
PubMed Abstract | Publisher Full Text 

16. Chevrier S, Zurbuchen Y, Cervia C, et al.: A distinct innate 
immune signature marks progression from mild to severe
COVID-19. bioRxiv. 2020: 2020.08.04.236315.
Publisher Full Text 

17. Chevrier S, Levine JH, Zanotelli VRT, et al.: An Immune Atlas of 
Clear Cell Renal Cell Carcinoma. Cell. 2017; 169(4): 736–749.e18.
PubMed Abstract | Publisher Full Text | Free Full Text 

18. Lun A, Risso D, Korthauer K: SingleCellExperiment: S4 classes
for single cell data. R package version, 1.14.1. 2021.
Reference Source

19. Finak G, Frelinger J, Jiang W, et al.: OpenCyto: an open source

infrastructure for scalable, robust, reproducible, and
automated, end-to-end flow cytometry data analysis. PLoS
Comput Biol. 2014; 10(8): e1003806.
PubMed Abstract | Publisher Full Text | Free Full Text 

20. Finak G, Jiang M: FlowWorkspace: Infrastructure for 
representing and interacting with gated and ungated
cytometry data sets. R package version. 2018.
Publisher Full Text 

21. Wickham H: ggplot2: Elegant Graphics for Data Analysis.
Springer, 2016.
Reference Source

22. Van P, Jiang W, Gottardo R, et al.: ggCyto: next generation open-
source visualization software for cytometry. Bioinformatics.
2018; 34(22): 3951–3953.
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Hahne F, LeMeur N, Brinkman RR, et al.: flowCore: a
Bioconductor package for high throughput flow cytometry.
BMC Bioinformatics. 2009; 10(1): 106.
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Wickham H: reshape2: Flexibly reshape data: a reboot of the
reshape package. R package, 2012.
Reference Source

25. Wickham H, Francois R, Henry L, et al.: dplyr: A grammar of data
manipulation. R package. 2015.
Reference Source

26. Bodenmiller B, Zunder ER, Finck R, et al.: Multiplexed mass 
cytometry profiling of cellular states perturbed by small-
molecule regulators. Nat Biotechnol. 2012; 30(9): 858–867.
PubMed Abstract | Publisher Full Text | Free Full Text 

27. McCarthy DJ, Campbell KR, Lun ATL, et al.: Scater: pre-processing,
quality control, normalization and visualization of single-
cell RNA-seq data in R. Bioinformatics. 2017; 33(8): 1179–1186.
PubMed Abstract | Publisher Full Text | Free Full Text 

28. Weber LM, Nowicka M, Soneson C, et al.: diffcyt: Differential
discovery in high-dimensional cytometry via high-resolution
clustering. Commun Biol. 2019; 2: 183.
PubMed Abstract | Publisher Full Text | Free Full Text 

29. Fletez-Brant K, Špidlen J, Brinkman RR, et al.: flowClean:
Automated identification and removal of fluorescence
anomalies in flow cytometry data. Cytometry. 2016; 89(5):
461–471.
PubMed Abstract | Publisher Full Text | Free Full Text 

30. Trussart M, Teh CE, Tan T, et al.: Removing unwanted variation
with CytofRUV to integrate multiple CyTOF datasets. eLife.
2020; 9: e59630.
PubMed Abstract | Publisher Full Text | Free Full Text 

31. Van Gassen S, Callebaut B, Van Helden MJ, et al.: FlowSOM: Using
self-organizing maps for visualization and interpretation of
cytometry data. Cytometry A. 2015; 87(7): 636–645.
PubMed Abstract | Publisher Full Text 

32. Finney DJ: Probit analysis. J Pharm Sci. 1971; 60(9): 1432.
33. Ritz C, Baty F, Streibig JC, et al.: Dose-Response Analysis Using R.

PLoS One. 2015; 10(12): e0146021.
PubMed Abstract | Publisher Full Text | Free Full Text 

34. Lawson CL, Hanson RJ: Solving least squares problems prentice-
hall. Prentice Hall, Englewood Cliffs, NJ. 1974.
Reference Source

35. Lawson CL, Hanson RJ: Solving Least Squares Problems. SIAM,
Philadelphia, PA. 1995.
Reference Source

36. R Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2019.
Reference Source

37. Huber W, Carey VJ, Gentleman R, et al.: Orchestrating high-
throughput genomic analysis with Bioconductor. Nat Methods.
2015; 12(2): 115–121.
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 39 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

http://www.ncbi.nlm.nih.gov/pubmed/29655022
http://dx.doi.org/10.1016/j.coi.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/27153492
http://dx.doi.org/10.1016/j.cell.2016.04.019
http://www.ncbi.nlm.nih.gov/pmc/articles/4860251
http://www.ncbi.nlm.nih.gov/pubmed/29128078
http://dx.doi.org/10.1016/j.cll.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/31058420
http://dx.doi.org/10.1002/cyto.a.23781
http://www.ncbi.nlm.nih.gov/pubmed/31315057
http://dx.doi.org/10.1016/j.celrep.2019.06.049
http://www.ncbi.nlm.nih.gov/pmc/articles/6656694
http://www.ncbi.nlm.nih.gov/pubmed/31354705
http://dx.doi.org/10.3389/fimmu.2019.01515
http://www.ncbi.nlm.nih.gov/pmc/articles/6634245
http://www.ncbi.nlm.nih.gov/pubmed/30277658
http://dx.doi.org/10.1002/cyto.a.23621
http://www.ncbi.nlm.nih.gov/pubmed/23512433
http://dx.doi.org/10.1002/cyto.a.22271
http://www.ncbi.nlm.nih.gov/pmc/articles/3688049
http://www.ncbi.nlm.nih.gov/pubmed/29605184
http://dx.doi.org/10.1016/j.cels.2018.02.010
http://www.ncbi.nlm.nih.gov/pmc/articles/5981006
http://www.ncbi.nlm.nih.gov/pubmed/25612231
http://dx.doi.org/10.1038/nprot.2015.020
http://www.ncbi.nlm.nih.gov/pmc/articles/4347881
http://www.ncbi.nlm.nih.gov/pubmed/31681275
http://dx.doi.org/10.3389/fimmu.2019.02367
http://www.ncbi.nlm.nih.gov/pmc/articles/6803429
http://www.ncbi.nlm.nih.gov/pubmed/31633883
http://dx.doi.org/10.1002/cyto.a.23904
http://www.ncbi.nlm.nih.gov/pmc/articles/7078957
http://www.ncbi.nlm.nih.gov/pubmed/20578106
http://dx.doi.org/10.1002/0471142956.cy1017s53
http://www.ncbi.nlm.nih.gov/pmc/articles/4208272
http://www.ncbi.nlm.nih.gov/pubmed/28663787
http://dx.doi.org/10.12688/f1000research.11622.3
http://www.ncbi.nlm.nih.gov/pmc/articles/5473464
http://www.ncbi.nlm.nih.gov/pubmed/33482122
http://dx.doi.org/10.1016/j.ccell.2021.01.004
http://dx.doi.org/10.1101/2020.08.04.236315
http://www.ncbi.nlm.nih.gov/pubmed/28475899
http://dx.doi.org/10.1016/j.cell.2017.04.016
http://www.ncbi.nlm.nih.gov/pmc/articles/5422211
https://bioconductor.org/packages/devel/bioc/manuals/SingleCellExperiment/man/SingleCellExperiment.pdf
http://www.ncbi.nlm.nih.gov/pubmed/25167361
http://dx.doi.org/10.1371/journal.pcbi.1003806
http://www.ncbi.nlm.nih.gov/pmc/articles/4148203
http://dx.doi.org/10.18129/B9.bioc.flowWorkspace
https://www.springer.com/gp/book/9783319242750
http://www.ncbi.nlm.nih.gov/pubmed/29868771
http://dx.doi.org/10.1093/bioinformatics/bty441
http://www.ncbi.nlm.nih.gov/pmc/articles/6223365
http://www.ncbi.nlm.nih.gov/pubmed/19358741
http://dx.doi.org/10.1186/1471-2105-10-106
http://www.ncbi.nlm.nih.gov/pmc/articles/2684747
https://rdrr.io/cran/reshape2/
https://dplyr.tidyverse.org/reference/dplyr-package.html
http://www.ncbi.nlm.nih.gov/pubmed/22902532
http://dx.doi.org/10.1038/nbt.2317
http://www.ncbi.nlm.nih.gov/pmc/articles/3627543
http://www.ncbi.nlm.nih.gov/pubmed/28088763
http://dx.doi.org/10.1093/bioinformatics/btw777
http://www.ncbi.nlm.nih.gov/pmc/articles/5408845
http://www.ncbi.nlm.nih.gov/pubmed/31098416
http://dx.doi.org/10.1038/s42003-019-0415-5
http://www.ncbi.nlm.nih.gov/pmc/articles/6517415
http://www.ncbi.nlm.nih.gov/pubmed/26990501
http://dx.doi.org/10.1002/cyto.a.22837
http://www.ncbi.nlm.nih.gov/pmc/articles/5522377
http://www.ncbi.nlm.nih.gov/pubmed/32894218
http://dx.doi.org/10.7554/eLife.59630
http://www.ncbi.nlm.nih.gov/pmc/articles/7500954
http://www.ncbi.nlm.nih.gov/pubmed/25573116
http://dx.doi.org/10.1002/cyto.a.22625
http://www.ncbi.nlm.nih.gov/pubmed/26717316
http://dx.doi.org/10.1371/journal.pone.0146021
http://www.ncbi.nlm.nih.gov/pmc/articles/4696819
https://books.google.co.in/books/about/Solving_Least_Squares_Problems.html?id=zhzvAAAAMAAJ&redir_esc=y
https://www.bibsonomy.org/bibtex/21e00cd20e5b7e1e8a6f65e62f067ef6a/peter.ralph
https://www.r-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/25633503
http://dx.doi.org/10.1038/nmeth.3252
http://www.ncbi.nlm.nih.gov/pmc/articles/4509590

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 25 August 2022

https://doi.org/10.5256/f1000research.135465.r146797

© 2022 Trussart M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Marie Trussart
Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia

Thanks for the updated version and for assessing the suggestions and issues mentioned in the
first report.
I think this revised version is easier to follow and clearer with the updates provided.
One last comment would be on the batch alignment section, the Figure 17 selected is not showing
the 7 different markers distribution to compare the expression distributions before and after
batch correction and I think it would be useful in the assessment of this correction.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in Bioinformatics and especially in the normalization and batch
correction of CyTOF datasets.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 01 December 2020

https://doi.org/10.5256/f1000research.28774.r73588

© 2020 Bendall S et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Felix Hartmann

Page 40 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://doi.org/10.5256/f1000research.135465.r146797
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7258-7272
https://doi.org/10.5256/f1000research.28774.r73588
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4174-2276

School of Medicine, Stanford University, Palo Alto, CA, USA

Sean C. Bendall
Immunology Graduate Program, Stanford University, Stanford, CA, USA

In their manuscript, Crowell & Chevrier et al. present a novel workflow to preprocess mass
cytometry (CyTOF) datasets in R. The presented pipeline is a useful update on earlier publications
and packages, including the authors' CATALYST package which is clearly stated. Overall, I find this
to be a valuable tool that brings together different functionalities into a unified workflow that
enables reproducible and comprehensive preprocessing of this data type. The different steps and
approaches are well described and illustrated. Especially, the inclusion of a functionality to
perform live cell gating without having to switch platforms is much appreciated, although its
current implementation could be improved:

Gating on cells: Cells are first identified using an elliptical gate to exclude the two lowest
density percentiles. Firstly, this plot relies on two DNA channels (whose information is likely
redundant) and wasn’t directly applicable to alternative DNA stains (e.g. rhodium).
Furthermore, I am wondering whether this approach might exclude for example a fraction
of cycling cells or preferentially exclude cell types or states with increased chromatin
accessibility and therefore higher DNA signal?

1.

Gating on live cells: The approach suggested by the authors worked well on my test data,
however, it takes a while to manually adjust values for every file to fit the gates closely to
the data. While I see the value of automating this step, I also think that some manual gating
could simplify the process and further increase downstream data quality. Potentially, the
authors could adopt an approach like the gate_draw function from the CytoRSuite library.

2.

Compensation: The workflow includes compensation as a preprocessing step which the
authors have shown in separate publications to improve data quality, but which is currently
not routinely performed by many researchers working using mass cytometry. I, therefore,
assume that most users of this pipeline would be relying on published spillover matrices
that reflect estimates of isotope purity and oxidation. While I agree with the usefulness of
this function, I believe that adding additional quality control functions could improve
acceptance of and trust in this approach. For example, in flow cytometry, overcompensation
is often easily spotted by the occurrence of overly negative values, however, using their
NNLS approach this is not readily apparent in compensated mass cytometry data. It would
be very helpful to have a quality metric that would alert users to such potential issues
introduced by the compensation step.

3.

In addition, testing this pipeline on some in-house generated data, a few minor issues occurred
which should be addressed:

While this might only be needed in rare cases, a function to rename channels and
potentially match these names across multiple fcs files could enhance the adaptability of
this package. In my test case, conflicting channel names prevented the import of the files
into the workflow. In other cases, it might help to match channel names between batches.
The authors could look to the premessa package for inspiration.

1.

The authors have incorporated various options for DNA channels which is much
appreciated. My test data had been stained with a rhodium intercalator. Specifying this

2.

Page 41 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

http://orcid.org/0000-0003-1341-2453

worked well, only the res$scatter function seems to ignore this choice and instead seems to
default to iridium DNA intercalators.

Sample specific debarcoding is appreciated. Figure 6 and the plotYields function return a
debarcoding percentage. I believe this percentage refers to percent of initial assignments,
but it is not specifically stated. It might be helpful to get a feeling of the percentage of cells
(out of total cells) that are assigned after refining the initial assignments.

3.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Yes

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Single cell proteomics, Mass Cytometry, Immunology, Stem Cell biology

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 23 Jun 2022
Helena Crowell, University of Zurich, Zurich, Switzerland

Gating on cells: Cells are first identified using an elliptical gate to exclude the two lowest
density percentiles. Firstly, this plot relies on two DNA channels (whose information is likely
redundant) and wasn’t directly applicable to alternative DNA stains (e.g. rhodium).
Furthermore, I am wondering whether this approach might exclude for example a fraction
of cycling cells or preferentially exclude cell types or states with increased chromatin
accessibility and therefore higher DNA signal?

The first gating step is indeed performed on two DNA channels which contains
redundant information. However, this approach is commonly used in the mass
cytometry field to exclude debris and cell doublets. By modifying the quantile and the

1.

Page 42 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

target value defining the center of the ellipse, the user can control how many cells are
excluded from the gate and ensure that most cycling cells are kept in the analysis.

To gate on alternative DNA stains, a different pair of channels could be assigned to
the “dna” variable in the corresponding code chunk. In the case of a single DNA
channel, a one-dimensional gating (i.e., thresholding) could be applied (as opposed to
the currently used elliptical gate). We have added a comment mentioning this to the
text under “Gating on cells”.

Gating on live cells: The approach suggested by the authors worked well on my test data,
however, it takes a while to manually adjust values for every file to fit the gates closely to
the data. While I see the value of automating this step, I also think that some manual
gating could simplify the process and further increase downstream data quality.
Potentially, the authors could adopt an approach like the gate_draw function from the
CytoRSuite library.

Indeed, the approach depicted in this paper works well in cases where a limited
number of samples are included in a run and when the live/dead cell profile is well
defined and consistent between samples. The process can indeed be tedious when
hundreds of samples are included in a run or when the live/dead cell profile is more
complex. In the latter case, including a function similar to gate_draw function from
CytoRSuite could be helpful. However, we here aimed at proposing an automated
pipeline; manual gating would defeat this purpose.

As a side note: We have attempted applying CytoRSuite, however, encountered
several confusing issues that we’ve been unable to resolve: The CytoRSuite site (
https://dillonhammill.github.io/CytoRSuite) lists a GH repository that no-longer exists;
we could find an installable version at https://github.com/gfinak/cytoRSuite (is this
the same?) but ‘drawGate()’ gave an error that we have not been able to resolve;
meanwhile, any of CytoRSuite, cytoRSuite and cytoSuite (from which the latter has
been forked) have not been changed in 4 years. Taken together, this gave us the
feeling that the tool is no longer maintained and likely to be inapplicable with current
versions of R and Bioconductor.

Of course, there may be other tools available at this point for manual gating, and we
leave it to the user to incorporate these into their workflow should that be of interest.
A possible strategy then might be to i) perform manual gating and export the
resulting gates into a table (gating scheme); ii) apply that scheme in an automated
fashion (e.g., using the code we presented); and, iii) do manual adjustments to refine
gates according to the current experiment.

2.

Compensation: The workflow includes compensation as a preprocessing step which the
authors have shown in separate publications to improve data quality, but which is
currently not routinely performed by many researchers working using mass cytometry. I,
therefore, assume that most users of this pipeline would be relying on published spillover
matrices that reflect estimates of isotope purity and oxidation. While I agree with the
usefulness of this function, I believe that adding additional quality control functions could

3.

Page 43 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://dillonhammill.github.io/CytoRSuite/
https://github.com/gfinak/cytoRSuite

improve acceptance of and trust in this approach. For example, in flow cytometry,
overcompensation is often easily spotted by the occurrence of overly negative values,
however, using their NNLS approach this is not readily apparent in compensated mass
cytometry data. It would be very helpful to have a quality metric that would alert users to
such potential issues introduced by the compensation step.

These are all very good points and legitimate concerns. As indicated in the original
paper, the spillover matrix used to compensate mass cytometry data should be
calculated based on the antibodies included in the panel. We should stress here that,
based on the single-stained bead acquisition approach presented in the original
paper, the experimental procedure required to generate a compensation matrix is
fairly straightforward and can be achieved rapidly. Using a previously published
spillover matrix is a risky strategy, which can indeed lead to inaccurate compensation.
The user should instead first run the compensation in classic mode and perform a
visual inspection to ensure no overcompensation can be detected before using the
NNLS method. This is a valuable option to avoid this specific type of artefact.
Automating this step is a good suggestion, but is out of the scope of this publication
and comes with some disadvantages. The risk we see is that this process could be
imperfect and potentially misleading for the user. Indeed, such an approach would
only identify overcompensation in channels where a single positive population is
present but not in the case of a double positive population. In other words, it will
highly depend on the user’s data type. Furthermore, it would not identify under-
compensated signals. As a consequence, providing an approach to alert users of
potential issues would likely be imperfect and could give a wrong impression that the
data are correctly compensated if no alert is raised, which is not necessarily the case.
Moreover, to the best of our knowledge, such an approach also doesn’t exist in
fluorescent flow cytometry, most likely due to the fact that ensuring accurate
compensation on a fully stained data set is a challenging task. We should also
mention that the spillover coefficients in mass cytometry rarely exceed 4% and
therefore the consequences of a slight over or under-compensation are less
important in mass cytometry than in flow cytometry.

Minor comments:
While this might only be needed in rare cases, a function to rename channels and
potentially match these names across multiple fcs files could enhance the adaptability of
this package. In my test case, conflicting channel names prevented the import of the files
into the workflow. In other cases, it might help to match channel names between batches.
The authors could look to the premessa package for inspiration.

We very much appreciate this comment as we have encountered various
discrepancies between panels, especially in long-term projects. To date, we have used
a custom R script to i) read in files separately; ii) fix panels according to a reference
file (i.e., removing/adding additional/missing channels); and, iii) write out a new set of
FCS files with concordant panels.

However, this solution is suboptimal as it leads to a duplication of files (or, in case the
original files were overwritten, the process would no longer be reproducible).
Similarly, a GUI solution (as ‘premessa’) would defeat the purpose of providing an

1.

Page 44 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

automated, reproducible preprocessing solution. Thus, taken together, we propose
(and have now implemented) the following strategy:

> ‘prepData’ now exposes additional arguments to be passed to ‘flowCore::read.FCS’
via ‘...’
> ‘read.FCS’ provides an argument ‘channel_alias’: “an optional ‘data.frame’ used to
provide the alias of the channels to standardize and solve the discrepancy across FCS
files. [...]”
> independent of whether or not this option is used, ‘prepData’ will check whether
panels (FCS channel names) match between files:

in case of any discrepancy, the newly added ‘fix_chs’ argument
will be used to determine how to resolve discrepancies

○

“all” will keep all channels (i.e., the union across files);
any missing channels will be added to the respective samples,
and a channels x samples matrix is stored in the object to track
which channels were present in which samples originally

○

“common” will keep shared channels (i.e., the intersection across files); any
other channels will be dropped from the respective files

○

‘prepData’ will, in any case, return a ‘SingleCellExperiment’, i.e.,
no altered FCS files or ‘flowFrame’s will be written out / returned

○

The authors have incorporated various options for DNA channels which is much
appreciated. My test data had been stained with a rhodium intercalator. Specifying this
worked well, only the res$scatter function seems to ignore this choice and instead seems to
default to iridium DNA intercalators.

We thank the reviewer for noticing this. Indeed, while the workflow allows for
specification of the DNA channels used (via variable ‘dna’), these were fixed internally
in CATALYST’s ‘normCytof()’ function. We have added an additional argument to allow
passing custom DNA channel masses (default ‘dna = c(191, 193)’ for Ir191/3; for
Rh103, the argument would be ‘dna = 103’ instead); the output scatter plot of DNA vs.
bead intensities (‘res$scatter’) is now generated based on the first matching DNA
channel (see updated ‘?normCytof’ documentation).

2.

Sample specific debarcoding is appreciated. Figure 6 and the plotYields function return a
debarcoding percentage. I believe this percentage refers to percent of initial assignments,
but it is not specifically stated. It might be helpful to get a feeling of the percentage of cells
(out of total cells) that are assigned after refining the initial assignments.

That is correct: As in the original Finck et al. outputs (a MATLAB application), yields
(left-hand y-axis) correspond to the proportion of cells that would be retained upon
applying a given cutoff (x-axis). In Figure 8, we compare the absolute barcode
population sizes before vs. after debarcoding. Analogously, it would be
straightforward for users to generate such a barplot from cell counts obtained when
applying various thresholding schemes (e.g., no filtering compared to global vs.
sample-specific separation cutoffs).

3.

Page 45 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Competing Interests: No competing interests were disclosed.

Reviewer Report 05 November 2020

https://doi.org/10.5256/f1000research.28774.r73591

© 2020 Trussart M. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Marie Trussart
Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Vic, Australia

The manuscript is presenting an updated version of the CATALYST package for preprocessing
Cytof data. It is well detailed with several examples and has been updated based on the
Bioconductor SingleCellExperiment class. Every step of preprocessing is clearly stated and
illustrated to guide the user on the different steps to process their data. Also, new quality checks
are being reviewed to explore the quality of the data.
I provided below some feedback to make the manuscript clearer and some suggestions to
address some issues I encountered:

It will be useful to define clearly what are the differences between successive acquisitions,
single CyTOF run and batch.

1.

The different samples and runs listed through the different examples could be better
presented with a table containing all runs and samples. In the data description, it explains
that "The dataset used in this study was obtained from a single CyTOF run containing nine
references, three blood samples and three tumor samples barcoded with a 20-well
barcoding plate". However in the quality checks section; additional data is being analyzed
which makes it confusing, coming from additional runs, sometimes from 7 runs or other
times from 8 runs.

2.

Batch alignment:
Could you provide an additional plot showing the effect of applying this correction factor?
How are you assessing the performance of your batch alignment method?

3.

argument norm_to in the normCytof() function: give explanations on how it being computed
when giving reference beads, especially how does it compute the new baseline, does it
takes into account both the beads from the reference and current by averaging both?
Can it be used to normalize data from different batches? If so how does it deal with
distinguishing times and ordering the beads and time which would be similar in separated
batches?

4.

Figure 4: Could you please give more explanations on how to assess run sensitivity and how
does the user decide what is acceptable and what is not?

5.

Page 46 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://doi.org/10.5256/f1000research.28774.r73591
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7258-7272

Also, you need to load the library(reshape2) to run this part.

The wrap_plots function is missing here.

6.

I got an error when running the QC on reference cell counts. "Error: Can't combine
`1$CellLine_R1` and `2$CellLine_R1` ."

7.

Minor comments:

When running the code using the data provided, the directory name should be modified to
"CyTOF_acquisition_1-3.FCS/" instead of data
fcs <- list.files("CyTOF_acquisition_1-3.FCS/", "acquisition", full.names = TRUE)
Also, it should be specified that the directory name containing all the data should be called
"data" and it refers to the directory name, or an alternative is to have the local directory "."
instead of data like in here:
specify path to reference beads
ref_beads <- file.path(".", "normalization_beads.fcs")

1.

Introduction:
"an important step is to correct for batch effects, which can be achieved by including a
shared control sample in each independent batch11,12 " Add CytofRUV reference mentioned
in the discussion.

2.

"In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor),
group (R for reference or S for sample of interest), and replicate number; and follow a
consistent naming scheme: We can easily extract these components and store them in the
SCE’s cell metadata (colData)". The example selected is not the best one, as it not showing
any differences between the 6 first row.

3.

There is a typo in the legend of some figures like figure 17: "previously" acquired runs.4.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Partly

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?

Page 47 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://f1000research.com/my/referee/report/73591#ref-11
https://f1000research.com/my/referee/report/73591#ref-12

Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in Bioinformatics and especially in the normalization and batch
correction of CyTOF datasets.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Author Response 23 Jun 2022
Helena Crowell, University of Zurich, Zurich, Switzerland

It will be useful to define clearly what are the differences between successive acquisitions,
single CyTOF run and batch.

Indeed, the meaning behind the concepts of successive acquisitions, single CyTOF
run and batch was not fully clear and these terms were not used in a consistent way.
A “CyTOF run” corresponds to an independent experiment where samples are stained
and acquired simultaneously on the CyTOF. We replaced the term run with
experiment to clarify the meaning. Each CyTOF experiment corresponds to one
“batch” and this term is used to refer to the batch correction which is performed on
the different CyTOF experiments. The data from a single CyTOF experiment are
usually acquired over multiple “successive acquisitions”, each leading to the
generation of a single FCS file. We also made the use of these terms consistent
throughout the paper.

1.

The different samples and runs listed through the different examples could be better
presented with a table containing all runs and samples. In the data description, it explains
that "The dataset used in this study was obtained from a single CyTOF run containing nine
references, three blood samples and three tumor samples barcoded with a 20-well
barcoding plate". However in the quality checks section; additional data is being analyzed
which makes it confusing, coming from additional runs, sometimes from 7 runs or other
times from 8 runs.

The pipeline described in this paper was designed to preprocess CyTOF data acquired
over a long period of time with a focus on ensuring data consistency over time. The
aim of the workflow is to guide the readers through the preprocessing steps required
to convert FCS files obtained in a given CyTOF experiment to a format suitable for
downstream analysis, while presenting key quality checks to ensure the reliability of
the data generated in the experiment of interest. Therefore, the whole analysis is
based on a dataset obtained from a single CyTOF experiment, which is benchmarked
against data acquired during a preparatory phase. For consistency reasons, we
included now systematically the data from seven previous CyTOF experiments to
benchmark the data of the CyTOF experiment preprocessed in this paper.

2.

Page 48 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

Batch alignment: Could you provide an additional plot showing the effect of applying this
correction factor? How are you assessing the performance of your batch alignment
method?

The batch alignment presented in this paper is based on a linear scaling based on a
percentile, using references as anchoring points, similar to a previously published
method (Schuyler et al, 2019). To assess the performance of our batch alignment
method, we have now included a figure to compare the expression distributions
before and after batch correction (including their 98th percentiles and those of the
references). As intended, 98th percentiles align with the references’ upon correction,
while expression distributions remain virtually unchanged.

3.

argument norm_to in the normCytof() function: give explanations on how it being
computed when giving reference beads, especially how does it compute the new baseline,
does it take into account both the beads from the reference and current by averaging
both?

Normalization using reference beads follows the methodology originally introduced
in Finck et al. (2013): The baseline is computed as the mean intensity of the reference
beads only, not including the current experiment. Would the average be taken over
both, intensities would not be aligned between current and reference experiment.
While the statement “[...] We provide the path to a set of reference beads (argument
`norm_to`) that are used to compute baseline intensities for normalization” explains
this only briefly, we believe that the method is well established and readers should
refer to the original publication for more detail.

Can it be used to normalize data from different batches? If so how does it deal with
distinguishing times and ordering the beads and time which would be similar in separate
batches?

Yes, certainly. The normalization aims at correcting the signal time-drift due to
progressive loss of sensitivity during acquisition. This is a technical effect that is
independent of batch effects, and should be accounted for regardless of whether or
not batch effects are present: these should be corrected for downstream analysis.

Events from different FCS files (independent of whether these are different
acquisitions of the same experiment or batches) are concatenated. How event times
are dealt with depends on prepData()’s input arguments. When by_time = TRUE, files
are ordered according to their acquisition time (stored under each flowFrame’s $BTIM
description field). Otherwise, they are kept in the order provided by the input
metadata table (argument md).

4.

Figure 4: Could you please give more explanations on how to assess run sensitivity and
how does the user decide what is acceptable and what is not?

Instrument sensitivity is an important parameter that should be closely monitored.
This parameter is assessed during the tuning but those data cannot be easily

5.

Page 49 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

exported and compared between experiments. The aim was to take advantage of the
beads, which are run together with the samples to report on instrument sensitivity.
Figure 3 provides key information regarding how the sensitivity evolves during the
run, while the point of Figure 4 is to show how the average sensitivity evolves from
one experiment to another. Instrument sensitivity varies from machine to machine
and deciding what is acceptable will depend on the requirements of the users. The
point of this plot was to offer an option for the user to easily identify in case the
sensitivity is getting low compared to previous experiments, and to make a link
between the quality of the data generated in a specific experiment with the sensitivity
of the instrument.

Also, you need to load the library(reshape2) to run this part.

Yes, thank you for catching this; we’ve added reshape2 to the list of dependencies,
and it is now loaded along the other required libraries.

The wrap_plots function is missing here.

Yes, thank you for catching this; we’ve added patchwork to the list of dependencies,
and it is now loaded along the other required libraries.

6.

I got an error when running the QC on reference cell counts. "Error: Can't combine
`1$CellLine_R1` and `2$CellLine_R1`."

True, thank you; I could reproduce this with the current R and package versions. It
has been fixed by converting the ‘run’ object of class ‘table’ to call ‘integer’ using c().

7.

Minor comments:
When running the code using the data provided, the directory name should be modified to
"CyTOF_acquisition_1-3.FCS/" instead of data:
fcs <- list.files("CyTOF_acquisition_1-3.FCS/", "acquisition", full.names = TRUE)

We are not sure we understand this comment. ‘list.files(path, pattern, …)’ expects the
first argument to be a directory (where the FCS files are located), not the file names
themselves (“xxx.FCS”).

Also, it should be specified that the directory name containing all the data should be called
"data" and it refers to the directory name, or an alternative is to have the local directory "."
instead of data like in here:
specify path to reference beads
ref_beads <- file.path(".", "normalization_beads.fcs")

Thank you, yes, we forgot to mention that in the presented code all data used
throughout the workflow is expected to sit inside a “data” subdirectory relative to
where the .Rmd file is being run. We have now added a note explaining this in the
2nd paragraph under “Results”.

1.

Introduction: "an important step is to correct for batch effects, which can be achieved by 2.

Page 50 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

including a shared control sample in each independent batch" Add CytofRUV reference
mentioned in the discussion.

We updated the reference to CytofRUV to the new version of the manuscript
published in eLife and added it to the introduction.

"In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor),
group (R for reference or S for sample of interest), and replicate number; and follow a
consistent naming scheme: We can easily extract these components and store them in the
SCE’s cell metadata (colData)". The example selected is not the best one, as it not showing
any differences between the 6 first row.

True. We have modified the example to sample 10 unique ‘sample’ entries (=
type_group) for which to display the ‘colData’.

3.

There is a typo in the legend of some figures like figure 17: "previously" acquired runs.

Thanks for pointing out this typo, which was corrected in the corresponding figures.

4.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 51 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

mailto:research@f1000.com

