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Abstract 
Mass cytometry (CyTOF) has become a method of choice for in-depth 
characterization of tissue heterogeneity in health and disease, and is 
currently implemented in multiple clinical trials, where higher quality 
standards must be met. Currently, preprocessing of raw files is 
commonly performed in independent standalone tools, which makes 
it difficult to reproduce. Here, we present an R pipeline based on an 
updated version of CATALYST that covers all preprocessing steps 
required for downstream mass cytometry analysis in a fully 
reproducible way. This new version of CATALYST is based on 
Bioconductor’s SingleCellExperiment class and fully unit tested. The R-
based pipeline includes file concatenation, bead-based normalization, 
single-cell deconvolution, spillover compensation and live cell gating 
after debris and doublet removal. Importantly, this pipeline also 
includes different quality checks to assess machine sensitivity and 
staining performance while allowing also for batch correction. This 
pipeline is based on open source R packages and can be easily be 
adapted to different study designs. It therefore has the potential to 
significantly facilitate the work of CyTOF users while increasing the 
quality and reproducibility of data generated with this technology.
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Introduction
Over the past decade, mass cytometry (CyTOF) has advanced our understanding of a wide range of cellular proc-
esses, particularly in the field of immunology and tumor biology1,2, by enabling the simultaneous measurement  
of 40+ parameters at the single cell level. Currently, mass cytometry is transitioning from an exploratory 
research approach toward a diagnostic tool used in clinical laboratories and this transition is associated with 
an increased need for standardization3. Various studies have already suggested improvements on the experi-
mental workflows to increase the robustness of mass cytometry data by working with frozen antibody cocktails  
or by including shared reference samples in each independent experiment to enable for batch correction4,5.  
Similarly, advanced downstream analyses benefit from the large number of analysis tools and algorithms  
implemented in R, which allow for fully reproducible analyses6.

Between data generation and downstream data analysis, data preprocessing is an multi-step procedure 
required to convert raw FCS files into data objects that can be input to downstream statistical analysis and  
visualization7. Upon data collection, the first step consists in concatenating files from sequential CyTOF acquisi-
tions and removing events with unstable signal, which are usually caused by uneven flow rate or introduction of 
air in the fluidic system. As a second step, CyTOF data need to be corrected for time dependent signal drift,  
which is mostly due to cone contamination, mass calibration drift or loss of detector sensitivity over time. This 
correction is performed by acquiring metal tagged polystyrene beads together with the cell suspension, where 
bead signals can be used as a reference to normalize the cell signals8. Another potential artefact in CyTOF data is  
due to signal spillover between channels. Although lower than what is usually observed in fluorescent flow cytom-
etry, spillover in mass cytometry can still account for up to 4% of the signal in some channels and needs to be 
corrected using signal compensation9. Sample barcoding prior to staining is a common approach used in mass 
cytometry to combine multiple samples in a single experiment to minimize experimental variation due to staining  
and CyTOF acquisition. In this case, individual cells have to be assigned to their respective sample via a proc-
ess called single cell debarcoding10. In large studies where samples are collected over a long period of time by 
different users, on different machines or at different sites, an important step is to correct for batch effects, which 
can be achieved by including a shared control sample in each independent batch11,12. Finally, only live, intact  
single cells are relevant for the downstream analysis. Beads, doublets, debris and dead cells are excluded by  
gating on scatter plots7.

Each step of the preprocessing pipeline requires expert decisions to determine the best parameters to achieve 
an optimal signal correction and cell selection. Moreover, all the chosen parameters should be recorded for  
reproducibility purposes. Despite these requirements, many current preprocessing pipelines still rely on switch-
ing between platforms that include, for example, MATLAB applications and (at least partially) closed source 
online platforms (e.g., Cytobank13). This approach necessitates uploading the data to different platforms and  
carrying out certain steps in a purely manual fashion, which makes it time-consuming and difficult to reproduce.  
This is particularly limiting in a clinical setting, where reproducibility and large-scale data analysis are required. 
Thus, we propose a semi-automated R-based preprocessing pipeline for CyTOF data that is: i) fully reproducible;  
ii) includes quality checks and, iii) has limited need for supervision once the original setup has been made. This 
pipeline is developed around an updated version of CATALYST, an R package designed for preprocessing and 
differential analysis of mass cytometry data9,14. This new version of CATALYST is based on Bioconductor’s  
SingleCellExperiment class, the standard for high dimensional single cell data analysis. This pipeline can 
easily be adapted to each CyTOF user’s needs and will accelerate CyTOF data preprocessing while improving  
the quality of mass cytometry data generated.

Data description
The data used in this pipeline were generated in the context of the Tumor Profiler project, a multi-center observa-
tional study investigating the relevance of different innovative technologies, including CyTOF, imaging mass 

           Amendments from Version 1
Minor text revisions have been made to clarify and be consistent in the terminology used (e.g., acquisition vs. run 
vs. batch). We have further adapted reference-related metadata to systematically include 7 previously acquired 
experiments (rather than sometimes 7, other times 8). Under “Batch alignment”, we have also included a figure to 
compare the expression distributions before and after batch correction.

In order to improve the workflow’s usability, various updates have been made to CATALYST. E.g., to enable analysis of 
samples with panel discrepancies, the prepData() function now supports flexible mechanisms to consolidate these (e.g., 
via a table of channel aliases, or by renaming channels according to a reference sample). Furthermore, the normCytof() 
function now has an additional argument to specify custom DNA channel masses. Accordingly, the workflow now uses 
most current software versions, namely, R v4.2 with Bioconductor v3.15.

Any further responses from the reviewers can be found at the end of the article
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cytometry, single-cell DNA and RNA sequencing, as well as ex vivo drug testing to improve the diagnostic of  
advanced cancer patients15.

The samples of interest included tumor biopsies and blood samples collected at the University Hospital Zurich 
in spring 2020. These samples were assessed by mass cytometry in the context of a set of references including  
commercially available cell lines, PBMCs from healthy donors and PHA activated PBMCs. PBMCs from 
patients and healthy donors were collected based on a ficoll gradient16, and tumor samples were dissociated as  
previously described17. Once in single-cell suspension, all samples were stained for 5 min on ice with 
Cell-IDTM Cisplatin-194Pt (#201194, Standard BioTools) to identify dead cells and subsequently fixed with PFA 1.6% 
(#15710, Electron Microscopy Sciences). Samples were stored as dry pellet at −80°C until CyTOF measurement.

The dataset used in this study was obtained from a single CyTOF experiment, also called batch, where nine  
references, two blood samples and two tumor samples were barcoded with a 20-well barcoding plate17. Reference  
samples were selected to contain positive and negative populations for each marker included in the study’s anti-
body panel. This design was chosen to enable for quality control and batch correction across independent experi-
ments based on quantile scaling as described in 11. Pooled cells were stained with a 40-Ab panel designed to  
perform an in-depth characterization of the samples’ immune compartment. DNA intercalation was performed  
with a 1h incubation in Cell-IDTM Intercalator-Ir (#201192B, Fluidigm). Finally, the cell suspension  
was diluted 1:10 in Maxpar® Cell Acquisition Solution (#201240, Fluidigm) and 10% of EQ Four Element  
Calibration Beads (#201078, Fluidigm), and acquired on a Helios™ upgraded CyTOF 2 system at a flow rate of  
150 events per second.

Throughout this workflow, we will make use of a set of metadata for standard preprocessing steps (normalization, 
debarcoding and compensation), as well as various quality controls previously acquired over seven independent  
experiments. An overview of the metadata used is given in Table 1.

Table 1. Overview of metadata files used throughout this pipeline, including each file’s description, 
dimensionality (if appropriate), and purpose for preprocessing or quality control.

Description Purpose
normalization_beads.fcs
Beads identified using CATALYST during the normalization 
step of a previous CyTOF experiment.

Used as reference beads to correct for changes 
in signal sensitivity over time.

ref_bead_counts.csv
A table of mean dual counts for the 6 different bead channels 
(columns) obtained from 7 previous CyTOF experiments (rows). 

Used as a reference to assess the measurement 
sensitivity.

debarcoding_scheme.csv
A binary barcoding scheme of 6-choose-3 = 20 barcodes with 
columns corresponding to barcode channel masses (101, 104, 
105, 106, 108, 110) and rows corresponding to barcodes (7 
empty, 9 references, 2 PBMC and 2 tumor samples)

Used for single-cell deconvolution of multiplexed 
samples.

spillover_matrix.csv
A spillover matrix calculated with CATALYST from beads single-
stained with each of the 40 antibodies included in the panel 
used in this study. The matrix contains, for each measurement 
channel (rows), the percentage of signal received by all other 
channels (columns).

Used for correction of spillover.

ref_cell_counts.csv
A table of the number of cells measured in 7 previous 
experiments, each including 4 cell line, 3 PBMC and 2 tumor 
references samples (63 samples in total).

Used to assess reference sample cell yields in the 
current in comparison to previous experiments

sample_cell_counts.csv
A table of the number of cells measured in 7 previous 
experiments, each including 2 PBMC and 2 tumor samples (28 
samples in total).

Used to assess sample cell yields in the current in 
comparison to previous experiments

ref_marker_levels.csv
A table of the 98th expression percentiles for each target 
(columns) across 7 previous experiments (rows).

Used to assess the staining efficiency of the 
current experiment
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Data organization
Most data used and returned throughout this workflow are kept in an object of Bioconductor’s  
SingleCellExperiment (SCE) class from the SingleCellExperiment package18. This data structure can 
store all single-cell related data (measurement data and transformations thereof; cell, feature and experiment-wide 
metadata; dimensionality reductions), allowing for synchronized and thus less error-prone data manipulation.

The key component of SCEs are matrix-like assays, where rows are features (targets) and columns are obser-
vations (cells), that store the measurement data and any data derived thereof. Metadata associated with cells 
are stored under colData, feature metadata under rowData, and any experiment-wide metadata may 
be stored in the metadata slot. Lastly, the SCE can store an arbitrary number of dimensionality reduc-
tions under reducedDims. For a more detailed description of usage and structure of SCEs, we refer to the  
SingleCellExperiment package’s documentation.

Results
The pipeline presented here describes all steps required to process raw mass cytometry data to a state where 
the user may proceed with downstream analyses (e.g., dimensionality reduction, differential analysis, trajec-
tory inference). The process includes the concatenation of the individual acquisitions, the exclusion of part of 
the acquisition with unstable signal, the correction for time-dependent signal drift via bead normalization, the  
correction for signal spillover via compensation, the selection of cells of interest via automated gating, and 
the correction for batch effects. The workflow is exemplified on data from a single CyTOF experiment collected  
via three successive acquisitions (individual FCS files) of 15 barcoded samples mixed with calibration beads.

Throughout, raw measurement data (FCS files) as well as all metadata (for debarcoding, normalization, compen-
sation, and quality control) are expected to be located inside a data/ subdirectory (relative to where the code is  
being run); otherwise, the presented file paths require modification.

We use CATALYST9 to perform key preprocessing steps, including: concatenation, normalization, debarcoding  
and compensation; openCyto19 and flowWorkspace20 for gating; ggplot221, ggcyto22 and patchwork for visualiza-
tion; flowCore23, `r CRANpkg(“reshape2”)´24 and dplyr25 for data accession and manipulation; and mvtnorm to  
compute polygonal live gates. Thus, our workflow is limited to the following dependencies:

library(CATALYST)
library(dplyr)
library(flowCore)
library(flowWorkspace)
library(ggcyto)
library(ggplot2)
library(mvtnorm)
library(openCyto)
library(patchwork)
library(reshape2)

Besides standard preprocessing steps, we include quality control (QC) steps to assess CyTOF sensitivity, stain-
ing efficacy, and cell yield; these rely on results from previous experiments (n = 7) as a reference. For consistent 
visualization, we define a common plotting theme for boxplots that are used to compare the current to previous  
experiments:

qc_theme <- list(
  theme_bw(base_size = 8), theme(
    panel.grid.minor = element_blank(),
    panel.grid.major.x = element_blank(),
    plot.title = element_text(face = "bold"),
    axis.text = element_text(color = "black"),
    axis.text.x = element_text(angle = 45, hjust = 1)))

Constructing a SingleCellExperiment
By default, flowCore’s read.FCS() function, which underlies read.flowSet() for reading in a set of FCS 
files, transforms channel intensities and removes events with extreme values. To omit this behavior, we recommend  
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reading in files with arguments transformation = FALSE and truncate_max_range = FALSE; by  
default, files will be read in by CATALYST's prepData() function with these settings.

As described above, the SCE class allows the keeping of multiple data transformations in a single object. Thus,  
when applying a transformation to arrive at expression-like data, we can store the transformed data in a  
separate assay without overwriting the raw ion count data. In this way, any data generated and used through-
out preprocessing (e.g., normalized, compensated or batch-corrected counts and their arcsinh-transformed  
counterparts) can be in principal retained, and written to intermediate FCS files for backup or quality control outside 
of R. However, it is worth noting that this procedure could lead to a shortage of memory for large datasets, in which  
case overwriting the data at each step is advisable; if not specified otherwise, CATALYST overwrites by default.

A SCE can be constructed using CATALYST's prepData() function, which accepts a path to a directory with 
one or many FCS files, a character vector of FCS filenames, a single or list of flowFrame(s), or a flowSet  
(flowCore package23). By default (transform = TRUE), an arcsinh-transformation with cofactor = 5 
is applied to the input (count) data, and the resulting expression matrix is stored in the exprs assay slot of the  
output SCE:

# construct ’SingleCellExperiment’
fcs <- list.files("data", "acquisition", full.names = TRUE)
(sce <- prepData(fcs, transform = TRUE, cofactor = 5))

## class: SingleCellExperiment
## dim: 63 368152
## metadata(2): experiment_info chs_by_fcs
## assays(2): counts exprs
## rownames(63): 75As CD15 ... 208Pb CD45
## rowData names(4): channel_name marker_name marker_class use_channel
## colnames: NULL
## colData names(1): sample_id
## reducedDimNames(0):
## mainExpName: NULL
## altExpNames(0):

Initially, our SCE has two assays containing dual ion counts (assay counts) and cofactor-5 arcsinhtrans-
formed counts (assay exprs). The cofactor used for transformation is stored inside the object’s internal  
metadata (int_metadata(sce)$cofactor), and the FCS file of origin for each cell under cell meta-
data column sample_id (accessible via colData(sce)$sample_id or, equivalently, sce$sample_
id). In our dataset, FCS files correspond to acquisitions rather than biological samples. Thus, we rename the cell  
metadata variable sample_id to file_id to avoid ambiguity:

i  <- match("sample_id", names(colData(sce)))
names(colData(sce))[i]  <- "file_id"

The total number of cells across all acquisitions corresponds to the number of columns in the SCE  
(ncol(sce): 368152). We can summarize the number of cells in each file by tabulating the file_ids:

data.frame(
    file_id = levels(sce$file_id),
    n_cells = tabulate(sce$file_id))

##   file_id n_cells
## 1      V1   48675
## 2      V2  125607
## 3      V3  193870

In both mass and flow cytometry, each feature has both a channel and target associated with it. As can be seen 
from printing the sce variable above, prepData() defaults to using targets as rownames (when available). 
We can retrieve each feature’s measurement channel using the channels() accessor, and use channel metals 
and masses to extract the indices of features that are relevant to different preprocessing steps. Namely, we assign 
channels measuring DNA to the variable dna (here, Ir191 and Ir193), and channels for live gating (here, Ir191  
for DNA and Pt194 for cisplatin) to live:
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# store character vector or channels names
chs <- channels(sce)
# store DNA & live channel indices
dna <- grep("^Ir", chs)
live <- grep("191|194", chs)

Filtering for stable signal
High quality data generation requires a stable signal throughout the acquisition. Various issues can lead to signal  
change over time, including unstable flow rate, introduction of air or introduction of metal contamination  
in the system. These changes in signal intensity can vary in terms of duration and intensity, and can affect all 
or only a subsets of channels simultaneously. In order to detect regions of the acquisition affected by signal  
instability, we display the signal for selected channels as a function of time in a scatter plot (Figure 1).

# plot channels of interest vs. time
coi <- chs[c(dna[1], which(rowData(sce)$use_channel))]
plotScatter(sce, chs = c("Time", coi), label = "both") +
    labs(y = "expression") +
    scale_x_continuous(
        expression("Time ("*10^6~"ms)"),
        labels = function(u) u/1e6) +
    theme_bw(base_size = 8) + theme(
        aspect.ratio = 2/3,
        panel.grid = element_blank(),
        axis.text = element_text(color = "black"),
        strip.background = element_rect(fill = NA))

Figure 1. Scatter plots of DNA channel Ir191 and the 41 channels measuring antigens against time. Bins are 
colored by cell density; y-axis corresponds to cofactor-5 arcsinh-transformed dual counts.
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In this particular experiment, we do not observe time-related signal instability. In case part of the acquisition  
should be excluded, this could be done by manually gating on the region with stable signal, and subsequent  
subsetting to only retain cells that fall within the gate’s boundaries (argument pop = "+"). Vice versa, it is pos-
sible to select a region with unstable signal, and remove it from the SCE object (pop = "-"). For the sake  
of completeness, we include how a region of unstable signal could be excluded via manual gating:

# construct 'GatingSet'
ff <- sce2fcs(sce[dna, ], assay = "exprs")
gs <- GatingSet(flowSet(ff))

# apply rectangular gate to exclude unstable signal
min_t <- ...
max_t <- ...
gs_add_gating_method(
    gs, alias = "stable",
    pop = "-", parent = "root",
    dims = paste0("Time,", chs[dna[1]]),
    gating_method = "boundary",
    gating_args = sprintf("min=c(%s,0),max=c(%s,10)", min_t, max_t))

# plot scatter of DNA vs. Time
ggcyto(gs,
    aes_string("Time", chs[dna[1]])) +
    geom_hex(bins = 128) +
    geom_gate("stable") +
    facet_null() + theme_bw() +
    ggtitle(NULL) + theme(
        legend.position = "none",
        panel.grid = element_blank())

# subset selected events
sce <- sce[, gh_pop_get_indices(gs, "stable")]

Normalization
In the case of mass cytometry, signal drift during acquisition due to a progressive loss of sensitivity must be 
accounted and normalized for. A widely established strategy is to mix samples with polystyrene beads embed-
ded with metal lanthanides, allowing monitoring of instrument performance throughout data acquisition8. 
These beads are in turn used to estimate and correct for the signal’s time drift. When independent experiments 
have to be analyzed in the same context, variation due to changes in instrument performance over time com-
bined with intervals between scheduled maintenance have to be taken into account as well. In this case, the bead 
signal should be normalized to a set of reference beads from an earlier experiment. This ensures that different  
experiments are normalized to the same level, independent of the CyTOF’s sensitivity.

A MATLAB tool to perform normalization outside of R was available until recently at nolanlab/beadnormali-
zation; current R implementations are available through CATALYST and premessa. CATALYST provides an 
extension of bead-based normalization as described by Finck et al. 8, with automated identification of bead sin-
glets (used for normalization), as well as of bead-bead and cell-bead doublets (to be removed), thus eliminating  
the need for manual gating. This is implemented as follows:

1.    beads are initially identified as those events that have their highest signals in the bead channels

2.    cell-bead doublets are removed by applying a separation cutoff on the distance between the lowest bead  
and highest non-bead channel signal

3.    events passing all vertical gates defined by the lower bounds of bead signals are removed (these include  
bead-bead and bead-cell doublets)

4.    bead-bead doublets are removed by applying a default median ± 5 mad rule to events identified in step 2;  
the remaining bead events are used for normalization
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The above procedure is carried out by a single function, normCytof(), which takes as input a SCE and a set 
of arguments that control the normalization parameters and output format. Here, we specify dna = 191 (Ir191)  
and beads = "dvs", corresponding to DVS Science beads (lanthanides Ce140, Eu151, Eu153, Ho165,  
Lu175). Secondly, we provide the path to a set of reference beads (argument norm_to) that are used to compute 
baseline intensities for normalization. Lastly, we set overwrite = FALSE to retain both raw and normalized  
data, and remove_beads = TRUE to exclude bead and doublet events:

# specify path to reference beads
ref_beads <- file.path("data", "normalization_beads.fcs")
# apply bead-based normalization
system.time(res <- normCytof(sce, beads = "dvs", dna = 191,
    norm_to = ref_beads, remove_beads = TRUE, overwrite = FALSE))

##    user  system elapsed
##  20.134   1.343  21.963

When remove_beads = TRUE (the default), normCytof() will return a list of three SCEs containing  
filtered, bead and remove events, respectively, as well as two ggplot objects:

names(res)

## [1] "data"    "beads"   "removed" "scatter" "lines"

The first SCE (res$data) contains the filtered data with the additional assay slot "normed" housing normal-
ized expressions. The remaining two SCEs are data subsets that contain any events identified as beads (slot 
beads) and all removed events (including beads, bead-bead and bead-cell doublets; slot removed), respec-
tively; thus, the beads themselves are a subset of the removed events. Here, we compare the number and  
percentage of cells contained in each subset:

# view no. of remaining, bead & removed events
ns <- sapply(res[1:3], ncol)
ps <- sprintf("%1.2f", ns/ncol(sce)*100)
data.frame(t(cbind("# events" = ns, "% of total" = ps)))

##              data beads removed
## # events   337525 27544   30627
## % of total  91.68  7.48    8.32

As a first quality control plot, res$scatter (Figure 2) renders scatter plots of bead channels (x-axis) ver-
sus DNA (y-axis), where events identified as beads as well as their expression range are highlighted in color; bead  
events should have low DNA intensity (since they are not cells) and high intensities across all bead channels.

Figure 2. Scatter plots for bead channels vs. DNA. Events identified as beads are colored in blue; for each bead 
channel, expression ranges across all bead events are indicated as rectangular gates. Events were downsampled to at 
most 10,000 for visualization.
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Secondly, res$lines (Figure 3) displays smoothed median bead intensities before and after normalization;  
these typically decrease with time prior to normalization, and should be approximately constant and centered  
around the baseline after normalization. In our dataset, normalization is performed based on previously 
acquired reference beads. Thus, baseline values correspond to the reference bead’s mean bead channel intensi-
ties. As shown in Figure 3, the bead channel levels are considerably lower after normalization, indicating higher  
sensitivity in the current experiment. Importantly, the slight decrease in signal over time is no longer present  
after normalization.

Figure 3. Running-median smoothed bead intensities vs. time before and after normalization; colored by 
bead channel.

In order to assess the sensitivity of the CyTOF during acquisition and identify potential issues that would have 
remained undetected during the tuning of the instrument, we compute the mean bead channel counts across events 
identified as beads (res$beads subset). A logical vector of which channels correspond to beads is stored under  
rowData column bead_ch, which we can use to subset the counts assay to include bead channels only.

# compute mean bead channel counts for current experiment
is_bead <- rowData(res$beads)$bead_ch   # get bead channels
bead_cs <- counts(res$beads)[is_bead, ] # subset counts
rownames(bead_cs) <- chs[is_bead]       # use channels as names
(bead_ms <- rowMeans(bead_cs))          # compute means

##  Ce140Di  Eu151Di  Eu153Di  Ho165Di  Lu175Di
## 2842.462 2111.367 2660.618 2538.095 2323.409

To assess the measurement sensitivity during the current experiment, we compare the mean bead channel 
counts computed above to those obtained from 7 previously acquired experiments available in metadata table  
ref_bead_counts.csv. The resulting boxplot (Figure 4) shows that the current experiment’s sensitivity is  
relatively high, but well in the range of previous experiments.
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# read in reference mean bead channel counts
ref <- read.csv(file.path("data", "ref_bead_counts.csv"))

# join into single tidy data.frame
df <- bind_rows(ref, bead_ms, .id = "group")
df <- melt(df, id.var = "group")

# boxplot of reference vs. current experiment's mean bead channel counts
ggplot(df, aes(variable, value)) +
    geom_boxplot(data = df[df$group == 1, ]) +
    geom_point(data = df[df$group == 2, ],
        col = "red", pch = 4, stroke = 1) +
    labs(x = "bead channel", y = "mean count") +
    qc_theme + ggtitle(
        "QC on bead channel counts",
        "[-] = reference | x = current experiment")

After normalization, we overwrite the input dataset with the filtered subset that no longer includes bead events, or  
bead-bead and bead-cell doublets:

sce <- res$data

Debarcoding
In mass cytometry, samples are often labeled with unique sample-specific barcodes and pooled together for 
processing and measurement, an approach termed multiplexing26. The most widely used barcoding scheme 
is based on Zunder et al.10, and relies on binary palladium-based mass-tag cell barcoding. Here, each sample  
i = 1,..., n is either positive or negative for each of m palladium isotopes, resulting in an m-choose-k barcoding  
scheme, where k is the number of positive barcodes. For example, labeling of three out of six palladium isotopes  

will result in 
6

20
3

m
k

= =         
 unique barcodes. In order to recover the individual samples for further analysis, the  

pooled dataset is debarcoded (or deconvoluted) computationally.

The single cell debarcoding (SCD) algorithm first sorts each cell’s barcode intensities to assign preliminary 
barcode IDs such that a cell is assigned to the barcode population for which its barcode intensities are high-
est. Next, intensities within each barcode population are scaled using the 95th expression quantiles, and thereby 

Figure 4. Bead channel count quality control. Boxplot comparing the mean dual ion counts (y-axis) across bead 
channels (x-axis) obtained for the current experiment (red crosses) to those from 7 previously acquired reference 
experiments (boxes).
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brought to a comparable scale. Finally, events whose separation between highest negative and lowest positive  
barcode intensity is below a threshold value (separation cutoff ) are left unassigned.

In the initial SCD algorithm, sample yields are determined by a single global cutoff on the separation between 
positive and negative barcode populations. Naturally, this procedure is suboptimal when yields as a function of 
the applied cutoff do not decline simultaneously. To optimize cell yields in such cases, CATALYST provides an  
option to automatically estimate or specify sample-specific separation cutoffs.

The SCD algorithm is implemented in CATALYST as a three-step procedure: i) preliminary barcode assign-
ment (assignPrelim()); ii) automated estimation of sample-specific separation cutoffs (estCutoffs());  
and, iii) application of cutoffs to arrive at final barcode assignments (applyCutoffs()).

Preliminary barcode assigment
For our dataset, a 6-choose-3 = 20 barcoding scheme was used (Figure 5). Five barcodes were unused 
(empty_1-5), resulting in 15 samples (9 references, 6 samples of interest). We first read the corresponding  
debarcoding_scheme.csv into R:

# read in debarcoding scheme
fn <- file.path("data", "debarcoding_scheme.csv")
bc_key <- read.csv(fn, row.names = 1, check.names = FALSE)

# all barcodes are positive for exactly 3 barcoding channels
all(rowSums(bc_key) == 3)

## [1] TRUE

During this first debarcoding step, each event is preliminarily assigned to a barcode according to its top-k 
expressed barcode channels. Here, events whose expression is highest for a combination of barcode channels 
that does not appear in the debarcoding scheme (bc_key) will be given barcode ID 0 (for “unassigned”). Thus, 
we can remove empty barcodes from the bc_key variable such that events assigned to these barcodes are left 
unassigned from the start. Alternatively, one could perform debarcoding using the non-subsetted key, and filter  
out empty barcodes downstream.

# remove empty barcodes from debarcoding scheme
is_empty <- grepl("empty", rownames(bc_key))
bc_key <- bc_key[!is_empty, ]
bc_ids <- rownames(bc_key)

For preliminary barcode assignment, we use CATLAYST's assignPrelim() function, providing the input 
data (sce) and debarcoding scheme (bc_key). If not specified otherwise, assignPrelim() will default to 
using the exprs assay slot (argument assay). Because we ran normCytof() with overwrite = FALSE,  

Figure 5. 6-choose-3 palladium isotope debarcoding scheme. Rows correspond to palladium isotopes (barcode 
channels), columns to barcode identifiers (samples). Each sample is negative (white) or positive (grey) for 3 out of 6 
barcode channels, resulting in 20 unique barcode combinations.
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this assay contains arcsinh-transformed raw counts; we set assay = "normexprs" in order to use the  
normalized values instead:

# do preliminary barcode assignments
system.time(sce <- assignPrelim(sce, bc_key, assay = "normexprs"))

##    user  system elapsed
##  14.290 0.347 14.770

In the returned SCE, feature metadata (rowData) column is_bc indicates whether or not a channel corresponds  
to a barcode channel:

# view barcode channels
channels(sce)[rowData(sce)$is_bc]

##      MCB1      MCB2      MCB3      MCB4      MCB5      MCB6
## "Pd102Di" "Pd104Di" "Pd105Di" "Pd106Di" "Pd108Di" "Pd110Di"

For each event, barcode identifiers are stored in colData column bc_id. After this preliminary round of  
assignment, 57980/337525 events (17.18%) have been left unassigned:

# tabulate number of (un)assigned events
table(sce$bc_id == 0)

##
##  FALSE   TRUE
## 279545  57980

Furthermore, for each cell, the barcode channel expressions are scaled relative to the 95th expression percen-
tiles of its respective barcode population. The scaled data is stored in assay slot scaled. Based on these scaled  
barcode channel intensities, a separation value is computed as the distance between highest negative and lowest  
positive barcode channel; separations are stored in colData column delta.

Estimation of separation cutoffs
To decide on separation cutoffs, we consider yields upon debarcoding as a function of the applied cutoff  
(Figure 6). Commonly, this function will be characterized by an initial weak decline, where doublets are 
excluded, and subsequent rapid decline in yields to zero. In-between, low numbers of counts with intermediate  
barcode separation give rise to a plateau. Ideally, the applied separation cutoffs should provide a balance between 
high cell yield and low assignment uncertainty, marking the approximate midpoint of the yield function’s  
plateau region.

plotYields(sce, which = "0")

Figure 6. Yield plot for a 6-choose-3 debarcoding scheme. Shown is the distribution of barcode population 
separations (histogram) and cell yields by sample (lines) as a function of the applied separation cutoff. Left axis 
corresponds to cell yield in percent; right axis to the total number of cells.
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Instead of a single global cutoff, we estimate a sample-specific cutoff to account for barcode population yields  
that decline in an asynchronous fashion. To this end, we fit both a linear and a three-parameter log-logistic model  
to each yield function. For the linear fit, we estimate the cutoff as the value for which yields have declined to 
50%. For the log-logistic fit, we compute the cutoff as the value for which there is minimal yield decline by 
minimizing each yield function’s 1st derivative. For each barcode, the final cutoff estimate is computed as the 
mean of both estimates, weighted with the goodness (residual sum of squares) of each fit (see Methods for 
details). Thus, the choice of thresholds for the distance between negative and positive barcode populations is: 
i) automated and ii) independent for each barcode. Nevertheless, reviewing barcode-specific yield plots and, in  
rare cases, refining the estimated separation cutoffs is advisable (see Figure 7).

Cutoff estimation is performed by CATALYST's estCutoffs() function, which takes as input a SCE as 
returned by assignPrelim(); that is, preliminary barcode assignments are required to estimate separation 
cutoffs. estCutoffs() will store sample-specific cutoff estimates under metadata slot sep_cutoffs,  
but will leave barcode assignments unchanged.

sce <- estCutoffs(sce)
metadata(sce)$sep_cutoffs

## CellLine_R1 CellLine_R2 CellLine_R3 CellLine_R4     PBMC_R1     PBMC_R2
##  0.13829607  0.13688845  0.09161274  0.12437132  0.13039323  0.18047875
##     PBMC_R3    Tumor_R1    Tumor_R2     PBMC_S1     PBMC_S2     PBMC_S3
##  0.26517442  0.21014175  0.20543502  0.10439323  0.12902725  0.24858493
##    Tumor_S1    Tumor_S2    Tumor_S3
##  0.18442675  0.14690041  0.20818048

We can visually inspect the estimated cutoffs using plotYields() with argument which specifying the 
barcode ID of interest (Figure 7). In our example, the cutoff estimate nicely marks the midpoint of the yield 
function’s plateau or, equivalently, the valley between peaks of cell yields. To decrease the stringency of the 
applied cutoff, and thus increase the resulting cell yield, we could set the sample’s cutoff to e.g. 0.1. Vice versa,  
a more stringent cutoff of e.g. 0.2 would decrease the cell yield but yield a purer population.

As an alternative to inspecting the cutoff estimate for each sample in R, we could specify which = bc_ids  
to obtain a list of yield plots for all barcodes; the generated set of plots may be written to a single PDF file via 
providing plotYields() with an out_path to allow for easy reviewing of the separating cutoffs currently  
stored within the object.

plotYields(sce, which = "PBMC_R1")

Figure 7. Yield plot for an exemplary sample, including the estimated separation cutoff. Shown is the 
distribution of barcode population separations (histogram) and cell yields (line) for the sample as a function of the 
applied sample-specific separation cutoff. Left axis corresponds to cell yield in percent; right axis to the total number 
of cells.
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Besides a cutoff on the separation between positive and negative barcode populations, to trim outliers, the 
SCD algorithms applies an additional cutoff on the Mahalanobis distance (argument mhl_cutoff), a metric  
that quantifies the distance of a given event to the expression distribution of the barcode population it has been  
assigned to.

In Figure 6, we can observe that population yields decline synchronously with increasing separation cutoffs, 
and that we might consider applying a global separation cutoff, e.g., at ∼ 0.15. For this data, yields are in fact  
similar, independent of whether we apply sample-specific cutoffs or a single global one. Nevertheless, applying  
sample-specific cutoffs is recommended in order to maximize cell yields while minimizing uncertainty in  
barcode assignments.

# store preliminary barcode IDs
bc_ids0 <- sce$bc_id

# apply global & sample-specific separation cutoff(s)
sce_glob <- applyCutoffs(sce, sep_cutoffs = 0.15, mhl_cutoff = 30)
sce_spec <- applyCutoffs(sce, mhl_cutoff = 30)

# compare cell yields for both cutoff strategies
c(global = mean(sce_glob$bc_id == 0),
  specific = mean(sce_spec$bc_id == 0))

##    global  specific
## 0.3573839 0.3584979

After debarcoding, we compare the number of events assigned to each barcode population before and after 
applying separation cutoffs, and filter out events that have been left unassigned (barcode ID 0). As shown in  
Figure 8, after applying the separation cutoffs, the number of unassigned cells (0) increases, while the number 
of cells assigned to each barcoding well decreases. We also observe a higher decrease in assigned cells for 
tumor samples, which underwent a dissociation process and contain more debris. Conversely, highly viable  
cell lines and PBMCs have a higher recovery yield.

# proceed with sample-specific filtering
sce <- sce_spec

# compute number of events per population
# before vs. after applying separation cutoffs
barplot(rbind(table(bc_ids0), table(sce$bc_id)),
    beside = TRUE, ylab = "cell count",
    las = 2, cex.axis = 0.5, cex.names = 0.5)
legend("topright", fill = c("black", "grey"),
    legend = c("before filtering", "after filtering"))

# remove unassigned events
sce <- sce[, sce$bc_id != 0]

Figure 8. Barplot of cell counts before (black) and after (grey) applying separation cutoffs.
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Compensation
Mass cytometry utilizes heavy metals (usually from the lanthanide series) as reporters to label antibodies. As 
a result, channel crosstalk originating from spectral overlap and autofluorescence is significantly less pronounced 
in mass cytometry compared to flow cytometry. Yet, spillover due to abundance sensitivity, isotopic impurities,  
and oxide formation still exists, giving rise to artefactual signal that can impede data interpretability.

A combined experimental-computational pipeline to correct for spillover in mass cytometry data has been pro-
posed by Chevrier et al.9 and is implemented in the CATALYST package. In brief, compensation is achieved via  
the following three-step approach outlined here (see for details).

1.    Identification of single positive populations via deconvolution of single-stained beads (assignPrelim(), 
estCutoffs(), applyCutoffs()).

2.    Estimation of a spillover matrix (SM) from the populations identified (computeSpillmat()).

3.    Compensation via multiplication of measurement intensities by the SM’s inverse, the compensation  
matrix (compCytof()).

We will apply a pre-acquired spillover matrix (metadata file spillover_matrix.csv). Thus, we enter 
at step 3, which involves only compensating the input dataset using CATALYST's compCytof() function.  
By default, compCytof() will reuse the cofactor stored in int_metadata(sce)$cofactor for com-
puting arcsinh-transformed data from the compensated counts, thus applying the same transformation as  
during data preparation and normalization:

# read in pre-computed spillover matrix
sm <- file.path("data", "spillover_matrix.csv")
sm <- read.csv(sm, row.names = 1)
# apply NNLS compensation
system.time(
     sce <- compCytof(sce, sm, method = "nnls",
         assay = "normcounts", overwrite = FALSE))

##    user  system elapsed
##  63.538   5.880  70.095

To visually inspect how compensation affects signal intensities, we can generate scatter plots pre- and  
post-compensation; an exemplary pair of channels is shown in Figure 9. In such a plot, we can observe a slight  
positive association between the signals of spill-affected channels, which should be removed upon compensation.

i <- grep("173|174", chs, value = TRUE)
p1 <-  plotScatter(sce,
  chs = i,
  label = "channel",
  assay = "normexprs") +
  ggtitle("Uncompensated")
p2 <- plotScatter(sce,
  chs = i,
  label = "channel",
  assay = "compexprs") +
  ggtitle("Compensated") +
  ylab(NULL)
wrap_plots(p1, p2)
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Gating
Many events acquired in mass cytometry may in fact be debris, doublets or dead cells, and should be fil-
tered out through a gating step. Here, we suggest a strategy that first applies an elliptical gate on cell events, 
defined as double positive for the DNA channels Ir191/Ir193. This allows the exclusion of debris and doublets.  
As a second step, we discard cells that are positive for the dead cell marker Pt194.

These two steps are performed using the openCyto R package19, and the resulting gates are visualized on scatter 
plots of the channels subjected to gating using ggcyto22. For consistent visualization, we again define a common  
plotting theme for scatter plots of channels chs that include the gating boundaries for the specified gate_id:

.scatter <- function(gs, chs, gate_id = NULL,
    subset = ifelse(is.null(gate_id), "root", "_parent_")) {
    p <- ggcyto(gs, max_nrow_to_plot = 1e5,
         aes_string(chs[1], chs[2]), subset) +
         geom_hex(bins = 100) + facet_wrap(~ name, ncol = 5) +
         (if (is.null(gate_id)) list() else geom_gate(gate_id)) +
         ggtitle(NULL) + theme_bw(base_size = 8) + theme(
             aspect.ratio = 1,
             legend.position = "none",
             panel.grid.minor = element_blank(),
             strip.background = element_rect(fill = NA),
             axis.text = element_text(color = "black"),
             axis.text.x = element_text(angle = 45, hjust = 1))
    suppressMessages(p + coord_equal(expand = FALSE,
        xlim = c(-1, 11), ylim = c(-1, 11)))
}

Gating on cells
In order to apply sample-specific gates, we first convert the SCE into a flowSet with a separate frame for each 
sample (argument split_by = "bc_id"). As gating should be performed on expression-like data (not ion 
counts), we further specify assay = "exprs" to retain the arcsinh-transformed assay slot. Thirdly, since con-
version from SCE to flowCore data structures requires matrix transposition (rows correspond to targets in 
the SCE, but to events in flowFrame/Sets), we retain only those channels that are relevant when gating of  
(live) cells: DNA and dead channels, whose indices are stored in variables dna and live.

# subset DNA & live channels
sub <- sce[union(dna, live), ]

# add metadata variable 'i' to track cell indices
colData(sub) <- DataFrame(
    bc_id = sub$bc_id,
    i = seq_len(ncol(sce)))

Figure 9. Scatter plots for two exemplary channels before (left) and after correction for spillover (right).
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# split SCE by sample
fs <- sce2fcs(sub,
    assay = "compexprs",
    split_by = "bc_id",
    keep_cd = TRUE)

# construct 'GatingSet'
gs <- GatingSet(fs)

We apply an elliptical gate (gating_method = "flowClust.2d") to exclude the two lowest density percen-
tiles (quantile = 0.98). Because the input gating set contains a separate frame for each barcode, the gate will 
be computed separately for each sample. In case of a single DNA channel (e.g., Rh103), one-dimensional gates  
(i.e., thresholds on minimum and maximum values) would be applicable instead.

# apply elliptical gate on DNA channels
gs_add_gating_method(gs,
    alias = "cells",
    pop = "+", parent = "root",
    dims = paste(chs[dna], collapse = ","),
    gating_method = "flowClust.2d",
    gating_args = "K=1,quantile=0.98,target=c(5,5)")

We use ggcyto to produce scatter plots of the DNA channels, with geom_gate("cells") to visualize the  
gates computed above (Figure 10):

# plot scatter of DNA channels split by sample
.scatter(gs, chs[dna], "cells")

Figure 10. Scatter plots of DNA channels, split by sample and including elliptical cell gates.
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Gating on live cells
The wrapper function .live_gate() defines a polygonal gate comprised of a line and a bivariate standard nor-
mal density Z, such that cells pass gating when i) their expression is within the qth quantile of Z; and, ii) their 
expression falls below a line parameterized by intercept i and slope s. In this way, the gate is centered around  
the expression peak, while excluding cells whose dead channel intensities increases with DNA content.

# define live cell gate plug-in
# x = expression matrix, q = quantile, i = intercept, s = slope
.live_gate <- function(x, q = 0.99, i = 1, s = 0.5) {
    # specifying gating function
    .gating_fun <- function(fr, pp_res, channels = NA, id = "", ...) {
        # subset channels of interest
        x <- exprs(fr[, channels])
        # scale data for comparison w/ ’qnorm()’
        x0 <- scale(x)
        # set boundary level as q-th quantile of standard normal
        z <- qnorm(q)
        # find p(x) for that level
        pd <- dmvnorm(c(z, z))[1]
        px <- dmvnorm(x0)
        # find points above boundary level
        keep1 <- px > pd
        # find points below line y = a + b * x
        keep2 <- (i + s * x0[, 1]) > x0[, 2]
        # intersection of points below line & above threshold level
        pts <- x[keep1 & keep2, ]
        # get boundary points (convex hull)
        pts <- pts[chull(pts), ]
        # return gate
        polygonGate(.gate = pts, filterId = id)
    }
    # register gate
    suppressMessages(
      foo <- register_plugins(
        fun = .gating_fun,
        methodName = "liveGate",
        dep = "mvtnorm",
        "gating"))
}

In contrast to the cell gates above, we apply live gates with sample-specific gating parameters. To this end, we spec-
ify a list l containing quantiles q, intercepts i and slopes s for each sample. These parameters are updated itera-
tively to remove dead cells while retaining cell yields as high as possible (Figure 11). After manual adjustments, we  
arrive at the following sample-specific gating parameters:

# set default parameters for all samples
l <- lapply(c(q = 0.99, i = 0.9, s = 0.4), function(u)
    setNames(rep(u, length(gs)), sampleNames(gs)))

# adjust parameters for specific samples
l$i[["PBMC_R2"]] <- 1.2
l$i[["PBMC_R3"]] <- 1.2
l$i[["PBMC_S1"]] <- 1.2
l$s[["PBMC_S2"]] <- 0.2
l$i[["PBMC_S2"]] <- 0.6
l$i[["PBMC_S3"]] <- 1.8
l$s[["Tumor_S2"]] <- 0.3
l$i[["Tumor_S2"]] <- 0.6
l$s[["Tumor_S3"]] <- 0.3
l$i[["Tumor_S3"]] <- 0.4
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for (i in sampleNames(gs)) {
    # register & apply live gate with sample-specific parameters
    .live_gate(x, q = l$q[i], i = l$i[i], s = l$s[i])
    gs_add_gating_method(gs[i],
        alias = "live",
        pop = "+",
        parent = "cells",
        dims = paste(chs[live], collapse = ","),
        gating_method = "liveGate")
}
.scatter(gs, chs[live], "live")

Figure 11. Scatter plots of DNA and dead cell channels, split by sample and including the live cell polygon 
gates.

We display the yield of "cell" and "live" gates on each samples to quickly assess the cell losses occurring 
at the two gating steps (Figure 12). As expected the "cell" gate leads to a systematic loss of around 1% of cells 
across all the samples. The "live" gate leads to a stronger reduction of cell yield in the tumor samples, consistent  
with the fact that those samples, which underwent enzymatic dissociation, contain more dead cells.

# extract gating frequencies
df <- gs_pop_get_stats(gs,
    type = "percent",
    nodes = c("cells", "live"))
df <- rename(df, gate_id = "pop")

# barplot of cell yields after cell/live gating
ggplot(df, aes(sample, percent, fill = gate_id)) +
    geom_bar(width = 2/3, stat = "identity", position = "dodge") +
    scale_x_discrete(limits = bc_ids, expand = c(0, 2/3)) +
    scale_y_continuous(labels = seq(0, 100, 25),
        limits = c(0, 1), expand = c(0, 0)) +
    labs(y = "cell yield (%)") + qc_theme
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We extract a logical vector indicating whether a given event is included in or excluded by the "live" gate 
applied above by applying gh_pop_get_indices to each sample in gs. Secondly, we extract the cell indices  
from gs and subset the SCE to keep only cells that passed the "live" gate.

fs  <- gs_pop_get_data(gs, "live") # get data from ’GatingSet’
es  <- lapply(fs, exprs)           # get expression matrices
es  <- do.call("rbind", es)        # join into single data.frame
sce <- sce[, es[, "i"]]            # subset retained cells

Finally, we can again visualize scatter plots of dead channels against DNA as a quality control for the retained  
subset of cells (Figure 13).

Figure 12. Barplot of cell and live gating yields. For each barcode ID (x-axis), frequencies are relative to the total 
number of cells in the population before gating; bars are colored by gate ID.

Figure 13. Scatter plots of dead cell channel against DNA, including the subset of cells remaining after live 
cell gating.
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Quality control
Having completed the standard preprocessing steps, we proceed to investigate how the current experiment com-
pares to prior experiments in terms of the number of cells in each reference and sample, and the expression lev-
els of each target. Large parts of the metadata generated by now may no longer be needed, and unnecessarily 
increases output file sizes for large-scale datasets. Therefore, we will retain only two key cell metadata variables:  
sample_id containing the FCS filename each cell originates from, and bc_id containing the barcode pop-
ulation assignments. We secondly rename these variable to make the following quality control steps more  
intuitive.

# drop all cell metadata except file of origin & barcode IDs
colData(sce) <- colData(sce)[c("file_id", "bc_id")]

# rename cell metadata variable
i <- match("bc_id", names(colData(sce)))
names(colData(sce))[i] <- "sample"

In the debarcoding scheme used for deconvolution of the multiplexed samples (Section Debarcoding), bar-
code identifiers were chosen to contain all information relevant for each sample. This setup allows us to extract 
sample metadata directly from the bc_ids. Alternatively, and especially for more complex experimental 
designs, this information could be stored in a separate metadata table. Such a table could then be used to match  
the bc_ids with the listed samples, and add arbitrary metadata information (e.g., batch, patient ID, treatment).

In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor), group (R 
for reference or S for sample of interest), and replicate number; and follow a consistent naming scheme:  
“<type>_<group><replicate>”. We can easily extract these components and store them in the SCE’s cell  
metadata (colData):

sce$type <- gsub("_.*", "", sce$sample)
sce$group <- gsub("[^R|S]", "", sce$sample)
i <- match(unique(sce$sample), sce$sample)
colData(sce)[sample(i, 10), ]

##  DataFrame with 10 rows and 4 columns
##      file_id      sample
##     <factor> <character>
##  1        V1 CellLine_R2
##  2        V1    Tumor_R1
##  3        V1     PBMC_R2
##  4        V1 CellLine_R3
##  5        V1    Tumor_S3
##  6        V1    Tumor_R2
##  7        V1     PBMC_S2
##  8        V1     PBMC_S3
##  9        V1 CellLine_R4
##  10       V1     PBMC_S1
##            type       group
##     <character> <character>
##  1     CellLine           R
##  2        Tumor           R
##  3         PBMC           R
##  4     CellLine           R
##  5        Tumor           S
##  6        Tumor           R
##  7         PBMC           S
##  8         PBMC           S
##  9     CellLine           R
##  10        PBMC           S
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Quality control (QC) on reference cell counts
As a first quality control, we compare the cell counts of each reference sample (R) to those obtained from 7 previous  
experiments (Figure 14). Since the references are obtained from pre-barcoded aliquots of cells, the number of  
reference cells acquired gives direct information regarding the cell yield throughout the whole experiment: From  
cell barcoding to acquisition on the CyTOF. As shown in Figure 14, the current experiment tends to have a lower  
yield compared to average experiments. 

# boxplot of current vs. reference cell counts
ref <- read.csv(file.path("data", "ref_cell_counts.csv"))
run <- c(table(sce$sample[sce$group == "R"]))

# join into single tidy data.frame
df <- bind_rows(ref, run, .id = "group")
df <- melt(df, id.var = "group")

ggplot(df, aes(variable, value)) +
    geom_boxplot(data = df[df$group == 1, ]) +
    geom_point(data = df[df$group == 2, ],
        col = "red", pch = 4, stroke = 1) +
    labs(x = "sample", y = "cell count") +
    qc_theme + ggtitle(
        "QC on reference cell counts",
        "[-] = reference | x = current experiment")

Figure 14. Reference cell count quality control. Boxplot comparing the reference cell counts obtained for the 
current experiment (red crosses) to those from 7 previously acquired experiments.

QC on sample cell counts
Secondly, we compare the cell counts for the 4 samples of interest (2 PBMC, 2 tumor samples) to the 
number of cells recorded for 14 tumor and PBMC samples each (28 samples in total) acquired in previous  
experiments (Figure 15). This step provides a first quality assessment of the samples of interest. Here, samples  
with too few cells will be less reliable, and potentially less representative of the original tissue, making conclusions 
from downstream analyses more difficult to draw.
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ref <- read.csv(file.path("data", "sample_cell_counts.csv"))
run <- table(sce$sample[sce$group == "S"], dnn = "sample")
run <- as.data.frame(run, responseName = "count")
run$type <- sce$type[match(run$sample, sce$sample)]
df <- bind_rows(ref, run, .id = "group")

ggplot(df, aes(type, count)) +
    geom_boxplot(data = df[df$group == 1, ]) +
    geom_point(data = df[df$group == 2, ],
        col = "red", pch = 4, stroke = 1) +
    labs(x = "type", y = "cell count") +
    qc_theme + ggtitle(
        "QC on sample cell counts",
        "[-] = reference | x = current experiment")

Figure 15. Sample cell count quality control. Boxplot comparing the sample cell counts obtained for the current 
experiment (red crosses) to those from 7 previously acquired experiments.

QC on mean marker intensities
As the third and final quality control, we compare the 98th expression quantiles across all targets of inter-
est over the pooled references to those obtained from 7 previously acquired experiments available in metadata 
table ref_marker_levels.csv (Figure 16). We chose the 98th percentile to account for the fact that some  
populations are rare, and we are particularly interested in assessing signal stability for positive cells rather than 
the median of the population. Since the pooled references are identical from one experiment to another, this 
gives a direct indication of the current experiment’s staining efficacy and enables early identification of antibody  
degradation over time.

# read in reference data
ref <- file.path("data", "ref_marker_levels.csv")
ref <- read.csv(ref, check.names = FALSE)

# compute 98th expression quantiles
# for reference samples in current experiment
es <- assay(sce, "compexprs")
es <- es[names(ref), sce$group == "R"]
run <- rowQuantiles(es, probs = 0.98)
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# join into single tidy data.frame
df <- bind_rows(ref, run, .id = "group")
df <- melt(df, id.var = "group")

ggplot(df, aes(variable, value)) +
    geom_boxplot(data = df[df$group == 1, ]) +
    geom_point(data = df[df$group == 2, ],
        col = "red", stroke = 0.5) +
    labs(x = "target", y = "98th expression quantile") +
    qc_theme + ggtitle(
        "QC on marker levels",
        "[-] = referece | o = current experiment")

Figure 16. Mean marker expression quality control. Boxplot comparing the mean marker expression obtained for 
the current experiment (shown in red) to those from 7 previously acquired experiments.

Batch alignment
Each CyTOF experiment contains the same set of references. Similar to the approach used by Schuyler et al.11, 
we use these references as anchors to calculate a channel-specific correction factor by dividing the 98th percen-
tile measured in the current experiment by the average 98th percentile obtained across the first seven experiments 
of the project. The signal observed in each channel for the samples of interest is then divided by these correction  
factors derived from the reference samples.

# compute 98th count quantiles via back-transformation
# (using same cofactor as always) & average across replicates
cf <- int_metadata(sce)$cofactor
qs <- colMeans(sinh(ref)*cf)

# initialize correction factor of 1 for all channels
cfs <- setNames(rep(1, nrow(sce)), rownames(sce))
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# compute batch correction factors for relevant channels
cs <- assay(sce, "compcounts")
csR <- cs[colnames(ref), sce$group == "R"]
run <- rowQuantiles(csR, probs = 0.98)
cfs[colnames(ref)] <- run / qs

# apply marker-specific batch correction (bc)
cs <- sweep(cs, 1, cfs, "/")
assay(sce, "bccounts") <- cs

# apply arcsinh-transformation
assay(sce, "bcexprs") <- asinh(cs/cf)

To visually assess the effect of the batch correction applied above, we compare the expression distributions 
before and after scaling (Figure 17). We additionally include 98th expression percentiles of both the (un)corrected  
samples as well as of the references used for computing correction factors. Percentiles are aligned with the  
references’ upon correction while, even for the most affected channels (largest deviation from the references  
and, consequently, highest batch correction factors), distributions are very similar before and after scaling.

# subset most affected channels
top <- names(rev(sort(abs(cfs-1))))[seq(6)]
sub <- sce[top, sce$group == "R"]

# construct table of expressions
# before & after correction
as <- c(before = "compexprs", after = "bcexprs")
es <- lapply(as, function(a)
    data.frame(
        id = a,
        t(assay(sub, a)),
        check.names = FALSE))
df <- do.call(rbind, es)
df <- melt(df, id.var = "id")
df$id <- factor(df$id, as, names(as))

# compute 98th percentiles of samples
q98_df <- df %>%
    group_by(id, variable) %>%
    summarize_at("value", quantile, 0.98)

# compute 98th percentiles of references (average across 7)
ref_df <- data.frame(variable = colnames(ref), value = colMeans(ref))[top, ]
ref_df <- bind_rows(.id = "id", list(before = ref_df, after = ref_df))

ggplot(df, aes(value, ..density../max(..density..), col = id)) +
    facet_wrap(~ variable) +
    geom_density(size = 0.5, show.legend = FALSE) +
    geom_vline(data = ref_df, aes(xintercept = value), lty = 2) +
    geom_point(data = q98_df, aes(value, 0.5, col = id), size = 2) +
    scale_color_manual(NULL, values = c( "royalblue", "tomato")) +
    scale_x_continuous(limits = c(-0.5, NA)) +
    labs(x = "expression", y = "scaled density") +
    qc_theme + theme(
        aspect.ratio = 2/3,
        panel.grid = element_blank(),
        legend.key.size = unit(0.5, "lines"))
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Discussion
In this workflow, we have presented a pipeline for reproducible and highly-automated preprocessing of CyTOF 
data, based on an updated version of CATALYST. Our pipeline covers four standard steps: Normalization for  
signal time-drift using bead standards (Section Normalization), single-cell deconvolution of multiplexed  
samples (Section Debarcoding), correction for spillover via compensation (Section Compensation), and gating 
for live cells (Section Gating). Moreover, we have included various quality control steps that compare the current 
experiment to a set of reference data (Section Quality control). These steps ensure that measurement sensitivity,  
gating cell yields, sample cell counts, and expression levels lie within the expected range.

A key advantage of both using and developing Bioconductor packages is that they utilize common data struc- 
tures, thereby greatly facilitating interaction between them. For example, many of the data structures used in 
scRNA-seq data analysis have only become established relatively recently. Meanwhile, the cytometry community  
has been relying on the FCS file format for data storage, and flowCore’s flowFrame/flowSet as well as  
flowWorkspace’s GatingSet classes for computational analyses. While there exists a lot of infrastructure  
around these data structures, they impede method development for newly emerging standards, and act as a  
barrier for interpolation of analyses across currently developed packages. This is particularly visible in the  
context of other fast growing single-cell data types such as scRNA-seq data analysis, where most current  
methods are being developed around Bioconductor’s SingleCellExperiment class. To name just two 
examples, an extensive collection of visualization tools for SCEs is available through scater27, including a  
variety of dimensionality reduction methods; and methods for differential abundance (DA) analysis (to detect 
subpopulations that are differently abundant between conditions) and differential state (DS) analysis (to test for  
subpopulation-specific expression changes across conditions) are implemented in diffcyt28.

The SCE class allows storing multiple assays that can, for example, contain raw counts, expression-like data 
obtained upon arcsinh-transformation, as well as any intermediate data matrices obtained after normalization,  
compensation and batch correction. Moreover, any event (cell) and feature (marker) metadata generated in the 
process can be added to the object’s colData/rowData, alongside an arbitrary number of dimensionality  
reductions. Thus, SCEs present an overall more compact and less error-prone data structure for both  
preprocessing and downstream analysis when compared to storing the various data matrices or metadata in  
separate variables, which would have to be combined for certain computations, separately subsetted and saved  
to independent outputs.

There is an obvious benefit for the mass cytometry community to take advantage of these new infrastructure  
developments. However, it is equally important to maintain backward compatibility with well-established  
standards in the field. For example, it can be desirable to write out intermediate outputs (FCS files) after each pro-
processing step, or make use of available tools that build around flowCore’s flowFrame and flowSet  
classes, or other classes derived thereof (e.g., flowWorkspace’s GatingSet). Thus, while CATALYST’s transition  
to a more recent and an arguably advantageous data structure is motivated by the ability to leverage many exist-
ing and newly-developed tools, a complete dismissal of the large infrastructure that is available in the realm 
of cytometry data analysis is impossible at this time. To facilitate conversion between SCEs and conventional 

Figure 17. Batch alignment quality control. Expression distributions before (blue) and after (red) quantile scaling 
using 7 previously acquired experiments as reference. Included are the 6 most affected channels (i.e., highest absolute 
correction factors). Dashed lines indicate 98th expression percentiles averaged across references; points represent the 
respective distributions’ 98th percentiles.
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cytometry data structures, CATALYST provides the sce2fcs() function, which allows the user to specify 
which assay data to retain, whether to drop or keep available cell metadata and dimensionality reductions, and  
(optionally) to split the input dataset by a non-numeric variable (to, e.g., export each sample to a separate FCS file).

Although the current version of this pipeline constitutes a comprehensive approach to generate high-quality  
data for downstream analysis, further developments could be added in the future. In particular, it could be  
useful to implement an automated way of identifying and removing part of the data with unstable signal,  
similar to the approach proposed by flowClean29, an R package designed to exclude fluorescent anomalies in flow 
cytometry data. Given that selection of anomalies in the dataset by the user is subjective, or that they may be  
altogether undetectable by eye, the advantage of such an approach would be to further standardize the process  
while decreasing manual work.

Recently, batch normalization has become of increased importance in order to enable integration of datasets 
acquired at different times, by different users and on different instruments. Here, we use scaling normalization  
where references are used as anchors to correct all samples included in the analysis in a channel specific way, 
similar to the strategy proposed by Schuyler et al.11. While this approach requires a well-defined experimental  
procedure where references with positive and negative subsets for each marker have to be included in each  
experiment, it does not make any assumptions on sample compositions. Thus, since the dataset used in this  
pipeline was acquired on the same instrument and stained with the same frozen antibody panel as previous  
experiments, scaling by expression quantiles provides an efficient way to correct for batch effects. 

To increase the flexibility of batch correction in cases where the experimental variation is higher, CATALYST 
could integrate different methods that have the potential to increase batch correction efficiency. For example,  
CytoNorm12 computes quantiles for every metacluster and for every marker after aggregation of control samples  
from each batch. Such an approach could be more appropriate in cases where the references’ expression distribu-
tions are less aligned. An alternative method, CytofRUV30, exploits the concept of pseudo-replicates to remove 
unwanted variation (RUV) between proteins and cells. Here, cells are grouped into subpopulations using  
FlowSOM31 clustering. Groups of cells present across all batches are considered to be pseudo-replicates, and  
their deviation (residuals) from the average signal across batches is used to estimate and correct for the batch  
effects.

Although various methods to correct for batch effects in both the presence and absence of references have 
been proposed, a systematic comparison of batch correction tools for mass cytometry data is missing. Thus, 
whether the approach used in this study to align batches on the basis of shared references is the most accurate  
remains unresolved.

Our pipeline is entirely R-based and does not rely on switching between platforms. Thus, it omits the need for 
heavy data transfers between online cloud services, graphical user interfaces (GUI), and programming environ-
ments for different parts of preprocessing and downstream analysis. As a result, each step in the analysis is fully 
reproducible and any parameters used throughout can be easily modified and documented. This transition 
from manual, GUI-based to largely automated, programmatic data processing is indispensable for clinical and  
other large-scale studies, where sample throughput is high and reproducibility ever so important.

Since its first submission to Bioconductor in 2017, CATALYST has undergone continuous maintenance and devel-
opment. The most noteworthy changes include implementation of a comprehensive visualization suite based on 
Nowicka et al.14 ’s workflow for differential discovery; and, the transition from custom data structures to using 
Bioconductor’s SingleCellExperiment class for differential analysis with Bioconductor v3.11, and for 
preprocessing with v3.12. Taken together, these developments have transformed CATALYST into a one-stop  
tool for cytometry data analysis, enabling both data preprocessing and in-depth downstream analysis.

Methods
Normalization
Identification of bead events. Commonly, bead events are identified by manual gating on scatter plots of DNA 
vs. bead channels where DNA should be low, and expression should be high across all bead channels. Instead, we  
propose a programmatic way to identify beads that includes detection of bead-bead and cell-bead doublets.

Our normalization strategy leverages the already established SCD algorithm for preliminary tagging of events 
as beads. In this context, the debarcoding scheme is a 2×(2+m) matrix (Figure 18). Here, columns correspond to 
the two DNA channels and m barcode channels; rows correspond to barcodes 0 (no bead) and 1 (is bead), where  
non-bead events are positive for DNA channels only (barcode 11000. . . ), while bead events are negative for DNA  
and positive for all bead channels (barcode 00111. . . ):
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Upon initial assignment of bead events, we apply a median ± n median absolute deviation (MAD) rule to remove 
low- and high-signal events from the bead population used for estimating normalization factors. As n decreases, 
bead populations become more narrow and bead-bead doublets are excluded. The extent to which bead populations  
are trimmed can be adjusted via argument trim (default 5).

Notably, slight over-trimming does not affect normalization. It is therefore recommended to choose a trim  
value that is small enough to assure removal of doublets at the cost of reduced bead population sizes.

Correcting for signal-decrease over time. To correct for the effect of event acquisition time on signal inten-
sity, we follow the method proposed by Finck et al.8. In essence, bead intensities are smoothed using a median  
sliding-window with width k (default 500 bead events). At each timepoint, the slope of a line with intercept zero 
is computed by minimizing the squared error between smoothed bead and mean bead intensities (= baseline).  
Alternatively, a reference set of beads from which to compute the baseline can be provided. Slopes for  
non-bead timepoints are obtained via constant interpolation of these slopes. Here, large slopes correspond to  
significant deviation from the baseline, and small slopes indicate that the signal is already similar to the  
baseline. Thus, raw bead counts are normalized by multiplication with the fitted slopes at each timepoint.

Debarcoding
Preliminary barcode assignment. The debarcoding process commences by assigning each event a preliminary  
barcode ID. This requires specification of a binary barcoding scheme (or debarcoding key)

( ) {0,1}
n m

ijB b ×= ∈

where i = 1, ..., n is the barcode index, j = 1, ..., m a barcode channel, and n, m denote the number of unique  
barcodes and barcoding channels, respectively. Further, let k

i
 denote the number of positive barcoding channels  

for barcode i: 1 .m
ji ijk b=∑=

If k
i
 = k ∀ i = 1, ..., n (i.e., every barcode has the same number of positive barcoding channels), the k channels 

with the highest signal in a given event are considered to be positive, the remaining m − k to be negative. The sep-
aration δ of positive and negative events is then defined as the difference between the kth highest and (m − k)th  
lowest scaled intensity for that event.

Seperation cutoff estimation. When the separation between positive and negative barcoding channels is low, we  
cannot be confident in the barcode assignment.

For the estimation of cutoff parameters, we consider yields upon debarcoding as a function of the applied cut-
offs. Commonly, this function will be characterized by an initial weak decline, where doublets are excluded, 
and subsequent rapid decline in yields to zero. In between, low numbers of counts with intermediate barcode 
separation give rise to a plateau. To facilitate robust estimation, we fit a linear and a three-parameter log-logistic  
function32 to the yields function with drc’s LL.R function33 (Figure 19). As an adequate cutoff estimate, we target 
a point that marks the end of the plateau regime and on-set of yield decline to appropriately balance confidence  
in barcode assignment and cell yield.

Figure 18. Schematic of the debarcoding scheme used by ‘CATALYST‘’s ‘normCytof()‘ function to identify bead 
events. Rows correspond to barcodes, columns to DNA and bead channels. Each barcode is either positive (grey) or 
negative (blank) for a given channel; cells (barcode 11000...) are positive for DNA and negative for bead channels, bead 
events (barcode 00111...) are negative for DNA and positive for bead channels.
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We define the linear model cutoff estimate c
LM

 as the value for which the cell yield Y has declined to half of the  
initial Yield β

0
:

0 1 0 0 1/ 2 /(2 )linear linearY c cβ β β β β= + ⋅ = ⇔ = − ⋅

where β
0
, β

1
 are the intercept and slope of the linear model fit, respectively.

We define the log-logistic model cutoff estimate c
LLM

 as the value for which the log-logistic function’s decline  
is minimized relative to its value:

log-logistic

( )
0.1arg min

( )

f x
c

x f x

′
= >

The final cutoff estimate c is defined as the weighted mean between these estimates:

(1 )linear log logisticc w c w c −= ⋅ + − ⋅

where w is the goodness of the linear fit relative to the log-logistic fit:

RSS

RSS RSS

log logistic

log -logistic linear

w −=
+

Compensation
Retrieval of real signal. As in conventional flow cytometry, we model spillover linearly, with the channel 
stained for as predictor, and spill-effected channels as response. Thus, the intensity observed in a given chan-
nel j are a linear combination of its real signal and contributions of other channels that spill into it. Let I denote 
the (unknown) real and J the observed signal. Further, let s

ij
 be the proportion of channel j signal that is due to  

channel i, and w
j
 the set of channels that spill into channel j. Then

j j ij
i w j

J I s
∈

= + ∑

In matrix notation, measurement intensities may be viewed as the convolution of real intensities and a spillover 
matrix ( ) ,

n p
ijSM s ×

+= ∈ �  where n denotes the number of samples (cells) and p the number of features (channels):  
J = I · SM. The real signal I can then be retrieved via:

1I J SM J CM−= ⋅ = ⋅

where SM−1 is termed compensation matrix (CM ).

Figure 19. Schematic description of automated separation cutoff estimation. Bar graphs represent the 
distribution of cells relative to the barcode distance, dotted line scorresponds to yield upon debarcoding as a function 
of the applied separation cutoff. The yield curve is fitted with a linear regression (blue) and a three parameter log-
logistic function (red). The final cutoff estimate (black dashed line) is defined as the mean of estimates derived from 
both fits, weighted with the goodness of the respective fit.
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While mathematically exact, the solution to this equation will yield negative values, and does not account for 
the fact that ion counts are strictly non-negative. A computationally efficient way to adress this is to instead use 
non-negative linear least squares (NNLS), which optimizes the least squares criterion under the constraint of  
non-negativity:

min{( ) ( )} | 0
TJ SM I J SM I I− ⋅ ⋅ − ⋅ ≥

To solve for I, we apply the Lawson-Hanson algorithm34,35 for NNLS implemented in the nnls package.

Spillover estimation. Because any signal not in a single stain experiment’s primary channel j results from chan-
nel crosstalk, each spill entry s

ij
 can be approximated by the slope of a linear regression with channel j sig-

nal as the response, and channel i signals as the predictors, where i ∈ w
j
. computeSpillmat() offers two  

alternative ways for spillover estimation (20).

The default method approximates this slope with the following single-cell derived estimate: Let i+ denote 
the set of cells that are positive in channel i, and 

c
ijs  be the channel i to j spill computed for a cell c that has 

been assigned to this population. We approximate 
c
ijs  as the ratio between the signal in unstained spillo-

ver receiving and stained spillover emitting channel, I
j
 and I

i
, respectively. The expected background in 

these channels, jm−
 and im−

, is computed as the median signal of events that are i) negative in the chan-
nels for which spill is estimated (i and j); ii) not assigned to potentionally interacting channels; and, iii) not  
unassigned, and subtracted from all measurements:

i
j jc

ij i
i i
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s

I m

−

−
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=
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Each entry s
ij
 in SM is then computed as the median spillover across all cells c ∈ i+:

med( | )
c

ij ijs s c i+= ∈

In a population-based fashion, as done in conventional flow cytometry, s
ij
 is computed as the slope of a line through 

the medians (or trimmed means) of stained and unstained populations, jm+
 and im+

, respectively. Background  
signal is computed as above and subtracted, according to:

j j
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+ −

+ −
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On the basis of their additive nature, spill values are estimated independently for every pair of interacting chan-
nels. Hereby, we take into account only interactions that are sensible from a chemical and physical point of 
view: M ± 1 channels (abundance sensitivity), M + 16 channels (oxide formation), and channels measuring  
isotopes (impurities; Figure 21).

Figure 20. Population versus single-cell based spillover estimation. In a population-based setting (left), spillover 
is estimated as the slope of a line through the centers of positive (red) and negative (blue) populations. In a single-
cell based setting (right), slopes are computed independently for each cell in the positive population, and spillover is 
estimated as their median.
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Alternatively, interactions = "all" will compute a spill estimate for all n · (n − 1) possible interactions, 
where n denotes the number of measurement parameters. Estimates falling below the threshold specified by th 
will be set to zero. Lastly, note that diagonal entries s

ii
 = 1 for all i ∈ 1, ..., n, so that spill is relative to the total  

signal measured in a given channel.

Data availability
Underlying data
The CyTOF data as well as all metadata required to run the full pipeline presented herein are available from  
Figshare as well as the Tumor Profiler website at https://tu-pro.ch/download/catalyst.

Figshare: An R-based reproducible and user-friendly preprocessing pipeline for CyTOF data. https://doi.org/ 
10.6084/m9.figshare.c.5063984.v1

This project contains the following underlying data:

•    CyTOF_acquisition_1-3.fcs (40-Ab panel CyTOF data of 2 blood and 2 tumor samples, and 9 reference  
samples selected to contain positive and negative populations for each marker included in the study’s  
Ab- panel. Samples were multiplexed with a 20-well barcoding plate, and obtained from a single experiment  
provided as 3 FCS files.)

•    normalization_beads.fsc (Beads identified using ‘CATALYST‘ during the normalization step of a pre-
vious CyTOF experiment. – Used as reference beads to correct for changes in signal sensitivity over time  
across multiple CyTOF experiments.)

•    ref_bead_counts.csv (A table of mean dual counts for the six different bead channels (columns) obtained 
from 7 previous experiments (rows). – Used as a reference to assess the measurement sensitivity for  
the current experiment.)

•    debarcoding_scheme.csv (A binary barcoding scheme of 6-choose-3 = 20 barcodes with columns  
cor- responding to barcode channel masses (101, 104, 105, 106, 108, 110) and rows corresponding to  

Figure 21. Heatmap of channel interactions expected to exhibit spillover. Included are only interactions that 
are sensible from a chemical and physical point of view: adjacent mass channels (abundance sensitivity), +16 mass 
channels (oxidation), and channels measuring isotopes (impurities).

Page 32 of 51

F1000Research 2022, 9:1263 Last updated: 25 AUG 2022

https://tu-pro.ch/download/catalyst
https://doi.org/10.6084/m9.figshare.c.5063984.v1
https://doi.org/10.6084/m9.figshare.c.5063984.v1


barcodes (7 empty, 9 references, 2 PBMC and 2 tumor samples) – Used for single-cell deconvolution of  
multiplexed of samples.)

•    spillover_matrix.csv (A spillover matrix calculated with ‘CATALYST‘ from beads single-stained with 
each of the 40 antibodies included in the panel used in this study. The matrix contains, for each meas-
urement channel (rows), the percentage of signal received by all other channels (columns). – Used for  
correction of spillover.)

•    ref_cell_counts.csv (A table of the number of cells measured in 7 previous experiments, each including  
4 cell line, 3 PBMC and 2 tumor references samples (63 samples in total). – Used to assess reference  
sample cell yields in the current in comparison to previous experiments.)

•    sample_cell_counts.csv (A table of the number of cells measured in 7 previous experiments, each  
including 2 PBMC and 2 tumor samples (28 samples in total). – Used to assess sample cell yields in the  
current in comparison to previous experiments.)

•    ref_marker_levels.csv (A table of the 98th expression percentiles for each target (columns) across 7  
previous experiments (rows). – Used to assess the staining efficiency of the current experiment.)

Data are available under the terms of the [Creative Commons Attribution 4.0 International license](http://creativecom-
mons.org/licenses/by/4.0} (CC-BY 4.0).

Software availability
Analyses were run in R v4.2.036, with Bioconductor v3.1537, and all software packages used throughout this  
workflow are publicly available through the Comprehensive R Archive Network (https://cran.r-project.org) or the 
Bioconductor project (http://bioconductor.org). Specific package versions are captured in the following session  
information:

sessionInfo()

## R version 4.2.0 (2022-04-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Monterey 12.2
##
## Matrix products: default
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats4    stats     graphics
## [4] grDevices utils     datasets
## [7] methods   base
##
## other attached packages:
##  [1] reshape2_1.4.4
##  [2] patchwork_1.1.1
##  [3] openCyto_2.8.0
##  [4] mvtnorm_1.1-3
##  [5] ggcyto_1.24.0
##  [6] ncdfFlow_2.42.0
##  [7] BH_1.78.0-0
##  [8] RcppArmadillo_0.11.1.1.0
##  [9] ggplot2_3.3.6
## [10] flowWorkspace_4.8.0
## [11] flowCore_2.8.0
## [12] dplyr_1.0.9
## [13] BiocStyle_2.24.0
## [14] vespa_0.99.0
## [15] CATALYST_1.21.1
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## [16] SingleCellExperiment_1.18.0
## [17] SummarizedExperiment_1.26.1
## [18] Biobase_2.56.0
## [19] GenomicRanges_1.48.0
## [20] GenomeInfoDb_1.32.2
## [21] IRanges_2.30.0
## [22] S4Vectors_0.34.0
## [23] BiocGenerics_0.42.0
## [24] MatrixGenerics_1.8.0
## [25] matrixStats_0.62.0
## [26] RColorBrewer_1.1-3
## [27] testthat_3.1.4
##
## loaded via a namespace (and not attached):
##   [1] scattermore_0.8
##   [2] SpatialExperiment_1.6.0
##   [3] R.methodsS3_1.8.2
##   [4] tidyr_1.2.0
##   [5] knitr_1.39
##   [6] irlba_2.3.5
##   [7] multcomp_1.4-19
##   [8] DelayedArray_0.22.0
##   [9] R.utils_2.11.0
##  [10] data.table_1.14.2
##  [11] rpart_4.1.16
##  [12] RCurl_1.98-1.7
##  [13] doParallel_1.0.17
##  [14] generics_0.1.2
##  [15] ScaledMatrix_1.4.0
##  [16] callr_3.7.0
##  [17] cowplot_1.1.1
##  [18] TH.data_1.1-1
##  [19] usethis_2.1.6
##  [20] ggpointdensity_0.1.0
##  [21] spatstat.data_2.2-0
##  [22] xml2_1.3.3
##  [23] assertthat_0.2.1
##  [24] viridis_0.6.2
##  [25] xfun_0.31
##  [26] evaluate_0.15
##  [27] DEoptimR_1.0-11
##  [28] fansi_1.0.3
##  [29] tmvnsim_1.0-2
##  [30] Rgraphviz_2.40.0
##  [31] igraph_1.3.1
##  [32] DBI_1.1.2
##  [33] spatstat.geom_2.4-0
##  [34] purrr_0.3.4
##  [35] ellipsis_0.3.2
##  [36] ks_1.13.5
##  [37] ggnewscale_0.4.7
##  [38] ggpubr_0.4.0
##  [39] backports_1.4.1
##  [40] bookdown_0.26
##  [41] cytolib_2.8.0
##  [42] BiocWorkflowTools_1.22.0
##  [43] RcppParallel_5.1.5
##  [44] deldir_1.0-6
##  [45] sparseMatrixStats_1.8.0
##  [46] vctrs_0.4.1
##  [47] remotes_2.4.2
##  [48] abind_1.4-5
##  [49] cachem_1.0.6
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##  [50] withr_2.5.0
##  [51] ggforce_0.3.3
##  [52] aws.signature_0.6.0
##  [53] robustbase_0.95-0
##  [54] prettyunits_1.1.1
##  [55] mnormt_2.0.2
##  [56] mclust_5.4.10
##  [57] goftest_1.2-3
##  [58] cluster_2.1.3
##  [59] crayon_1.5.1
##  [60] drc_3.0-1
##  [61] edgeR_3.38.1
##  [62] pkgconfig_2.0.3
##  [63] labeling_0.4.2
##  [64] tweenr_1.0.2
##  [65] vipor_0.4.5
##  [66] nlme_3.1-157
##  [67] pkgload_1.2.4
##  [68] devtools_2.4.3
##  [69] rlang_1.0.2
##  [70] lifecycle_1.0.1
##  [71] sandwich_3.0-1
##  [72] rsvd_1.0.5
##  [73] rprojroot_2.0.3
##  [74] polyclip_1.10-0
##  [75] flowClust_3.34.0
##  [76] graph_1.74.0
##  [77] Matrix_1.4-1
##  [78] carData_3.0-5
##  [79] Rhdf5lib_1.18.2
##  [80] zoo_1.8-10
##  [81] beeswarm_0.4.0
##  [82] base64enc_0.1-3
##  [83] ggridges_0.5.3
##  [84] GlobalOptions_0.1.2
##  [85] processx_3.5.3
##  [86] pheatmap_1.0.12
##  [87] viridisLite_0.4.0
##  [88] png_0.1-7
##  [89] rjson_0.2.21
##  [90] bitops_1.0-7
##  [91] R.oo_1.25.0
##  [92] ConsensusClusterPlus_1.60.0
##  [93] KernSmooth_2.23-20
##  [94] rhdf5filters_1.8.0
##  [95] DelayedMatrixStats_1.18.0
##  [96] shape_1.4.6
##  [97] stringr_1.4.0
##  [98] brew_1.0-7
##  [99] spatstat.random_2.2-0
## [100] jpeg_0.1-9
## [101] rstatix_0.7.0
## [102] ggsignif_0.6.3
## [103] aws.s3_0.3.21
## [104] beachmat_2.12.0
## [105] scales_1.2.0
## [106] memoise_2.0.1
## [107] magrittr_2.0.3
## [108] plyr_1.8.7
## [109] hexbin_1.28.2
## [110] zlibbioc_1.42.0
## [111] hdrcde_3.4
## [112] compiler_4.2.0
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## [113] dqrng_0.3.0
## [114] plotrix_3.8-2
## [115] clue_0.3-61
## [116] rrcov_1.7-0
## [117] cli_3.3.0
## [118] XVector_0.36.0
## [119] ps_1.7.0
## [120] FlowSOM_2.4.0
## [121] MASS_7.3-57
## [122] mgcv_1.8-40
## [123] tidyselect_1.1.2
## [124] stringi_1.7.6
## [125] RProtoBufLib_2.8.0
## [126] yaml_2.3.5
## [127] BiocSingular_1.12.0
## [128] locfit_1.5-9.5
## [129] latticeExtra_0.6-29
## [130] ggrepel_0.9.1
## [131] grid_4.2.0
## [132] tools_4.2.0
## [133] parallel_4.2.0
## [134] CytoML_2.8.0
## [135] circlize_0.4.15
## [136] rstudioapi_0.13
## [137] git2r_0.30.1
## [138] foreach_1.5.2
## [139] gridExtra_2.3
## [140] farver_2.1.0
## [141] Rtsne_0.16
## [142] DropletUtils_1.16.0
## [143] BiocManager_1.30.18
## [144] digest_0.6.29
## [145] pracma_2.3.8
## [146] Rcpp_1.0.8.3
## [147] car_3.0-13
## [148] broom_0.8.0
## [149] scuttle_1.6.2
## [150] fda_6.0.3
## [151] IDPmisc_1.1.20
## [152] httr_1.4.3
## [153] ComplexHeatmap_2.12.0
## [154] flowStats_4.8.0
## [155] colorspace_2.0-3
## [156] rainbow_3.6
## [157] brio_1.1.3
## [158] XML_3.99-0.9
## [159] fs_1.5.2
## [160] tensor_1.5
## [161] splines_4.2.0
## [162] RBGL_1.72.0
## [163] spatstat.utils_2.3-1
## [164] scater_1.24.0
## [165] sessioninfo_1.2.2
## [166] fds_1.8
## [167] jsonlite_1.8.0
## [168] corpcor_1.6.10
## [169] R6_2.5.1
## [170] pillar_1.7.0
## [171] htmltools_0.5.2
## [172] nnls_1.4
## [173] glue_1.6.2
## [174] fastmap_1.1.0
## [175] BiocParallel_1.30.3
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## [176] deSolve_1.32
## [177] BiocNeighbors_1.14.0
## [178] codetools_0.2-18
## [179] pcaPP_2.0-1
## [180] pkgbuild_1.3.1
## [181] utf8_1.2.2
## [182] lattice_0.20-45
## [183] spatstat.sparse_2.1-1
## [184] tibble_3.1.7
## [185] flowViz_1.60.0
## [186] ggbeeswarm_0.6.0
## [187] curl_4.3.2
## [188] colorRamps_2.3.1
## [189] gtools_3.9.2.1
## [190] magick_2.7.3
## [191] survival_3.3-1
## [192] limma_3.52.1
## [193] roxygen2_7.2.0
## [194] rmarkdown_2.14
## [195] desc_1.4.1
## [196] munsell_0.5.0
## [197] GetoptLong_1.0.5
## [198] rhdf5_2.40.0
## [199] GenomeInfoDbData_1.2.8
## [200] iterators_1.0.14
## [201] HDF5Array_1.24.1
## [202] gtable_0.3.0
## [203] spatstat.core_2.4-4

Consent
Written informed consent for publication of the tumor and blood samples was obtained from the patients  
(BASEC-Nr.2018-02050, approved by the Kantonal Ethics Commisions of Zurich and Basel).
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Sean C. Bendall   
Immunology Graduate Program, Stanford University, Stanford, CA, USA 

In their manuscript, Crowell & Chevrier et al. present a novel workflow to preprocess mass 
cytometry (CyTOF) datasets in R. The presented pipeline is a useful update on earlier publications 
and packages, including the authors' CATALYST package which is clearly stated. Overall, I find this 
to be a valuable tool that brings together different functionalities into a unified workflow that 
enables reproducible and comprehensive preprocessing of this data type. The different steps and 
approaches are well described and illustrated. Especially, the inclusion of a functionality to 
perform live cell gating without having to switch platforms is much appreciated, although its 
current implementation could be improved:

Gating on cells: Cells are first identified using an elliptical gate to exclude the two lowest 
density percentiles. Firstly, this plot relies on two DNA channels (whose information is likely 
redundant) and wasn’t directly applicable to alternative DNA stains (e.g. rhodium). 
Furthermore, I am wondering whether this approach might exclude for example a fraction 
of cycling cells or preferentially exclude cell types or states with increased chromatin 
accessibility and therefore higher DNA signal? 
 

1. 

Gating on live cells: The approach suggested by the authors worked well on my test data, 
however, it takes a while to manually adjust values for every file to fit the gates closely to 
the data. While I see the value of automating this step, I also think that some manual gating 
could simplify the process and further increase downstream data quality. Potentially, the 
authors could adopt an approach like the gate_draw function from the CytoRSuite library.   
 

2. 

Compensation: The workflow includes compensation as a preprocessing step which the 
authors have shown in separate publications to improve data quality, but which is currently 
not routinely performed by many researchers working using mass cytometry. I, therefore, 
assume that most users of this pipeline would be relying on published spillover matrices 
that reflect estimates of isotope purity and oxidation. While I agree with the usefulness of 
this function, I believe that adding additional quality control functions could improve 
acceptance of and trust in this approach. For example, in flow cytometry, overcompensation 
is often easily spotted by the occurrence of overly negative values, however, using their 
NNLS approach this is not readily apparent in compensated mass cytometry data. It would 
be very helpful to have a quality metric that would alert users to such potential issues 
introduced by the compensation step. 
 

3. 

In addition, testing this pipeline on some in-house generated data, a few minor issues occurred 
which should be addressed:

While this might only be needed in rare cases, a function to rename channels and 
potentially match these names across multiple fcs files could enhance the adaptability of 
this package. In my test case, conflicting channel names prevented the import of the files 
into the workflow. In other cases, it might help to match channel names between batches. 
The authors could look to the premessa package for inspiration. 
 

1. 

The authors have incorporated various options for DNA channels which is much 
appreciated. My test data had been stained with a rhodium intercalator. Specifying this 

2. 
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worked well, only the res$scatter function seems to ignore this choice and instead seems to 
default to iridium DNA intercalators. 
 
Sample specific debarcoding is appreciated. Figure 6 and the plotYields function return a 
debarcoding percentage. I believe this percentage refers to percent of initial assignments, 
but it is not specifically stated. It might be helpful to get a feeling of the percentage of cells 
(out of total cells) that are assigned after refining the initial assignments.

3. 

 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Single cell proteomics, Mass Cytometry, Immunology, Stem Cell biology

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 23 Jun 2022
Helena Crowell, University of Zurich, Zurich, Switzerland 

Gating on cells: Cells are first identified using an elliptical gate to exclude the two lowest 
density percentiles. Firstly, this plot relies on two DNA channels (whose information is likely 
redundant) and wasn’t directly applicable to alternative DNA stains (e.g. rhodium). 
Furthermore, I am wondering whether this approach might exclude for example a fraction 
of cycling cells or preferentially exclude cell types or states with increased chromatin 
accessibility and therefore higher DNA signal? 
 
The first gating step is indeed performed on two DNA channels which contains 
redundant information. However, this approach is commonly used in the mass 
cytometry field to exclude debris and cell doublets. By modifying the quantile and the 

1. 
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target value defining the center of the ellipse, the user can control how many cells are 
excluded from the gate and ensure that most cycling cells are kept in the analysis. 
 
To gate on alternative DNA stains, a different pair of channels could be assigned to 
the “dna” variable in the corresponding code chunk. In the case of a single DNA 
channel, a one-dimensional gating (i.e., thresholding) could be applied (as opposed to 
the currently used elliptical gate). We have added a comment mentioning this to the 
text under “Gating on cells”. 
 
Gating on live cells: The approach suggested by the authors worked well on my test data, 
however, it takes a while to manually adjust values for every file to fit the gates closely to 
the data. While I see the value of automating this step, I also think that some manual 
gating could simplify the process and further increase downstream data quality. 
Potentially, the authors could adopt an approach like the gate_draw function from the 
CytoRSuite library. 
 
Indeed, the approach depicted in this paper works well in cases where a limited 
number of samples are included in a run and when the live/dead cell profile is well 
defined and consistent between samples. The process can indeed be tedious when 
hundreds of samples are included in a run or when the live/dead cell profile is more 
complex. In the latter case, including a function similar to gate_draw function from 
CytoRSuite could be helpful. However, we here aimed at proposing an automated 
pipeline; manual gating would defeat this purpose. 
 
As a side note: We have attempted applying CytoRSuite, however, encountered 
several confusing issues that we’ve been unable to resolve: The CytoRSuite site (
https://dillonhammill.github.io/CytoRSuite) lists a GH repository that no-longer exists; 
we could find an installable version at https://github.com/gfinak/cytoRSuite (is this 
the same?) but ‘drawGate()’ gave an error that we have not been able to resolve; 
meanwhile, any of CytoRSuite, cytoRSuite and cytoSuite (from which the latter has 
been forked) have not been changed in 4 years. Taken together, this gave us the 
feeling that the tool is no longer maintained and likely to be inapplicable with current 
versions of R and Bioconductor. 
 
Of course, there may be other tools available at this point for manual gating, and we 
leave it to the user to incorporate these into their workflow should that be of interest. 
A possible strategy then might be to i) perform manual gating and export the 
resulting gates into a table (gating scheme); ii) apply that scheme in an automated 
fashion (e.g., using the code we presented); and, iii) do manual adjustments to refine 
gates according to the current experiment. 
 

2. 

Compensation: The workflow includes compensation as a preprocessing step which the 
authors have shown in separate publications to improve data quality, but which is 
currently not routinely performed by many researchers working using mass cytometry. I, 
therefore, assume that most users of this pipeline would be relying on published spillover 
matrices that reflect estimates of isotope purity and oxidation. While I agree with the 
usefulness of this function, I believe that adding additional quality control functions could 
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improve acceptance of and trust in this approach. For example, in flow cytometry, 
overcompensation is often easily spotted by the occurrence of overly negative values, 
however, using their NNLS approach this is not readily apparent in compensated mass 
cytometry data. It would be very helpful to have a quality metric that would alert users to 
such potential issues introduced by the compensation step. 
 
These are all very good points and legitimate concerns. As indicated in the original 
paper, the spillover matrix used to compensate mass cytometry data should be 
calculated based on the antibodies included in the panel. We should stress here that, 
based on the single-stained bead acquisition approach presented in the original 
paper, the experimental procedure required to generate a compensation matrix is 
fairly straightforward and can be achieved rapidly. Using a previously published 
spillover matrix is a risky strategy, which can indeed lead to inaccurate compensation. 
The user should instead first run the compensation in classic mode and perform a 
visual inspection to ensure no overcompensation can be detected before using the 
NNLS method. This is a valuable option to avoid this specific type of artefact. 
Automating this step is a good suggestion, but is out of the scope of this publication 
and comes with some disadvantages. The risk we see is that this process could be 
imperfect and potentially misleading for the user. Indeed, such an approach would 
only identify overcompensation in channels where a single positive population is 
present but not in the case of a double positive population. In other words, it will 
highly depend on the user’s data type. Furthermore, it would not identify under-
compensated signals. As a consequence, providing an approach to alert users of 
potential issues would likely be imperfect and could give a wrong impression that the 
data are correctly compensated if no alert is raised, which is not necessarily the case. 
Moreover, to the best of our knowledge, such an approach also doesn’t exist in 
fluorescent flow cytometry, most likely due to the fact that ensuring accurate 
compensation on a fully stained data set is a challenging task. We should also 
mention that the spillover coefficients in mass cytometry rarely exceed 4% and 
therefore the consequences of a slight over or under-compensation are less 
important in mass cytometry than in flow cytometry.

Minor comments:
While this might only be needed in rare cases, a function to rename channels and 
potentially match these names across multiple fcs files could enhance the adaptability of 
this package. In my test case, conflicting channel names prevented the import of the files 
into the workflow. In other cases, it might help to match channel names between batches. 
The authors could look to the premessa package for inspiration. 
 
We very much appreciate this comment as we have encountered various 
discrepancies between panels, especially in long-term projects. To date, we have used 
a custom R script to i) read in files separately; ii) fix panels according to a reference 
file (i.e., removing/adding additional/missing channels); and, iii) write out a new set of 
FCS files with concordant panels. 
 
However, this solution is suboptimal as it leads to a duplication of files (or, in case the 
original files were overwritten, the process would no longer be reproducible). 
Similarly, a GUI solution (as ‘premessa’) would defeat the purpose of providing an 
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automated, reproducible preprocessing solution. Thus, taken together, we propose 
(and have now implemented) the following strategy: 
 
> ‘prepData’ now exposes additional arguments to be passed to ‘flowCore::read.FCS’ 
via ‘...’ 
> ‘read.FCS’ provides an argument ‘channel_alias’: “an optional ‘data.frame’ used to 
provide the alias of the channels to standardize and solve the discrepancy across FCS 
files. [...]” 
> independent of whether or not this option is used, ‘prepData’ will check whether 
panels (FCS channel names) match between files:

in case of any discrepancy, the newly added ‘fix_chs’ argument 
will be used to determine how to resolve discrepancies

○

“all” will keep all channels (i.e., the union across files); 
any missing channels will be added to the respective samples, 
and a channels x samples matrix is stored in the object to track 
which channels were present in which samples originally

○

“common” will keep shared channels (i.e., the intersection across files); any 
other channels will be dropped from the respective files

○

‘prepData’ will, in any case, return a ‘SingleCellExperiment’, i.e., 
no altered FCS files or ‘flowFrame’s will be written out / returned 
 

○

The authors have incorporated various options for DNA channels which is much 
appreciated. My test data had been stained with a rhodium intercalator. Specifying this 
worked well, only the res$scatter function seems to ignore this choice and instead seems to 
default to iridium DNA intercalators. 
 
We thank the reviewer for noticing this. Indeed, while the workflow allows for 
specification of the DNA channels used (via variable ‘dna’), these were fixed internally 
in CATALYST’s ‘normCytof()’ function. We have added an additional argument to allow 
passing custom DNA channel masses (default ‘dna = c(191, 193)’ for Ir191/3; for 
Rh103, the argument would be ‘dna = 103’ instead); the output scatter plot of DNA vs. 
bead intensities (‘res$scatter’) is now generated based on the first matching DNA 
channel (see updated ‘?normCytof’ documentation). 
 

2. 

Sample specific debarcoding is appreciated. Figure 6 and the plotYields function return a 
debarcoding percentage. I believe this percentage refers to percent of initial assignments, 
but it is not specifically stated. It might be helpful to get a feeling of the percentage of cells 
(out of total cells) that are assigned after refining the initial assignments. 
 
That is correct: As in the original Finck et al. outputs (a MATLAB application), yields 
(left-hand y-axis) correspond to the proportion of cells that would be retained upon 
applying a given cutoff (x-axis). In Figure 8, we compare the absolute barcode 
population sizes before vs. after debarcoding. Analogously, it would be 
straightforward for users to generate such a barplot from cell counts obtained when 
applying various thresholding schemes (e.g., no filtering compared to global vs. 
sample-specific separation cutoffs).

3. 
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The manuscript is presenting an updated version of the CATALYST package for preprocessing 
Cytof data. It is well detailed with several examples and has been updated based on the 
Bioconductor SingleCellExperiment class. Every step of preprocessing is clearly stated and 
illustrated to guide the user on the different steps to process their data. Also, new quality checks 
are being reviewed to explore the quality of the data. 
I provided below some feedback to make the manuscript clearer and some suggestions to 
address some issues I encountered:

It will be useful to define clearly what are the differences between successive acquisitions, 
single CyTOF run and batch. 
 

1. 

The different samples and runs listed through the different examples could be better 
presented with a table containing all runs and samples. In the data description, it explains 
that "The dataset used in this study was obtained from a single CyTOF run containing nine 
references, three blood samples and three tumor samples barcoded with a 20-well 
barcoding plate". However in the quality checks section; additional data is being analyzed 
which makes it confusing, coming from additional runs, sometimes from 7 runs or other 
times from 8 runs. 
 

2. 

Batch alignment: 
Could you provide an additional plot showing the effect of applying this correction factor? 
How are you assessing the performance of your batch alignment method? 
 

3. 

argument norm_to in the normCytof() function: give explanations on how it being computed 
when giving reference beads, especially how does it compute the new baseline, does it 
takes into account both the beads from the reference and current by averaging both?  
Can it be used to normalize data from different batches? If so how does it deal with 
distinguishing times and ordering the beads and time which would be similar in separated 
batches? 
 

4. 

Figure 4: Could you please give more explanations on how to assess run sensitivity and how 
does the user decide what is acceptable and what is not? 

5. 
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Also, you need to load the library(reshape2) to run this part. 
 
The wrap_plots function is missing here. 
 

6. 

I got an error when running the QC on reference cell counts.  "Error: Can't combine 
`1$CellLine_R1` and `2$CellLine_R1` ."

7. 

 
Minor comments:

When running the code using the data provided, the directory name should be modified to 
"CyTOF_acquisition_1-3.FCS/" instead of data 
fcs <- list.files("CyTOF_acquisition_1-3.FCS/", "acquisition", full.names = TRUE) 
Also, it should be specified that the directory name containing all the data should be called 
"data" and it refers to the directory name, or an alternative is to have the local directory "." 
instead of data like in here: 
# specify path to reference beads 
ref_beads <- file.path(".", "normalization_beads.fcs") 
 

1. 

Introduction: 
"an important step is to correct for batch effects, which can be achieved by including a 
shared control sample in each independent batch11,12 " Add CytofRUV reference mentioned 
in the discussion. 
 

2. 

"In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor), 
group (R for reference or S for sample of interest), and replicate number; and follow a 
consistent naming scheme: We can easily extract these components and store them in the 
SCE’s cell metadata (colData)". The example selected is not the best one, as it not showing 
any differences between the 6 first row. 
 

3. 

There is a typo in the legend of some figures like figure 17: "previously" acquired runs.4. 
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Partly

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I work in Bioinformatics and especially in the normalization and batch 
correction of CyTOF datasets.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 23 Jun 2022
Helena Crowell, University of Zurich, Zurich, Switzerland 

It will be useful to define clearly what are the differences between successive acquisitions, 
single CyTOF run and batch. 
 
Indeed, the meaning behind the concepts of successive acquisitions, single CyTOF 
run and batch was not fully clear and these terms were not used in a consistent way. 
A “CyTOF run” corresponds to an independent experiment where samples are stained 
and acquired simultaneously on the CyTOF. We replaced the term run with 
experiment to clarify the meaning. Each CyTOF experiment corresponds to one 
“batch” and this term is used to refer to the batch correction which is performed on 
the different CyTOF experiments. The data from a single CyTOF experiment are 
usually acquired over multiple “successive acquisitions”, each leading to the 
generation of a single FCS file. We also made the use of these terms consistent 
throughout the paper. 
 

1. 

The different samples and runs listed through the different examples could be better 
presented with a table containing all runs and samples. In the data description, it explains 
that "The dataset used in this study was obtained from a single CyTOF run containing nine 
references, three blood samples and three tumor samples barcoded with a 20-well 
barcoding plate". However in the quality checks section; additional data is being analyzed 
which makes it confusing, coming from additional runs, sometimes from 7 runs or other 
times from 8 runs. 
 
The pipeline described in this paper was designed to preprocess CyTOF data acquired 
over a long period of time with a focus on ensuring data consistency over time. The 
aim of the workflow is to guide the readers through the preprocessing steps required 
to convert FCS files obtained in a given CyTOF experiment to a format suitable for 
downstream analysis, while presenting key quality checks to ensure the reliability of 
the data generated in the experiment of interest. Therefore, the whole analysis is 
based on a dataset obtained from a single CyTOF experiment, which is benchmarked 
against data acquired during a preparatory phase. For consistency reasons, we 
included now systematically the data from seven previous CyTOF experiments to 
benchmark the data of the CyTOF experiment preprocessed in this paper. 
 

2. 
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Batch alignment: Could you provide an additional plot showing the effect of applying this 
correction factor? How are you assessing the performance of your batch alignment 
method? 
 
The batch alignment presented in this paper is based on a linear scaling based on a 
percentile, using references as anchoring points, similar to a previously published 
method (Schuyler et al, 2019). To assess the performance of our batch alignment 
method, we have now included a figure to compare the expression distributions 
before and after batch correction (including their 98th percentiles and those of the 
references). As intended, 98th percentiles align with the references’ upon correction, 
while expression distributions remain virtually unchanged. 
 

3. 

argument norm_to in the normCytof() function: give explanations on how it being 
computed when giving reference beads, especially how does it compute the new baseline, 
does it take into account both the beads from the reference and current by averaging 
both? 
 
Normalization using reference beads follows the methodology originally introduced 
in Finck et al. (2013): The baseline is computed as the mean intensity of the reference 
beads only, not including the current experiment. Would the average be taken over 
both, intensities would not be aligned between current and reference experiment. 
While the statement “[...] We provide the path to a set of reference beads (argument 
`norm_to`) that are used to compute baseline intensities for normalization” explains 
this only briefly, we believe that the method is well established and readers should 
refer to the original publication for more detail. 
 
Can it be used to normalize data from different batches? If so how does it deal with 
distinguishing times and ordering the beads and time which would be similar in separate 
batches? 
 
Yes, certainly. The normalization aims at correcting the signal time-drift due to 
progressive loss of sensitivity during acquisition. This is a technical effect that is 
independent of batch effects, and should be accounted for regardless of whether or 
not batch effects are present: these should be corrected for downstream analysis. 
 
Events from different FCS files (independent of whether these are different 
acquisitions of the same experiment or batches) are concatenated. How event times 
are dealt with depends on prepData()’s input arguments. When by_time = TRUE, files 
are ordered according to their acquisition time (stored under each flowFrame’s $BTIM 
description field). Otherwise, they are kept in the order provided by the input 
metadata table (argument md). 
 

4. 

Figure 4: Could you please give more explanations on how to assess run sensitivity and 
how does the user decide what is acceptable and what is not? 
 
Instrument sensitivity is an important parameter that should be closely monitored. 
This parameter is assessed during the tuning but those data cannot be easily 

5. 
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exported and compared between experiments. The aim was to take advantage of the 
beads, which are run together with the samples to report on instrument sensitivity. 
Figure 3 provides key information regarding how the sensitivity evolves during the 
run, while the point of Figure 4 is to show how the average sensitivity evolves from 
one experiment to another. Instrument sensitivity varies from machine to machine 
and deciding what is acceptable will depend on the requirements of the users. The 
point of this plot was to offer an option for the user to easily identify in case the 
sensitivity is getting low compared to previous experiments, and to make a link 
between the quality of the data generated in a specific experiment with the sensitivity 
of the instrument. 
 
Also, you need to load the library(reshape2) to run this part. 
 
Yes, thank you for catching this; we’ve added reshape2 to the list of dependencies, 
and it is now loaded along the other required libraries. 
 
The wrap_plots function is missing here. 
 
Yes, thank you for catching this; we’ve added patchwork to the list of dependencies, 
and it is now loaded along the other required libraries. 
 

6. 

I got an error when running the QC on reference cell counts. "Error: Can't combine 
`1$CellLine_R1` and `2$CellLine_R1`." 
 
True, thank you; I could reproduce this with the current R and package versions. It 
has been fixed by converting the ‘run’ object of class ‘table’ to call ‘integer’ using c().

7. 

Minor comments:
When running the code using the data provided, the directory name should be modified to 
"CyTOF_acquisition_1-3.FCS/" instead of data: 
fcs <- list.files("CyTOF_acquisition_1-3.FCS/", "acquisition", full.names = TRUE) 
 
We are not sure we understand this comment. ‘list.files(path, pattern, …)’ expects the 
first argument to be a directory (where the FCS files are located), not the file names 
themselves (“xxx.FCS”). 
 
Also, it should be specified that the directory name containing all the data should be called 
"data" and it refers to the directory name, or an alternative is to have the local directory "." 
instead of data like in here: 
# specify path to reference beads 
ref_beads <- file.path(".", "normalization_beads.fcs") 
 
Thank you, yes, we forgot to mention that in the presented code all data used 
throughout the workflow is expected to sit inside a “data” subdirectory relative to 
where the .Rmd file is being run. We have now added a note explaining this in the 
2nd paragraph under “Results”. 
 

1. 

Introduction: "an important step is to correct for batch effects, which can be achieved by 2. 
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including a shared control sample in each independent batch" Add CytofRUV reference 
mentioned in the discussion. 
 
We updated the reference to CytofRUV to the new version of the manuscript 
published in eLife and added it to the introduction. 
 
"In our example, barcode identifiers include each sample’s type (CellLine, PBMC or Tumor), 
group (R for reference or S for sample of interest), and replicate number; and follow a 
consistent naming scheme: We can easily extract these components and store them in the 
SCE’s cell metadata (colData)". The example selected is not the best one, as it not showing 
any differences between the 6 first row. 
 
True. We have modified the example to sample 10 unique ‘sample’ entries (= 
type_group) for which to display the ‘colData’. 
 

3. 

There is a typo in the legend of some figures like figure 17: "previously" acquired runs. 
 
Thanks for pointing out this typo, which was corrected in the corresponding figures.

4. 
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