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ABSTRACT

Genome-wide association study (GWAS) is widely
utilized to identify genes involved in human
complex disease or some other trait. One key chal-
lenge for GWAS data interpretation is to identify
causal SNPs and provide profound evidence on
how they affect the trait. Currently, researches are
focusing on identification of candidate causal
variants from the most significant SNPs of GWAS,
while there is lack of support on biological mechan-
isms as represented by pathways. Although
pathway-based analysis (PBA) has been designed
to identify disease-related pathways by analyzing
the full list of SNPs from GWAS, it does not empha-
size on interpreting causal SNPs. To our knowledge,
so far there is no web server available to solve the
challenge for GWAS data interpretation within one
analytical framework. ICSNPathway is developed to
identify candidate causal SNPs and their corres-
ponding candidate causal pathways from GWAS by
integrating linkage disequilibrium (LD) analysis,
functional SNP annotation and PBA. ICSNPathway
provides a feasible solution to bridge the gap
between GWAS and disease mechanism study by
generating hypothesis of SNP ! gene !

pathway(s). The ICSNPathway server is freely avail-
able at http://icsnpathway.psych.ac.cn/.

INTRODUCTION

Genome-wide association study (GWAS) (1) is a routine
approach to identify novel genetic susceptibility by
utilizing genome-wide SNP (single nucleotide polymorph-
ism) array. There have been more than 800 GWAS appli-
cations to date (http://www.genome.gov/gwastudies) (2)
and the number keeps increasing. From a large amount

of genome-wide variants (�300–1000K or more), a
GWAS investigation generally identifies a few SNPs that
are statistically significantly associated with a human
complex disease or some trait. As GWAS serves as initial-
izations of future genetic and mechanism study of complex
traits, one of the key challenges of GWAS data interpret-
ation is to identify causal SNPs (the SNPs that affect trait)
and provide profound evidence and hypothesis on the
mechanism through which they affect the trait (3).
Currently, there is some research focusing on

inferring candidate causal variants from the most signifi-
cant SNPs (i.e. SNPs with P-value below certain thresh-
old. P-value< 10�5 is utilized by NHGRI GWAS Catalog
(2).) or prioritizing the most significant SNPs by linkage
disequilibrium (LD) analysis and functional SNP annota-
tion (4–13). However, these analyses can only annotate
SNPs to genes. Since a gene can be involved in a variety
of pathways, to further annotate genes to pathways, which
represent certain biological mechanisms of the complex
disease, would require more evidences such as the
combined genetic effect. Although pathway-based
analysis (PBA) has been developed to identify
disease-related pathways (14–18), it emphasizes on inter-
preting the full list of GWAS SNPs, instead of the most
significant SNPs, by searching a large pathway database
[e.g. all pathways in the KEGG database (19)]. So the key
intention of PBA is to identify novel pathways associated
with traits instead of candidate causal pathways that rep-
resent the way in which the candidate causal SNPs affect
traits.
A feasible proposal to address the above challenges is to

establish one unified analytical framework to combine the
analysis of candidate causal SNPs and PBA, to generate
hypothesis of SNP ! gene ! pathway(s) which repre-
sents that the candidate causal SNP alters the role of its
corresponding gene/protein in the context of the
pathway(s) associated with traits. So far, there is no web
server available to provide such a composed solution.
Here, we propose the ICSNPathway (Identify candidate
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Causal SNPs and Pathways) web server, an analytical
framework for comprehensive interpretation of GWAS
data by integrating LD analysis, functional SNP annota-
tion and pathway-based analysis. ICSNPathway aims to
provide an open platform to facilitate researchers to
identify the candidate causal SNPs and candidate causal
mechanisms of human diseases or traits and to guide
future genetic and mechanism study.

OVERVIEW OF THE ICSNPATHWAY APPROACH

The ICSNPathway web server implements a two-stage
analysis. The first stage is to pre-select candidate causal
SNPs by LD analysis and functional SNP annotation
based on the most significant SNPs of GWAS. The
second stage is to annotate the biological mechanisms
for the pre-selected candidate causal SNPs by using
PBA. There are two key basic concepts and one key algo-
rithm applied in ICSNPathway.
One concept is LD analysis, which searches the SNPs in

LD with the most significant SNPs of GWAS to ensure to
capture more possible candidate causal SNPs based on the
extended data set which includes HapMap data (20). The
other concept is functional SNPs. ICSNPathway
pre-selects candidate causal SNPs based on functional
SNPs, which are important for understanding the
underlying genetics of human health. Functional SNPs
are defined as SNPs that may alter protein, gene expres-
sion or the role of protein in context of pathway. The
functional SNPs include deleterious and non-deleterious
non-synonymous SNPs, SNPs leading to gain or lost of
stop codon, SNPs resulting in frame shift, SNPs in essen-
tial splice site (the first two bp and last two bp of an
intron) and SNPs in regulatory region [including DNase
I hypersensitive sites which marks open chromatin,
histone modification sites, CCCTC-binding factor
(CTCF) sites which characterize insulator/enhancer
elements, and transcription factor binding sites
(TFBSs)] (21).
The ICSNPathway server implements a PBA algorithm,

as named i-GSEA (improved-gene set enrichment
analysis), on the full list of GWAS SNP P-values to
detect pathways associated with traits (18). Briefly, (i)
each SNP is mapped to its nearest gene according to the
SNP and gene localization in Ensembl 61 database (http://
www.ensembl.org/biomart/martview) (21), and the
maximum t=�log(P-value) of the SNPs mapped to a
gene is assigned to represent the gene. Then all the genes
are ranked by decreasing their representation value t. (ii)
For each pathway S, ES (enrichment score, i.e. a
Kolmogor-Smirnov like running-sum statistics with
weight (a)) which measures the tendency that genes of a
pathway are located at the top of the ranked gene list, is
calculated. (iii) ES is converted to SPES (significant pro-
portion based enrichment score) by multiplying it to m1/
m2, where m1 is the proportion of significant genes
(defined as genes mapped with at least one of the top
5% most significant SNPs of all SNPs in GWAS) for
pathways S and m2 is the proportion of significant genes
for all the genes in the GWAS. (iv) SNP label permutation

and normalization are employed to generate the distribu-
tion of SPES and to correct gene variation (the bias due to
different genes with different number of mapped SNPs)
and pathway variation (the bias due to different
pathways consisting of different number of genes).
(v) Based on all the distributions of SPESs generated by
permutation, nominal P-value is calculated and false dis-
covery rate (FDR) is computed for multiple testing cor-
rection (22).

DESCRIPTION OF THE ICSNPATHWAY WEB
SERVER

System development, system overview and data resources

ICSNPathway is written in Java and JSP based on Struts
framework and implemented on an Apache web server.
AJAX is used for the interface development. The web
server is freely available and registration is not required.
Besides the web-based browser, users can run
ICSNPathway through command lines by using the
template program provided in the web site. The
overview of ICSNPathway web server is shown in
Figure 1.

There are several data resources included in our web
server to support the analysis. One is the LD data from
HapMap (phases I+II+III, rel #27, downloaded from
http://hapmap.ncbi.nlm.nih.gov/downloads/ld_data/
2009-04_rel27/) (20) for LD analysis of the most signifi-
cant SNPs. Another is the SNP function annotation
database, which was built based on Ensembl 61 database
(http://www.ensembl.org/biomart/martview) (21) and by
integrating predictions of deleterious non-synonymous
SNPs from PolyPhen-2 (5), SIFT (6) and SNPs3D (7).
The third is the pathway database consisting of
pathways from KEGG (http://www.genome.jp/kegg/
pathway.html) (19), BioCarta (http://www.biocarta.com/
genes/index.asp), GO (gene ontology, http://www
.geneontology.org/) (23) (level 4 GO terms of biological
process domain and molecular function domain) and
MSigDB (http://www.broadinstitute.org/gsea/msigdb/
index.jsp) v3.0 (24) (curated GO terms of biological
process domain and molecular function domain).

Input data

The required input data of ICSNPathway is the full list of
GWAS SNP P-values (rs-IDs along with corresponding
association test P-values separated by tab and without
head line). To define the most significant SNPs, users
may input the P-value threshold or use the default param-
eter. Another optional input is the customized pathway
data for PBA. If users make hypothesis that some
pathways, which may not be included in our web server,
might be associated with certain trait, they can upload the
pathway data onto the server. The uploaded pathway data
can either be combined with the existing pathway
database in our server or be used as a separate pathway
database.
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Running procedure

There are mainly four steps included in the ICSNPathway
analytical framework. (i) Search for SNPs in LD with
(r2 or D0> user-defined threshold, default: r2> 0.8) and
located in the flanking region (with distance up to
200 kb up- and downstream) of the most significant
SNPs of GWAS; then perform functional annotation on
these SNPs (including the most significant SNPs) by
querying the internal SNP function annotation database.
(ii) Map the functional SNPs to their corresponding genes
and then select the pathways containing any one of the
mapped genes from the default or customized pathway
database as search space for PBA. (iii) Perform PBA
using algorithm described above on the full list of
GWAS SNP P-values. (iv) Identify candidate causal
SNPs and corresponding candidate causal pathways to
generate study hypothesis of SNP ! gene ! pathway(s)
for disease mechanism. The candidate causal pathways are
defined as pathways identified by PBA and the candidate
causal SNPs are defined as functional SNPs both in LD
with the most significant SNPs and in the candidate causal
pathways. With default parameters, usually it will take less
than three minutes for a single run which includes �150
most significant SNPs and �455K GWAS SNP P-values.

The GWAS data uploaded by users will be deleted auto-
matically as soon as the above 4-step analysis is finished.
The main default parameters used in ICSNPathway

include: (i) threshold to specify the most significant
SNPs: P-value< 10�5, (ii) HapMap population: CEU,
(iii) LD cutoff: r2> 0.8, (iv)distance for searching LD
neighborhoods: 200 kb, (v) rule of mapping SNPs to
genes: within gene, (vi) pathway/gene set database:
KEGG, BioCarta, GO biological process and GO molecu-
lar function, (vii) number of genes in each pathway/gene
set: minimum 5 and maximum 100 and (viii) FDR (False
Discovery Rate) cutoff for multiple testing correction for
PBA: 0.05.

Output and analyzing a GWAS investigation for
rheumatoid arthritis

The output includes lists of candidate causal SNPs and
corresponding candidate causal pathways with detailed
information for each SNP and pathway. The information
for each candidate causal SNP includes rs-ID, functional
class, corresponding gene, the candidate causal pathway(s)
it represents in, its �log10(P-value) in original GWAS, the
most significant SNP that it is in LD with, r2, D0, and
�log10(P-value) of the most significant SNP in original

Figure 1. System overview of the ICSNPathway web server.
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GWAS. The information for each candidate causal
pathway includes detailed description, genes, nominal
P-value and FDR (both are for PBA) to help evaluate
the statistical significance of the candidate causal
pathway. Hypothesis derived from the above analysis is
expressed as [SNP (functional class) ! gene !
pathway(s)].
As an example, we investigated a GWAS of rheumatoid

arthritis (RA) (25). The result of this GWAS includes
�455K GWAS SNP P-values and 154 SNPs with
P-value< 10�5. Utilizing the �455K GWAS SNP
P-values as input and the 154 SNPs as the most significant
SNPs, with default parameters, ICSNPathway identified
two candidate causal SNPs (rs2476601 and rs2230926) and
two candidate causal pathways (‘protein tyrosine phos-
phatase activity’ and ‘CD40L signaling pathway’)
(Tables 1 and 2). SNP rs2476601 is in LD with
rs6679677 (r2=1.0), which is with genome-wide signifi-
cance in the original GWAS (P-value=3.2� 10�26).
SNP rs2230926 is in LD with rs5029939 (r2=1.0),
which does not reach genome-wide significance in the
original GWAS (P-value=3.2� 10�6). Although
rs2476601 and rs2230926 were not presented in the
original GWAS for RA, both of them were proved to be
associated with RA in additional GWASs for RA (26–29).
The two candidate causal SNPs and two candidate

causal pathways indicate two hypotheses of biological
mechanisms. One is [rs2476601 (non-synonymous, dele-
terious) ! PTPN22 ! protein tyrosine phosphatase
activity] and the other is [rs2230926 (non-synonymous)
! TNFAIP3 ! CD40L signaling pathway].
rs2476601(C/T) locates within the coding region of gene
PTPN22, which encodes lymphoid tyrosine phosphatase
(LYP). LYP acts as a key negative regulator of T cell
receptor (TCR) signaling. It can phosphorylate and be
phosphorylated by protein tyrosine kinase Csk, another
negative regulator of TCR signaling. The risk allele T of
rs2476601 leads to a R620W substitution within the

protein. The substitution affects the interaction between
LYP and Csk and reduces phosphorylation of LYP on
tyrosine. The change of protein tyrosine phosphatase
activity affects TCR signaling and abnormal TCR signal-
ing has been considered as a major risk factor for auto-
immunity, such as RA (30). For rs2230926 (T/G), it is a
coding SNP in gene TNFAIP3, which encodes protein
A20, which is a participant of CD40L signaling
pathway. A20 has anti-inflammatory activity by inhibiting
TNF-induced NF-kB activity in CD40L signaling
pathway. The allele G of rs2230926 results in a F127C
substitution, which will reduce the effectiveness of A20
to inhibit NF-kB activity and may affect the susceptibility
of RA (31). The above two hypotheses were derived by
GWAS data interpretation using ICSNPathway and are
both well supported by experimental evidences.

DISCUSSION

In order to solve the challenge for GWAS data interpret-
ation, our web server is developed to identify candidate
causal SNPs and corresponding candidate causal
pathways in one analytical framework. ICSNPathway
will help researchers to derive mechanism hypothesis of
SNP ! gene ! pathway(s) for complex disease study.
It is well-known that complex disease is caused by
multiple genetic factors interacting with environmental
factors and complex molecular network and cellular
pathways usually play important roles in susceptibility
of complex diseases (32). As pathways represent the
combined genetic effect, the candidate causal SNPs,
which are supported by the pathways associated with
traits, are supposed to have much higher confidence to
be true than those that are lacking in support of such
pathways. Meanwhile, ICSNPathway considers not only
the strong association signal of most significant SNPs, but
also the combined effect of modest SNPs, which ensures a
comprehensive analysis.

It should be noted that ICSNPathway is not intended to
be used to predict true causal SNPs and pathways since
for complex diseases, due to the limited understanding of
their genetic basis, currently there is no concrete evidence
to be used to establish the predictive properties (e.g. as-
sessments of false-positive rates) for ICSNPathway. So the
outputs of ICSNPathway are candidate causal SNPs and
pathways, plus the mechanism hypotheses of SNP! gene
! pathway(s) based on them. An important application
of the ICSNPathway results is to allow investigators to

Table 1. Candidate causal SNPs of RA

Candidate causal SNP Functional class Gene Candidate causal
pathwaya

�log10(P)
b In LD with r2 D’ �log10(P)

c

rs2476601 non-synonymous (deleterious) PTPN22 1 – rs6679677 1.0 1.0 25.5
rs2230926 non-synonymous TNFAIP3 2 – rs5029939 1.0 1.0 5.5

aThe number indicates the index of pathways, which are ranked by their statistical significance (FDR).
b
�log10(P) for candidate causal SNP in original GWAS. ‘-’ denotes that this SNP is not represented in the original GWAS.

c
�log10(P) for the SNP (which the candidate causal SNP is in LD with) in original GWAS.

Table 2. Candidate causal pathways of RA

Index Candidate pathway Nominal P FDR

1 protein tyrosine phosphatase
activity (GO:0004725)

0.004 0.041

2 CD40L Signaling Pathway
(cd40Pathway)

0.010 0.042
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test ‘a priori’ hypothesis concerning pathways by using
candidate causal SNPs as the practical starting point.
For such applications, although there is no concrete
evidence of prediction, some investigators may still wish
to test certain pathway-related hypotheses, particularly if
there is some ‘a priori’ connection between the pathway
and the disease of interest.

At the time of writing, there is no web-based tool that
performs the same function as ICSNPathway, namely to
identify candidate causal SNPs and their corresponding
candidate causal pathways from GWAS by integrating
linkage disequilibrium (LD) analysis, functional SNP an-
notation and PBA. The summary and comparison of
current GWAS web tools are shown in Table 3, which
can be classified into two types. One type of web tool is
for identification of candidate causal SNPs or prioritizing
SNPs, which includes SNAP (4), PolyPhen-2 (5), SIFT (6),
SNPs3D (7), PANTHER (8), FASTSNP (9), F-SNP (10),
CandiSNPer (11), SPOT (12) and SNPinfo (13). The
SNAP web server employs LD analysis to identify the
proxy SNPs of the input SNPs by using HapMap (20).
The web tools of PolyPhen-2, SIFT, SNPs3D and
PANTHER focus on non-synonymous SNPs to predict
their (deleterious) impact on protein. FASTSNP and
F-SNP annotate functional information (deleterious
non-synonymous, splice site, etc) to the input SNPs.
While the web servers like CandiSNPer, SPOT and
SNPinfo implement both LD analysis and functional
SNP annotation to annotate or prioritize the input
SNP(s). The other type of GWAS web tools is for identi-
fication of pathways associated with disease, which
includes GeSBAP (16), GSA-SNP (17) and
i-GSEA4GWAS (18). These three tools focus on interpret-
ation of the full list GWAS data by applying three differ-
ent PBA approaches of segmentation test, a collection of
three methods (Z-statistic method, restandardized GSA
and GSEA), and i-GSEA respectively to identify
disease-associated pathways. The first type of web tools

provides the output of SNP(s) along with function anno-
tation (except SNAP which does not provide function an-
notation) to provide the hypothesis of candidate causal
SNP! gene, without taking into account the information
of disease-associated pathways. While the second type of
web tools identifies pathways associated with trait to
generate the hypotheses only in pathway level, without
analysis on significant SNPs and genes. ICSNPathway
will bridge the gap between these two types of web tools
by implementing both the analysis of candidate causal
SNPs and PBA. The ICSNPathway web server will help
improve GWAS data interpretation from variants to bio-
logical mechanisms to well guide future biological mech-
anism studies.
We set two strict default parameters in ICSNPathway

for pathway-based analysis. One is for parameter ‘rule of
mapping SNPs to genes’ (default: within gene, which
means that only the P-values of the SNPs located within
genes are utilized in PBA) and the other is for parameter
‘FDR cutoff for multiple testing correction for PBA’
(default: 0.05). These default settings ensure that the
result of PBA is based on the association signals inside
genes and with statistical significance. Users may also
adjust the ‘rule of mapping SNPs to genes’ to ‘500 kb
upstream and downstream of gene’ and/or relax the
‘FDR cutoff for multiple testing correction for PBA’ to
0.25, for example. In this way users may get more candi-
date causal SNPs and pathways to try the possibility to
have more novel findings, but the confidence of the results
will be reduced and this will also increase the background
noise for the true results.
The premise that ICSNPathway is applicable for a

GWAS investigation is that both LD neighborhood(s) of
the most significant SNPs from HapMap LD data
(r2> 0.8) and functional information of the LD neighbor-
hood(s) from Ensembl database are available. We
evaluated whether our approach could be widely used
for the available GWAS investigations. By the end of

Table 3. Summary and comparison of some web tools for GWAS

Web tool Input Output

proxy
SNP

functional
SNP annotation

pathway associated
with trait

SNAP (4) a list of SNPs Yes No No
PolyPhen-2 (5) single non-synonymous SNP No Yes No
SIFT (6) a list of non-synonymous SNPs No Yes No
SNPs3D (7) single non-synonymous SNP No Yes No
PANTHER (8) single non-synonymous SNP No Yes No
FASTSNP (9) a list of SNPs No Yes No
F-SNP (10) single SNP No Yes No
CandiSNPer (11) single SNP Yes Yes No
SPOT (12) a list of SNPs, with or without P-values Yes Yes No
GenomePipe of SNPinfo (13) a list of GWAS SNP P-values Yes Yes No
GeSBAP (16) full list of GWAS SNP P-values or genotype data No No Yes
GSA-SNP (17)a full list of GWAS SNP P-values No No Yes
i-GSEA4GWAS (18) full list of GWAS SNP P-values No No Yes
ICSNPathway full list of GWAS SNP P-values Yes Yes Yes

aGSA-SNP is a stand-alone tool.
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March 2011, taking the GWASs for Caucasian population
as an example, there have been 3391 SNPs
(P-value< 10�5) identified by 556 GWAS investigations
for 361 traits (http://www.genome.gov/gwastudies). Of
these studies, there are a total of 477 SNPs (most signifi-
cant SNPs plus their LD neighborhoods with functional
annotation) in 265 GWASs (�48%) for 185 traits (�51%)
that can be analyzed by ICSNPathway. Thus,
ICSNPathway is applicable to a high proportion of avail-
able GWASs. The most significant SNPs, which represent
most significant association signals detected by GWAS,
are utilized in the initial step of the ICSNPathway
analysis for searching candidate causal SNPs. However
there are usually a limited number of such SNPs for a
single GWAS, leading to the possible limitation while
searching for candidate causal SNPs. To solve this, a
possible way is to loose the threshold of P-value while
specifying the most significant SNPs or extend the most
significant SNPs to SNPs identified by other GWASs for
the same trait or any other SNPs that are considered to be
associated with trait according to users’ knowledge. So
users may use the customized most significant SNPs as
input (ICSNPathway provides this option while the
input of the full list of GWAS SNP P-values is manda-
tory). Thus, ICSNPathway is extendable to help research-
ers to test and find proofs for their own hypothesis.
ICSNPathway will be regularly updated to ensure the

most up-to-date data resources. In the future,
ICSNPathway will be extended to fulfill more functions
with more user-friendly options. For example, the
function of LD neighborhood searching will be imple-
mented by calculating LD using HapMap genotype
data, so that users can search for LD neighborhoods of
the most significant SNPs with a more flexible range. In
summary, ICSNPathway represents a feasible solution for
identifying both candidate causal SNPs and their corres-
ponding candidate causal pathways to bridge the gap
between GWAS and biological mechanism study of
complex disease.
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