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One limitation of the widely used RNA-seq method is that long transcripts are represented by more reads than
shorter transcripts, resulting in a biased estimation of expression levels. The 3′ RNA-seq method, which yields
only one sequence per transcript, bypasses this limitation. Here, RNA was extracted from two samples, in
which we expected to find differentially expressed genes. Each was processed by both traditional and 3′ RNA-
seq protocols. Both methods yielded similar differentially expressed genes and estimated expression levels in a
comparable way, confirming they both represent valid tools for RNA-seq analysis. Notably, however, we identi-
fied more differentially expressed transcripts with the 3′ RNA-seq method, suggesting a greater power to detect
expression variation using this method. Hence, when little genomic information is available for the species stud-
ied, the standard RNA-seq presents a better cost-benefit compromise, whereas formodel species, the 3′ RNA-seq
method might more accurately detect differential expression.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The RNA-seqmethod is a powerful tool allowing for functional geno-
mic studies at the transcriptional level. It consists of the deep sequenc-
ing of the RNA (total or fractionated) of an individual or tissue at a
certain time and condition. This approach enables the comparative as-
sessment of the level of expression for each gene between different
samples. By comparing the RNA expression profiles among samples, it
is possible to identify differentially expressed (DE) genes that might ex-
plain the phenotypic differences observed between the samples.

In this study, we compared two RNA-seq methods: the standard
RNA-seq and the 3′ RNA-seq that is expected to give more accurate
levels of expression by solving some of the biases inherent in the classic
RNA-seq method. With the standard RNA-seq method, the extracted
mRNA is randomly sheared and the fragments are converted into a
cDNA library. The cDNA fragments are then sequenced by one of the
next-generation sequencing technologies. The total number of reads
(cDNA fragments sequenced) corresponding to a given transcript is pro-
portional to the level of expression of the corresponding gene [11].
However, one of the limitations of the standard RNA-seq strategy lies
in the fact that longer transcripts are broken into more fragments than
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are shorter ones. This creates a statistical bias, as longer transcripts
will be represented by more reads than those produced by the shorter
transcripts. Consequently, the detection of DE is more likely to be
over-represented for long transcripts and under-represented for shorter
ones, which are at a statistical disadvantage [11]. To minimize this bias,
the levels of expression (number of reads corresponding to a certain
transcript) can be corrected by the size of the transcript. However, in
the case of non-model species, this information is most likely to be un-
available. The correction can then be done by using the contig size from
the de novo reconstruction of the transcript (based on the reads) or by
employing the transcript sizes of a closely relatedmodel species. Never-
theless, this correction does not entirely solve the problem owing to the
transcript size, as the sampling is higher for longer transcripts [11].

The 3′ RNA-seq method [15] was conceived to bypass these limita-
tions. This method consists of sequencing only one fragment per tran-
script in the 3′ region. By using this strategy, regardless of the
transcript length, the levels of expression can be estimated directly by
the number of reads corresponding to a certain transcript, as a single
fragment per mRNA molecule is sampled (Fig. 1).

In this paper, we compare both RNA-seq methods at the different
steps of an RNA-seq analysis to clarify their advantages, disadvantages,
and complementarities for a non-model species, Cochliomyia
hominivorax, the New World screw-worm fly. This species is one of
the most important myiasis-causing fly of the neotropical region and
is responsible for severe economic losses. During the last decades, C.
hominivorax populations were mainly controlled by applying
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Fig. 1. Overview of the methods used to generate the RNA-seq libraries. (A) In the classic RNA-seq procedure, the RNA is fragmented and converted into cDNA using small primers of
random sequence. (B) In the 3′ RNA-seq library, the mRNA molecules are randomly fragmented, generating fragments of different lengths. After fragmentation, only the 3′ portion of
an mRNA molecule is selected using poly-T oligonucleotide baits attached to magnetic beads. The selected fragments (one per molecule) are then directionally sequenced.
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organophosphate (OP) insecticides, but because of this constant selec-
tive pressure, resistant lineages have been strongly selected, complicat-
ing the management of this species [3,4]. In this context, the RNA-seq
methods were used to discover the genes possibly involved in OP
resistance.

2. Materials and methods

2.1. C. hominivorax populations

We used a laboratory colony of C. hominivorax composed of suscep-
tible and known OP resistant individuals (Gly137Asp and/or Trp251Ser
mutations in the esterase E3 gene), collected in Caiapônia, GO, Brazil.
The colony was maintained according to standard protocols [2]. For
the resistant condition, a sample from the laboratory population was
treated with the OP insecticide dimethyl 2,2-dichlorovinyl phosphate;
C4H7Cl2O4P (dichlorvos) at 20 mg/l, a concentration lethal for 90% of
the population (LC90). The insecticide was directly mixed into the me-
dium consisting of fresh ground beef supplemented with blood and
water (2:1). A total of 500 L2 instar larvae were fed on the insecticide-
containing medium for 24 h. The surviving individuals (Resistant sam-
ple) were collected for the RNA extractions. The individuals of the con-
trol conditionwere simply sampled from this laboratory population and
fed on the medium without the insecticide.

2.2. RNA extraction

RNA extractions followed previously utilized procedures [2]. Total
RNA of resistant and control C. hominivorax larvae were extracted sepa-
rately using TRIzol (Invitrogen) from the whole bodies of 87 larvae, 42
from the resistant and treated group and 45 from the control group.
DNase I (Invitrogen) was used to remove genomic DNA contamination
and the mRNA-enriched samples were further purified using
Nucleospin RNA Clean-up columns (Macherey Nagel). RNA quantifica-
tion was performed using the Qubit Quantitation Platform fluorometer
(Invitrogen).

2.3. RNA-seq experiments

The extracted RNA was processed separately according to the two
RNA-seq protocols. In the classic RNA-seq procedure, the RNA
fragments resulting from the random breakage of the transcripts were
converted into a cDNA library using the mRNA-Seq Sample Prep Kit
(Illumina). Small primers (6 nt) of random sequence were used to pro-
duce the cDNA fragments. Specific adapter sequences (ACGTT and
TGCAT for the control and resistant conditions, respectively) were
prefixed to the cDNA fragments. These barcoded control and resistant
cDNA sequenceswere then pooled prior to sequencing. Library prepara-
tion was performed independently twice on the same samples (techni-
cal replicates).

The 3′ RNA-seq library was constructed by Fasteris (Switzerland)
using the procedure adapted from a previous study [15]. In thismethod,
4 μg total extracted RNA for each sample (control and resistant) was
used to create the 3′ RNA libraries. A 3′ RNA library contains only
those RNA fragments possessing a polyA tail. For its construction, the
mRNA- Seq Sample Prep Kit (Illumina) was modified to select the 3′
RNA fragments. Briefly, the mRNA molecules were fragmented at a
high temperature (80 °C) by divalent cations using the fragmentation
buffer. The polyA mRNA fragments were purified using poly-T oligonu-
cleotide baits attached to magnetic beads. After the selection of polyA
fragments, the mRNA-seq Sample prep Kit (Illumina) protocol was
followed according to the manufacturer's instructions. Consequently,
we obtained one polyA-fragment per transcript molecule, which
allowed us to directly estimate the expression level of the transcripts.
Resistant and control samples were pooled prior to sequencing by
Fasteris using the Illumina HiSeq100 system (single-reads of 100 bp).
2.4. Preprocessing of the reads

For a thorough comparison between the RNA-seqmethods, we sam-
pled the same number of raw reads obtained by both methods for each
condition. Since the sequencing based on the cDNA obtained by the
standard RNA-seq method yielded fewer reads (15,427,065 for control,
17,021,595 for resistant), we sampled those numbers of raw reads from
both 3′ RNA-seq read populations (35,574,183 for control, 46,322,457
for resistant). The sampling was performed using the function
“FastqSampler” from the R package “ShortRead” [10].

To eliminate poor quality regions of the sequences, we used the pro-
gram fastq_quality_trimmer from the fastx toolkit suite (http://
hannonlab.cshl.edu/fastx_toolkit/). We used the default quality score
threshold of 20 and removed the sequences shorter than 20 bases
after the trimming had being completed.

http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
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The quality of the reads was assessed before and after the trimming
step using the program FASTQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). This program allowed us to visualize our data
and was used to confirm the good quality of the reads prior to usage.

2.5. De novo assembly of the C. hominivorax reference transcriptome

De novo transcriptome assemblies were performed using the pro-
gram Trinity [6], wherein we set the minimum contig length to 50 bp.
Three independent assemblies were performed. The first two assem-
blies were implemented, separately, on the collapsed reads obtained
by the two RNA-seq methods in order to compare the performance of
bothmethods in recovering full-length transcripts. Collapsing consisted
in finding identical reads in the “trimmed” sequence files and retaining
only one copy by using an in-house Perl script. Using the collapsed proc-
essed reads reduced markedly the processing time without any loss of
accuracy during contig assembly.

For the third assembly, we used all available reads from the Illumina
sequencing (standard and 3′ RNA-seq methods) as well as from pub-
lished 454-pyrosequencing data [2]. This was done to generate a more
complete database of C. hominivorax transcripts.

The assemblies generated for bothmethods were evaluated for their
accuracy and completeness. The RSEM-EVAL component of the DETO-
NATE package [9] was used to measure the accuracy of the assemblies.
RSEM-EVAL evaluates the compactness of an assembly and the support
of the assembly from the RNA-Seq data. The REF-EVAL contig- and nu-
cleotide-level measures were compared between the assemblies using
the 3′ RNA and the traditional method. The Core Eukaryotic GenesMap-
ping Approach (CEGMA) (version 2.5) [12] was used to evaluate the
completeness of the assemblies.

2.6. Annotation

Weperformed a local blastn using the programBLAST+ [1] to anno-
tate the assembled contigs using a reference database containing Dro-
sophila melanogaster transcripts, coding DNA sequence (CDS), genes,
and extended genes (1000 nucleotides up-and downstream of the
gene) fromFlybase (http://flybase.org/, Release 5.50). The BLAST output
was then parsed using an in-house Perl script that allowed us to set the
minimumpercentage of identitywith the database sequence at 50% and
the minimum percentage of query sequence involved in the alignment
at 50%. The E-value was set at 1e-4.

2.7. Counting of the poly(A)-rich reads

The number of the processed reads containing aminimal percentage
of As (50 to 100%) was counted using an in-house Python script. Addi-
tionally, our script allowed us to retain the reads (in fastq format) that
satisfied the minimal percentage of As set by the user. We then
attempted to align these reads against a set of C. hominivorax contigs as-
sembled using all available reads using the program Bowtie [7]. The
Bowtie results were then parsed and the ambiguous reads (i.e., reads
aligning against more than one contig) were discarded.
Table 1
Number of raw, processed, and collapsed reads for each RNA-seq method and sample conditio

Standard RN

Control

Raw reads 15,427,065
Processed reads
(% of reads discarded during trimming and clipping)

14,545,819
(5% discarde

Number of poly (A) sequences from the processed sequence files 81
Collapsed reads
(% of the processed reads discarded)

6,987,224
(52%)

Poly(A) sequences are those consisting exclusively of As.
2.8. Read alignment

Processed reads originating from both RNA-seq methods were
mapped to the correspondent set of C. hominivorax contigs. The read
alignments were performed using the program Bowtie [7] for both
methods and conditions with the default settings.

To compare the distribution and coverage of the reads from the dif-
ferent methods along genomic sequences, we also aligned the proc-
essed reads against the mitochondrial genome of C. hominivorax [8]
and plotted the results as previously described [14].

2.9. Abundance estimation of the transcripts for each condition

Based on the output of Bowtie, we counted the reads that aligned
against each contig via an in-house Perl script for each condition and for
each RNA-seq method. The Bowtie parser discarded the ambiguous reads
that aligned to more than one contig with the same score (same number
ofmismatches).Whena read aligned againstmore thanone contig isoform
or “allele contig” (Trinity outputs such variants) the read was counted as
part of the common region of the transcript isoform. This counting strategy
allowed a finer comparison between conditions at the level of the tran-
script variant. All scripts used for data analysis are available upon request.
2.10. Differentially expressed transcripts and annotation

The R package EdgeR [13] of the Bioconductor repository was used
to identify the DE contigs between the conditions for both methods.
The contigs that did not display at least one (read) count per million
in both the resistant and control libraries were excluded from the anal-
ysis (filtering option).

Since biological replicates were not available, we estimated the bio-
logical variation to be 0.2. Our estimation was based on examples of bi-
ological variation from the EdgeR User's Guide and the source of the C.
hominivorax sample. The fly colony was maintained in the laboratory
for nearly one year prior to the experiments and it is not an outbred
population nor yet a truly inbred colony. Hence, the adopted variation
(0.2) was between the default variation for outbred populations (0.4)
and the default variation for inbred populations (0.1).

Asmany of the DE contigswere not annotated by using theDrosoph-
ila sequences, we re-annotated them via remote blast against the
GenBank database. We used the default “nr” (nucleotide, non-redun-
dant) database and the tblastx algorithm to maximize the chances of a
significant alignment. The “nr” database regroups all the sequences
from GenBank, European Molecular Biology Laboratory (EMBL), DNA
Data Bank of Japan (DDBJ), and Protein Data Bank (PDB) sequences. In
addition, we only retained the blast alignments exhibiting a minimum
of 50% identity with the database sequence and with a minimum of
20% of the query sequence involved in the alignment. The E-value was
set at 1e-4.

To better compare the top 10 up- and down-regulated contigs of
bothmethods, we attempted to identify the top DE contigs not annotat-
ed by remote blast. To do so, we used the program Hmmer through the
web server [5], conserving the default settings alongwith theUniProtKB
protein database (UniProtKB/Swiss-Prot and UniProtKB/TrEMBL).
n.

A-seq 3′RNA-seq

Resistant Control Resistant

17,021,595 15,427,065 17,021,595

d)
16,103,624
(5% discarded)

15,389,704
(0% discarded)

16,973,215
(0% discarded)

36 563,870 875,928
9,037,903
(44%)

5,018,226
(68%)

5,911,574
(66%)

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://flybase.org


Fig. 2.Number of processed readswith an increasing proportion (percentage) of As. The 3′
RNA-seq method yields many more reads primarily composed of As than does standard
(Std) RNA-seq.
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To test if the average length of theDE contigs differed significantly be-
tween eachmethod,weperformed anon-parametricWilcoxon rank sum
test with continuity correction using the function “wilcox.test” of the sta-
tistical platform R.

2.11. Quantitative PCR (qPCR)

We used the qPCR data from the study of Carvalho et al. [2] as the
conditions for the bioassays were the same as in our study. qPCRs
were performed on 18 candidate genes (acetylcholinesterase, alpha-es-
terases 7, 8, and 9, serineprotease 7, glutathione S transferases D1, E5,
and S1, and Cyp4ac1, Cyp4c3, Cyp4d2, Cyp6a14, Cyp6a9, Cyp6d4,
Cyp6g1, Cyp6v1, Cyp9f2, and Cyp12a4) and we recovered the data of all
these genes for our analysis.

2.12. Correlations and comparisons between determined expression levels

Correlations between the levels of expression of the contigs generat-
ed for each RNA-seq method were calculated using Spearman's rank
correlation rho (function “cor.test” in R). This was done separately for
each condition, control and resistant. The counts were corrected by
the length of the contigs for the standard RNA-seq and by the size of
the library for both methods. To avoid taking into account the inaccura-
cy associated with low count numbers, we only considered the contigs
with a minimum of ten reads in at least one RNA-seq method.

For the comparison between RNA-seq and qPCR methods, we
corrected the mRNA counts by the size of the library (number of proc-
essed reads) and calculated the Spearman's rank correlation between
the log2 (control expression/resistant expression) for the RNA-seq
methods and the ddCT for qPCR.

3. Results

3.1. RNA-seq data and preprocessing

After sampling the same quantity of raw reads for each RNA-seq
method (Fig. 1), we trimmed the regions presenting a low per-base
Table 2
Summary statistics of assembly results using the program Trinity.

RNA-seq 3′RNA-seq

Number of contigs longer than 50 bp 76,089 90,752
First quartile of contig lengths 90 bp 98 bp
Median contig length 119.0 bp 143.0 bp
Average contig length (SD) 280.2 bp (559.52) 181.8 bp (139.87)
Third quartile of contig lengths 218.0 bp 226.0 bp
Longest contig (bp) 24,277 5866

SD, Standard deviation.
quality (b20) and discarded the resulting processed reads shorter
than 20 bp. With these parameters, we discarded more standard RNA-
seq than 3′ RNA-seq reads (Table 1). However, the inverse pattern oc-
curred when we collapsed the files of processed reads; i.e., when we re-
moved all the identical reads, retaining only one copy (Table 1).
Approximately 67% of the processed 3′ RNA-seq reads were discarded
during the collapsing process whereas only about 48% of the standard
RNA-seq readswere removed. Thiswas partly due to the higher number
of poly(A) sequences obtained by the 3′ RNA-seq method (Fig. 2), as
poly(A) sequences of the same length were collapsed into a single read.

3.2. Assembly and annotation of the transcriptome

The de novo assembly of the reads obtained by each RNA-seq meth-
od, aiming at reconstructing the original transcripts, was more efficient
using the standard RNA-seq reads than those from3′ RNA-seq (Table 2).
Themajor difference between themethodswas observed for the length
of the contigs assembled. Using the standard RNA-seq reads, the assem-
bly yielded longer contigs (up to N20,000 bp)whereaswith the 3′ RNA-
seq reads, the length of the assembled contigs quickly dropped,
attaining amaximumof approximately 5000 bp (Fig. 3). Thiswas an ex-
pected result as the 3′ RNA-seq method only retains the 3′ region of the
transcripts while the standard RNA-seqmethod produces reads distrib-
uted along the transcript length. It is noteworthy that, even in the 3′
RNA-seq method, long transcripts are obtained owing to the random
fragmentation of fragments; each mRNA molecule will be fragmented
at a different site and the 3′ fragments selected will have different
lengths (Fig. 1).

The transcript assemblieswere also compared in terms of their accu-
racy.We computed the RSEM-EVAL scores for the transcriptome assem-
blies generated for each method and the results were very similar, −
638,724,079.59 for the assembly performed using reads from the tradi-
tional method and −664,840,190.97 with reads from the 3′ RNA-seq
method. We also compared their completeness using the CEGMA pipe-
line. The traditional method recovered 83.47% of the 248 ultra-con-
served core eukaryotic genes (CEGs) whereas 3′ RNA-seq recovered
only 27.02%. Notably, the 3′ RNA-seq method recovered the 3′ region
of transcripts rich in untranslated regions that are more divergent and,
therefore, are more difficult to be identified.

This difference among the methods was confirmed by aligning the
reads originated by both methods against the available mitochondrion
genome of C. hominivorax (Fig. 4). This analysis also highlighted another
important feature of the 3′ RNA-seqmethod: that it results in direction-
al reads; i.e. the orientation of the read is known.

Annotation of the assembled contigs was accomplished by local
blasts (blastn) performed against a D. melanogaster database. The
contigs assembled from the standard RNA-seq reads were more effi-
ciently annotated (by approximately 12%) than those from the 3′
Fig. 3.Evolution of thenumber of contigs (log10)with respect to their length (bp) for both
RNA-seq methods.



Fig. 4.Alignment of the reads obtained by standardRNA-seq (A) and 3′ RNA-seq (B) against themitochondrial genome of C. hominivorax. The histograms in black represent the coverage of
each base of the mitochondrial genome. In both (A) and (B), the upper histograms represent the reads aligned against the “+” strands and the lower ones represent the alignments that
occurred with the “−” strand. The genes coding proteins are represented by the unfilled boxes and the transporter RNAs by small black-filled boxes. The coding units are represented by
the black arrows and themature transcripts byfilled arrows,with those of the “+” strand in green and those of the “−” strand in blue. The ribosomal rRNAgeneswere not included as their
expression level is much higher than that of the other transcripts. Only the control samples are represented since the alignments performed with the resistant samples gave very similar
results.

Table 3
Number of annotated contigs.

Standard RNA-seq 3′RNA-seq

Total number of contigs 76,089 90,752
Number of contigs with no hit 2395 8032
Number of discarded hits 54,127 70,154
Number of sequences aligned 19,567 (25.72%) 12,566 (13.85%)
Number of sequences not aligned 56,522 78,186
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RNA-seq method (Table 3). The proportion of shared annotation be-
tween both methods was around 59% of the total annotations of the
standard RNA-seq contigs and 78% of the 3′ RNA-seq contigs.

The large quantity of reads mainly composed of As found in the 3′
RNA-seq output might in practice cause a substantial loss of sequence
data. To assess this possibility, we aligned the «A-rich» reads against
the set of C. hominivorax contigs assembled using all available data.
Many reads (over 70% of the 3′ RNA-seq processed reads composed of
at least 50% As) did not align against the contigs and therefore did not
contribute to the expression level of their corresponding gene.

Notably, we observed that the percentage of aligned reads did not
decrease as had been expected as the percentage of As in the reads in-
creased (Fig. 5). The percentage of aligned and unambiguous reads
with a high proportion of As stabilized and even slightly increased
under certain conditions. This suggests that some assembled contigs
were mostly composed of As and therefore were devoid of relevant in-
formation owing to the impossibility to annotate them.



Fig. 5. Percentage of reads with an increasing proportion of As aligned against a set of C.
hominivorax contigs. A read is said to be aligned uniquely if it has aligned only once or if
the second best alignment has a different number of mismatches. As the poly-A lengths
are different between the contigs, a read with 100% As can be uniquely mapped. Std,
standard RNA-seq.

Table 5
Summary of the number of DE contigs in the Resistant condition when compared to the
Control condition.

Standard RNA-seq 3′ RNA-seq

Number of contigs similarly expressed 12,026 14,180
Number of contigs over-expressed 104 172
Number of contigs under-expressed 157 239
Number of differentially expressed (DE) contigs 261 411

Exact test, false discovery rate (FDR) b 0.05.

14 S. Tandonnet, T.T. Torres / Genomics Data 11 (2017) 9–16
3.3. Comparison of the expression profiles

We compared both RNA-seq methods based on the performance of
the read alignments. To do so, the processed reads from each condition
and RNA-seq method were mapped against a common database of C.
hominivorax contigs assembled with all available transcriptomic data
(ours and those fromCarvalho et al. [2]. The results showed that a larger
number of 3′ RNA-seq reads failed to align (~47%) when compared to
the standard RNA-seq reads (~24% alignment failure). This result was
observed for both control and resistant conditions (Table 4) and might
be due to the large amount of poly(A) sequences present in the 3′
RNA-seq processed reads. For both methods, almost all aligned reads
were unambiguous (Table 4).

To assess the significant differences in expression between condi-
tions for each contig, we used the EdgeR package [13]. EdgeR applies
an exact test to check for DE between conditions byfitting a negative bi-
nomial model for each transcript. Using this method, we could identify
the probable DE contigs between the control and resistant conditions
for both RNA-seq methods. We found more DE contigs with 3′ RNA-
seq (~1.57 times more) than with standard RNA-seq (Table 5 & Fig.
6), suggesting that we potentially had greater power to detect DE
contigs with the 3′ RNA-seq method.

Asmany of the DE contigs were not annotated by using theDrosoph-
ila database, a second effort wasmade to identify these sequences by re-
mote blast (tblastx) against the GenBank database. The results obtained
were compared in numeric and biological terms. A greater number of
DE contigs derived from the standard RNA-seq protocol could be anno-
tated (~53%) when compared to those from 3′ RNA-seq (~36%). As 3′
RNA-seq favors the 3′ regions that are enriched in 3′UTRs, that are
more difficult to annotate. The majority (75–79%) of the successfully
Table 4
Read alignment and parsing data in each condition (Control and Resistant) and for both RNA-s

Standard RNA-seq

Control

Bowtie alignment Trimmed reads (non-poly(A)) 14,545,819 (14,545,73
Reads that failed to align 3,102,159 (21.33%)
Reads with at least one reported alignment 11,443,660 (78.67%)

Bowtie parser Unambiguous aligned reads 11,330,380 (~99%)
Discarded aligned reads (ambiguous) 113,280
Number of contigs 59,728

Number of alignments and reads processed by the program Bowtie and number of contigs and
annotated DE contigs shared the same identifier (best hit) between
both methods (Fig. 7).

We also compared the top 10 most significant up- and down-regu-
lated contigs of bothmethods (Supplementary Tables S1 to S4). The cy-
tochromes P450 cyp6g4 and cyp6a28, the collapsin response mediator
protein (CRMP) and a glucuronosyl transferase were among the top
10 down-regulated contigs in both RNA-seq methods (Supplementary
Tables S1 and S2). Several genes involved inmetabolic processes (aGlu-
cose/ribitol dehydrogenase, an alcohol dehydrogenase, and a hydrolase)
only appeared in the standard RNA-seq top 10 down-regulated contigs
(Supplementary Table S1). In the top 10 up-regulated contig lists (Sup-
plementary Tables S3 and S4), an odorant binding protein gene and a
chitin binding peritrophin-A gene as well as two unknown genes were
identified in both methods. In the top 10 up-regulated contigs, we also
found two different genes involved in immunity, a sarcotoxin in the
standard RNA-seq listing and a defensin-A in the 3′ RNA-seq group. Al-
thoughmany up-regulated contigs among the standard RNA-seq top 10
corresponded to heat shock proteins (HSP70), none such were found in
the 3′ RNA-seq top 10. However, various contigs of the 3′ RNA-seq top
10 up- or down-regulated lists were unknown or corresponded to
uncharacterized proteins, which limited our qualitative comparison.

3.4. Correlations between contig expression levels

The Spearman's rank correlation coefficient between the levels of
expression of the contigs assessed for each RNA-seqmethod was calcu-
lated separately for each condition. The Spearman's rank correlation rho
between themethodswas0.53 for the control condition and 0.50 for the
resistant condition. This correlation was done without assessing the
identity of the contigs. Hence, different contigs from the same gene
would be considered completely different entries. It would be possible
to circumvent this problem by aligning the reads against an annotated
reference genome; however, the complete genome sequence of C.
hominivorax is not currently available. On the other hand, the sequence
and annotation of the mitochondrial genome of C. hominivorax is avail-
able and we therefore also assessed the correlation between methods
for themitochondrial genes as previously described.Weobtained corre-
lations of 0.84 and 0.83 (Spearman's rank correlation rho) for the con-
trol and the resistant conditions, respectively.

For 18 genes (Table S5),we verifiedwhether the levels of expression
obtained through the RNA-seqmethodswere consistent with those ob-
tained by quantitative PCR (qPCR). Inconsistencies were observed for
the Cyp6a14, glutathione S transferase S1, and alpha-esterase7 genes
eq methods.

3′ RNA-seq

Resistant Control Resistant

8) 16,103,624 (16,103,588) 15,389,704 (14,825,834) 16,973,215 (16,097,287)
4,321,671 (26.84%) 6,899,084 (44.83%) 8,311,612 (48.97%)
11,781,953 (73.16%) 8,490,620 (55.17%) 8,661,603 (51.03%)
11,676,453 (~99%) 8,375,287 (~98.6%) 8,485,019 (~98%)
105,500 115,333 176,584
64,644 56,415 63,211

unambiguous/ambiguous reads.



Fig. 6. Fold Change (FC) plots showing the contigs differentially expressed (DE, red dots) in the resistant samplewhen compared to the control sample (Exact test, adjusted p-valueb 0.05).
(A) FC plot obtained from the classical RNA-seq data and (B) from the 3′ RNA-seq data. CPM (counts per million) represent howmany reads permillionmapped unambiguously against a
contig; FC is the difference between the abundance of reads (i.e., the level of expression) in the resistant and control samples. Up-regulated DE contigs correspond to thosewith a positive
logFC while the down-regulated contigs have a negative logFC.

Fig. 7. Proportion of annotated DE contigs found in commonor not between both RNA-seq
methods. For both methods, annotation was performed by remote blast using the non-
redundant database of NCBI. The contigs sharing the same annotation (same best hit
number) in both methods were counted in common (“VennDiagram” package of the R
platform).

Fig. 8. Comparison of the qPCR, standard-RNA-seq, and 3′ RNA-seq expression ratios. The levels
RNA-seq methods, only the genes displaying a minimum raw read count of 10 in at least one c
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between the RNA-seq and the qPCRmethods (Fig. 8). Overall, the qPCR
expression ratios were closer to those obtained using standard RNA-seq
(Spearman's rank correlation rho 0.8333333) than to the 3′ RNA-seq ra-
tios (rho 0.547619). However, low read count for the analyzed genes
were mostly observed in the 3′ RNA-seq method, which might be ex-
plained by the fact that the 3′ RNA-seq reads corresponded mostly to
3′UTR regions that were absent in the regions of sequences that had
been used to generate the PCR primers.

4. Discussion

The 3′ RNA-seqmethodwasfirst used in 2008 incorporating the 454
sequencing technology as a new approach to measure gene expression
by performing massively parallel sequencing [15]. Considering the cur-
rent boom of RNA-seq and realizing the biases associated with this
methodology, we adapted the 2008 method for sequences generated
using the Illumina platform.We then performed a comparison between
the outputs of standard and 3′ RNA-seq to understand some of the dif-
ferences, similarities, and complementarities between both methods.

We identified similar DE genes from both RNA-seq techniques,
which confirmed that bothmethods represent valid tools to investigate
of expression were corrected by the size of the library for both RNA-seqmethods. For the
ondition were considered.
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DE. It is worthy to note, however, thatwe obtained a substantially larger
number of DE contigs using 3′ RNA-seq. This suggests that 3′ RNA-seq
might havemore power to detect DE. Nevertheless, few of the identified
DE contigs could be annotated. In particular, many of the 3′ RNA-seq
reads correspond 3′UTRs, which are prone to accumulate sequence
changes. Being less conserved, 3′UTR are harder to align and annotate.
For a model species with an available and well annotated genome, we
therefore would expect a higher rate of annotation and therefore, a bet-
ter performance of the 3′ RNA-seq method. As expected, we found that
with standard-RNA-seq, a better de novo transcriptome assembly could
be completed. The standard RNA-seq reads were distributed along the
transcripts whereas only the 3′ regions of the transcripts were se-
quenced with the 3′ RNA-seq method. Consequently, most of the tran-
script is lost with 3′ RNA-seq, making de novo transcriptome assembly
difficult.

The relatively low values of correlation (~0.50) between the expres-
sion levels determined by eachmethodmight be due to the bias created
during the transcriptome assembly. The C. hominivorax contig set we
used was mostly constructed with the standard RNA-seq reads since
the 3′ RNA-seq reads were restricted to the 3'region of the transcript
(Fig. 5). Supporting this hypothesis, we found high correlations
(~0.80) between the expression levels of both methods for the mito-
chondrial genes, whichwere available for our species. These high corre-
lations confirm that both methods assess expression levels in a similar
fashion.

Although we predicted that the 3′ RNA-seq technique would yield
more accurate levels of expression, wewere unable to confirm this con-
jecture through our study. De facto, the qPCR expression levels were
closer to those from the standard RNA-seq method than from 3′ RNA-
seq; however, only a few genes had been assayed by qPCR. The standard
RNA-seqmethod is known to present a statistical bias owing to the ten-
dency of longer fragments to be broken into a larger number of frag-
ments [11]. We observed this when comparing the average length of
the DE contigs, as those originating from standard RNA-seq were typi-
cally longer than the ones derived from 3′ RNA-seq. This observation
shows the means by which, with standard RNA-seq, long DE contigs
are over-represented in comparison to shorter ones. On the other
hand, 3'RNA-seq, which was designed to by-pass this limitation, pre-
sented other limitations. Many 3′ RNA-seq reads corresponded to
poly(A)-rich sequences that were empty of relevant information. This
is likely to reduce assay accuracy since the majority cannot be aligned
to their respective contig. A further comparison between both methods
performed on model species and/or on a number of genes of varying
length might shed light on the overall expression accuracy of the 3′
RNA-seq method.

Notably, owing to the design of the 3′ RNA-seqmethod, all reads are
polarized in the 5′–3′ sense. Because the strand is known, it is possible
to study sense/antisense information. This feature is particularly useful
for a number of studies that aim at identifying antisense transcripts,
untangling overlapping sense/antisense transcripts, or characterizing
the antisense transcriptome. As such, the 3′ RNA-seq might be an
avant-garde method for transcriptomic studies benefiting from full-
length transcript sequencing (as offered, for example, by Pacific Biosci-
ences).With such sequencing technologies, wemight expect full length
transcript information and expression level accuracy when using the 3′
RNA-seq method.

Overall, our results suggest that when little genomic/transcriptomic
information is available for the species studied, the standard RNA-seq
method presents a better cost-benefit compromise. It is cheaper and
guarantees full length transcript information. On the other hand, for
model species with available genome/transcriptomes, the 3′ RNA-seq
method may more accurately detect DE, especially for short transcripts,
although many reads would be expected to be lost owing to the large
amount of poly(A) reads. Furthermore, 3′ RNA-seq might also become
a method of choice for RNA-seq studies using full-length transcript
sequencing.

Data accessibility

The dataset supporting the results of this article is available in the
SRA repository, under the accession number SRP044071.
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