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Real‑time and ultrahigh accuracy 
image synthesis algorithm for full 
field of view imaging system
Shu‑Bin Liu1, Jin‑Hui Wang1, Rong‑Ying Yuan2, Wu‑Xiang Zhao1, Lei Li1* & 
Qiong‑Hua Wang2*

In this paper, we propose a real time, ultrahigh accuracy and full-field-of-view (RUF) algorithm for 
full field of view (FOV) imaging system. The proposed algorithm combines rough matching and 
precise matching method to stitch multiple images with the whole FOV in short time and high 
imaging quality. In order to verify real-time imaging effect of RUF algorithm, we also fabricate a 
multi-camera imaging system which includes 19 independent cameras. And the experiment result 
practically illustrates that full-FOV system can achieve good performances under a near-limiting FOV 
of 360° × 240° with low distortion, meanwhile, optical resolution reaches up to 95 megapixels. 100% 
registration-accuracy RUF algorithm for imaging in one second can be widely applied to any optical 
imaging engineering field with large FOV, such as remote sensing imaging, microscopy imaging, 
monitoring system engineering fields and so on.

Optical imaging systems are now widely used in medical, biological and military fields1–3. With the expansion 
of application scope, higher performance indexes of imaging systems are required, such as larger FOV, higher 
resolution and lower distortion. In previous work, the conventional single-channel imaging system adopts a 
complex diffraction/refraction hybrid system4. However, the uncorrected second-order spectrum of the optical 
glass results in a poor image quality. Some scientists make some contributions to the planar imaging system 
with multiple channels5–8. However, FOV is small and imaging quality is at a low level. Besides, multi-camera 
imaging system without image processing technology requires multi-window scanning imaging, which causes 
great confusion to observation for real-time and large-FOV performance9. To obtain full FOV and high resolu-
tion, usually image synthesis algorithms are needed and the system combined with image synthesis algorithms 
can obtain high resolution10–17. For example, AWARE-2 camera is proposed, which achieves high resolution 
synthesized image by algorithm. However, it only has horizontal 90°–120° FOVs and cylindrical 60°–70° FOVs, 
which can’t provide a capacious vision10. Furthermore, the conventional image processing algorithms, such as 
rotation-clipping-mapping algorithm, often contain relatively large errors and the imaging precision is at a mil-
limeter level11. Besides, conventional large-FOV imaging system with a pixel-level accuracy can’t guarantee a 
full field-of-view imaging effect12. And High-resolution imaging system based on traditional imaging synthesis 
algorithm is difficult to realize real-time imaging, which is extremely detrimental to engineering requirements14. 
Some image processing techniques matching imaging system can’t deal with the distortion, which causes bad 
distortion15. The imaging system using scanning method is also time-consuming and make a timely judgment 
on the imaging result16. Also, some imaging systems with image processing technique have no stable robustness 
and accuracy rate facing complex environment17. These conventional multi-channel imaging systems can’t meet 
the functional requirements of large FOV, high resolution and low distortion due to the limitation of optical prin-
ciple. Therefore, an imaging system with the large FOV, high resolution and low distortion is highly demanded.

In this paper, we propose a real time, ultrahigh accuracy and full-field-of-view (RUF) algorithm for full 
field of view (FOV) imaging system. The proposed algorithm combines rough matching and precise matching 
method to stitch multiple images with the whole FOV in short time and high imaging quality. In order to verify 
real-time imaging effect of RUF algorithm, we also fabricate a multi-camera imaging system which includes 
19 independent low-cost cameras. And the experiment result practically illustrates that full-FOV system can 
achieve good performances under a near-limiting FOV of 360° × 240° with low distortion, meanwhile, optical 
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resolution reaches up to 95 megapixels. 100% registration-accuracy RUF algorithm for imaging in one second 
can be widely applied to any optical imaging engineering field with large FOV, such as remote sensing imaging, 
microscopy imaging, monitoring system engineering fields and so on.

Theory on the proposed algorithm
System model.  Figure  1 illustrates the system model of the proposed algorithm, where multi-aperture 
imaging system divides the whole object space into several small FOVs (for example, a–g), and each imaging 
channel captures an image (A–G) with a small FOV. And the captured images are mosaicked by our proposed 
algorithm to get a large-FOV and high-resolution image.

The imaging relationship between the total FOV and a single FOV is obtained via analyzing the imaging 
principle of large FOV, the total FOV of the imaging system can be expressed as:

where TFOV is the total FOV of the imaging system and FOV is a single FOV. And n is the number of system 
apertures, evidently Fc is the FOV of the overlapping portion. Furthermore, there is a theoretical possibility 
of infinitely scalable field angles and pixel values, but still maintains subject to low-cost camera facilities and 
wide-FOV principle.

Real time, ultrahigh accuracy and full‑FOV (RUF) algorithm.  Based on the above structure, we pro-
pose a RUF algorithm for full field of view imaging system. The proposed algorithm combines rough matching 
and precise matching method. The flowchart for our proposed RUF algorithm is shown in Fig. 2.

In this prototype, multi-camera outputs have the natural advantages of parallel-processing so real-time imag-
ing is realized, which meets practical requirements of real-time and ultrahigh-precision (100%) imaging.

The RUF includes four main steps: parallel acceleration using multithreading and GPU technology, extraction 
and description of feature points, precision optimization (100% precision) and image reconstruction. Benefiting 
from independent multi-view snapshot, multi-view real-time imaging is accomplished using multithreading 
technique. AKAZE18 is used to extract feature points, which is implemented using multithreading technology. 
Feature points in multiple images are extracted independently without affecting each other, so the number of 
created threads (N) and the number of images (M) satisfy the following relation:

(1)TFOV = nFOV − FC ,

Figure 1.   The system model of proposed algorithm.
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where Y is the number of threads that need to be re-created with the exception of the main thread, and a mutex 
is added to prevent multiple threads from accessing the same image at the same time. Due to the synchronized 
efficiency, parallel time is significantly less than serial time. Then previous feature points extracted are matched 
by FREAK descriptors  \* MERGEFORMAT 19, RUF combining AKAZE and FREAK yields a RUF feature 
description.

Precision optimization utilizes two-step method: (1) the proposed variable iteration method for the rough 
matching. (2) Optimal matching based on equal slopes for the precise matching. We demonstrate it as shown in 
Fig. 3. In this process, points of interest are matched and the rest of points are discarded, where the best registra-
tion result (100% accuracy) is used for following image reconstruction. It is noted that the above two steps all 
satisfy the symmetry principle. That is, each image and reference image must meet the same condition of feature 
matching before they will be regarded as good point pairs by default. Conventional matching filtration method 
usually utilizes the method of constant threshold to judge whether it belongs to a pair of matching points, and 
only satisfies the requirement of unilateral matching. By constantly changing new fixed threshold, however, some 
feature matching pairs can be obtained but some error matches still exist (due to the constant threshold). In this 
paper, we propose a variable iteration algorithm, which aims to solve the problem of mismatches. The theory 
with our proposed method for the rough filtration is illustrated in Fig. 3a, where the blue rectangle represents 
the image A, points (B–F) are the points of interest reserved for the primary filtration, blue and white circles are 
search areas with different radii. In this step, we select a point of interest matched (B) as a center point, which 
is regarded as a good point of interest with four points (n = 5) around it in a circle of radius R. However, if the 
center point is only with three points (n < 5) around it, then we need to add one to the radius (R + 1) until the 
fifth point of interest is found to jump out of the loops, the algorithm core is described as follows:

(2)Y =

{

M − 1,N > M
N − 1,N < M,

Figure 2.   The flowchart for our proposed RUF algorithm.
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where L represents the circle search length that is a variate, which has good advantage for accuracy filtration over 
the comparison method. This idea avoids the disadvantage of circle search using constant search radius, which 
has important implications for ultrahigh-precision imaging. Unideal matching point pairs are removed. The 
principle of optimal matching based on equal slopes is illustrated in Fig. 3b, where optimal matching based on 
equal slope is used to reserve the optimal matched point pairs. The expression for the equal slope is as follows:

where kn•kn is the nth slope of the line that matches the points, and ( xn , yn ) is the coordinate of the nth matched 
points, and ( xn′ , yn′ ) is the coordinate of the nth’ matched points in the reference image. As illustrated in Fig. 3b, 
point pairs matched (for example, B and B′, C and C′, D and D′, F and F′) are right to be reserved and the wrong 
pairs (V and V′) are discarded. Then the mapping between each image and reference image is estimated by 
perspective transformation. The mapping images are defined in a uniform coordinate system, the relationship 
is given by –the following relational expression:

where [x, y, z] is the coordinate of original image and [X, Y, Z] is the coordinate of new image with transforma-
tion, M is the transformation matrix which helps us to obtain the perspective transformation model preparing 
for the following image reconstruction.

The obtained registration information is used for the image reconstruction. In the process of reconstruction, 
we utilize a multi-band fusion and exposure compensation method to output large-FOV and high-resolution 
image. GPU computing makes this process in parallel processing architecture, which allows research to be 
conducted not only in technical areas but also to provide assistance for practical engineering needs. In RUF 
algorithm, GPU parallel processing is already realized, so our proposed RUF algorithm enables to output real-
time, ultrahigh-precision image with full-FOV.

Experiment
System design and simulation.  To get the whole FOV, we first designed and modeled a 19 cameras imag-
ing system are placed in a given position in and simulated the FOVs of the 19 cameras in SolidWorks software 
platform. Figure 4 shows the FOV model of 19 cameras. Figure 4a shows FOV of a single camera, and 19 small 
FOVs realize the nondestructive detection without dead-zone, the effective FOV of the camera is 100°(θ = 100°). 
Figure 4b, c are the overlap models of 19 FOVs from the different viewing angle. In the simulation, the fabricated 
system reaches 360° and the vertical angle reaches more than 240°.

For the global camera layout, we establish a three-dimensional coordinate system to describe the distribu-
tion characteristics of 19 imaging channels. Based on SolidWorks software platform, the rotation angles of 19 
imaging channels are shown in Table 1. Here i represents the number of channels, θ is the angle of the imaging 
channel to the X-axis and β is that of the imaging channel to the Z-axis. The imaging channel A is the center of 
19 channels, which is regarded as a reference. Then we define the rotation angle around it as counterclockwise 
(clockwise) to negative (positive).

RUF algorithm for full field of view imaging system.  To prove the efficiency of the proposed algo-
rithm, we fabricate a multi-camera imaging system consisting of 19 cameras illustrated in Fig. 5a. The spherical 
frame is made of aluminum. 19 holes was drilled on it to install 19 cameras. The radius of the frame is ~ 130 mm 
and the thickness is ~ 6 mm. The camera is shown in Fig. 5b, which consists of a lens and an image sensor. And 
13-mm-diameter camera has a FOV of 100° and its focal length is ~ 3.5 mm. Specifically, 19 cameras are used for 

(3)L =

{

R, n ≥ 5
R + 1, n < 5,

(4)kn =
yn− yn′

xn− xn′
,

(5)[X,Y ,Z] = M
[

x, y, z
]

,

Figure 3.   The schematic diagram of accuracy optimization for proposed RUF algorithm. (a) The principle of 
the variable iteration step. (b) Optimal matching based on equal slopes.
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information capture and the 19 images are captured at 30 frames per second. One computer is used to connect 
the cameras and storage the data, which is really the hardware carrier used to realize real-time imaging.

In the experiment, we use the fabricated system to take the image of a building. Firstly, the fabricated system 
captured the whole building. Then, the 19 images are synthesized using the proposed algorithm. We note that 
the algorithm is working on a PC (Intel Core i9-9880H CPU @2.3 GHz/4.8 GHz + RTX2080) equipped with 
Windows10 operating system and is based on the platform of vs2019 + opencv4.2. Each image has a resolution 
of 2,592 × 1,944. The 19 images are shown in Fig. 6. The whole-FOV image is shown in Fig. 7. From Fig. 7, we 
see that the synthesized image has large FOV, high resolution and low distortion. In the experiment, the whole 
FOV of the image is 360° × 240°. We can see each part of the image is very clear, here optical resolution reaches 
up to 95 megapixels. As an engineering requirement, real-time imaging is yet realized.

We also compare the fabricated system with a conventional fisheye camera with 5-megapixel as shown in 
Fig. 8. Both systems can obtain a large-FOV image. However, if we compare the details, the performances of the 
two systems are different.

Comparing the details of the two images in region 1, the fabricated system demonstrates that part of scene 
from the bridge bottom to the grille ceiling. It provides accurate information, for example, exactly how many 
linear grilles (50) are between the 2 elongated white boards on the building ceiling. Also, exactly how many grilles 

Figure 4.   FOV of 19 cameras. (a) FOV of a single camera. (b)Overlap model of the view 1. (c) Overlap model 
of the view 2.

Table 1.   The angle of 19 imaging channels in space (°).

i A B C D E F G H I J

θ 0 0 − 60 − 120 − 180 120 60 60 30 0

β 0 39.8 39.8 39.8 39.8 39.8 39.8 79.6 69.0 79.6

i K L M N O P Q R S

θ − 30 − 60 − 90 − 120 − 150 − 180 150 120 90

β 69 79.6 69 79.6 69 79.6 69 79.6 69

Figure 5.   The preparation result of the fabricated system (130 mm × 130 mm × 6 mm). (a) The structure of the 
fabricated system. (b) The composition of single imaging channel.
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(3) are occupied by one white board, which is also clear to see the details of window on the wall. However, it’s 
unable to see clearly using the fisheye camera.

Comparing the details of the two images in region 2, the conventional fisheye camera is unable to take the 
image of the whole scene with uniform exposure. For example, some parts of the scene may be overexposed, and 
the other parts of the scene may be underexposed due to complex lighting environment in real world. However, 
the fabricated system avoids this problem. The fabricated system shows an example high-dynamic-range (HDR) 
image, the sunlight of that varies from bright wall to the dark ceiling and returns to the colorful scene, which is 
difficult to get uniform exposure using the fisheye camera (see region 2 in fisheye image). From the labeled-yellow 
region in the fabricated system, we can see characters in the exhibition hall clearly. The comparison illustrates an 
HDR synthesized image without the partial darkness covers the color information of the object space. This differ-
ence mainly benefits from independent exposure of each camera, which more accurately matches human vision.

Comparing the details of the two images in region 3, the conventional imaging system has serious distortion 
due to large FOV. However, the proposed algorithm synthesizes multiple low-dynamic-range (LDR) images 
into an HDR image. Each camera has relatively small FOV, which largely reduces the distortion. For instance, 

Figure 6.   The 19 images (captured on 13 June 2019 at 15:26).

Figure 7.   The whole-FOV image captured by fabricated system.
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the white border of cuboid building in the synthesized image is clearly straight while that in the fisheye image is 
curved. A combination of system and algorithm provides a competitive advantage over the comparison system. 
Therefore, our fabricated system can get large-FOV image with low-distortion and high-resolution.

Accuracy of RUF.  To prove the accuracy of the proposed algorithm, we did some experiments and illus-
trated the whole imaging process of RUF image synthesis algorithm.

An example for points of interest detection-filtration-matching is illustrated in Fig. 9a–g. Figure 9a, b are 
the input images, Fig. 9c, d show that feature points are marked using circles with various colors. Our proposed 
variable iteration method is used to remove the bad points of interest, and the matching result is illustrated in 
Fig. 9e, where the blue points of interest are discarded and the red are matched as good matches.

Due to the introduction of variable thresholds, the matching precision is improved a lot until the good 
matches are retained (see previous “RUF algorithm for full field of view imaging system” section for details). 
Considering the computation, the optimal matches based on equal slopes is expected (see previous “RUF algo-
rithm for full field of view imaging system” section for details). The matched result is illustrated in Fig. 9f, the 
red matched pairs with equal slopes are reserved and used for finding the optimal solution. The result for image 
reproduction is illustrated in Fig. 9g, which proves that the RUF method has the ability to adapt to complex 
environment including scale scaling, uneven illumination and rotation. RUF enables real-time, 100% accuracy 
and high-resolution imaging to be relized.

As illustrated in Fig. 10, the RUF example data is given. In this step, GPU acceleration and multithread 
technology enables real-time imaging to be possiable, and the matched pairs based on equal slopes can always 
be found to be the best solution, Fig. 10 illustrates RUF registration information achieves 100% accuracy in a 
near-field scene. We introduce SSIM20 to quantitatively evaluate image quality. We obtain 2 blue regions of the 
patchwork areas in the composite picture (see Fig. 9g for blue regions). As illustrated in Table 2, the values of 
SSIM1 (comparing the left-blue region with identical region in original image a) and SSIM2 (comparing the 
right-blue region with identical region in original image b) are computed. Image synthesis algorithm is able to 
adapt to complex environments. Previous sections have proved the adaptability of RUF algorithm to angle, light 
and scale, different rotation angles, and light conditions also cause SSIM to drop. This decline is predictable and 

Figure 8.   The comparison of the fisheye camera and our fabricated imaging system. (a) 360° fisheye image 
captured by fisheye camera:the regions 1–3 are the enlarged details of the labelled regions in (a). (b) The 
synthesized image with large FOV, high resolution and low distortion: images 1–3 are the enlarged details of the 
labelled regions in (b).
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Figure 9.   A near-field scene for RUF imaging, (a,b) original images, (c,d) points of interest are extracted, (e) 
variable iteration method for the rough matching, (f) optimal matching for the precise matching, (g) the result 
for image reconstruction.
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acceptable. The red and purple regions are selected to operate the further verification, Table 2 shows the SSIM 
value close to split seam can be stable above 0.95 and non-stitched region can be stable above 0.98. The results 
demonstrate that image quality is clearly improved (SSIMmax = 1). This is because that both images are from the 
original image (theoretically, SSIM = 1). Due to the distortion, rotation, scaling and other performance effects of 
the algorithm for the synthesized image, the measured SSIM value must be less than 1, but the stitching accuracy 
is infinitely close to 100%.

In order to further prove the ultrahigh accuracy of the algorithm, a far-field scene is illustrated in Fig. 11. 
Figure 11 shows all points of interest are right (100% registration rate). SSIM is introduced to evaluate the image 
quality, and Fig. 11g demonstrates SSIM indexes of 2 yellow-regions near the seam all are 1.0. Therefore, the 
proposed algorithm with real-time imaging can achieve ultrahigh accuracy (100%), which is of great significance 
for the application of algorithms in engineering.

The processing time of RUF for full-FOV system is described in Table 3. Table 3 shows the required time for 
each step of full-FOV algorithm (for full-FOV system: 19 images). Table 4 demonstrates the detailed processing 
time for various number of images (2, 7, and 19), where near-field and far-field scenes correspond to 227 ms 
and 158 ms respectively. Comparing with serial time, parallel processing improves by an order of magnitude.

Conclusion
In this paper, we propose a real time, ultrahigh accuracy and full-field-of-view (RUF) algorithm for full field of 
view (FOV) imaging system. The proposed algorithm combines rough matching and precise matching method 
to stitch multiple images with the whole FOV in short time and high imaging quality. In order to verify real-time 
imaging effect of RUF algorithm, we also fabricate a multi-camera imaging system which includes 19 independent 
cameras. And the experiment result practically illustrates that full-FOV system can achieve good performances 
under a near-limiting FOV of 360° × 240° with low distortion, meanwhile, optical resolution reaches up to 95 
megapixels. 100% registration-accuracy RUF algorithm for imaging in one second can be widely applied to any 
optical imaging engineering field with large FOV, such as remote sensing imaging, microscopy imaging, moni-
toring system engineering fields and so on.

Appendix
We utilize SSIM as quantitative evaluators in this paper. The SSIM is defined as:

(6)SSIM(x, y) =

(

2uxuy + c1
)(

2σxy + c2
)

(

u2x + u2y + c1

)(

σ 2
x + σ 2

y + c2

) ,

(7)c1 = (k1L)
2, c2 = (k2L)

2,

Figure 10.   The line chart of RUF data.

Table 2.   The image quality evaluation for near-field scene.

Registration (%) Reconstruction (SSIM1,2,3,4) Average (SSIM1,2,3,4)

Left-blue image 100 0.972 0.962

Right-blue image 100 0.953 0.962

Left-red image 100 0.974 0.984

Right-purple image 100 0.995 0.984
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where ux and uy is the average of x and y, σ is variance and σxy is covariance of x and y, L is the dynamic range 
of the pixel values, and k1 = 0.01 , k2 = 0.03 by default. The ideal value of SSIM is in the range between ‘0’ to ‘1’, 
where SSIM = 1 means two identical images completely.
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Table 3.   The time of algorithm step for full-field-of-view imaging system.

Step Feature extraction Accuracy optimization Image construction

Time 218 ms 230 ms 534 ms

Table 4.   The detailed processing time for various number of images.

Numbers 2 images 7 images 19 images Without parallel

Time 227 ms/158 ms 478 ms 1002 ms 14034 ms
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