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Abstract

Background

Studies of vaccine effectiveness (VE) rely on accurate identification of vaccination and

cases of vaccine-preventable disease. In practice, diagnostic tests, clinical case definitions

and vaccination records often present inaccuracies, leading to biased VE estimates. Previ-

ous studies investigated the impact of non-differential disease misclassification on VE

estimation.

Methods

We explored, through simulation, the impact of non-differential and differential disease- and

exposure misclassification when estimating VE using cohort, case-control, test-negative

case-control and case-cohort designs. The impact of misclassification on the estimated VE

is demonstrated for VE studies on childhood seasonal influenza and pertussis vaccination.

We additionally developed a web-application graphically presenting bias for user-selected

parameters.

Results

Depending on the scenario, the misclassification parameters had differing impacts.

Decreased exposure specificity had greatest impact for influenza VE estimation when vacci-

nation coverage was low. Decreased exposure sensitivity had greatest impact for pertussis

VE estimation for which high vaccination coverage is typically achieved. The impact of the

exposure misclassification parameters was found to be more noticeable than that of the dis-

ease misclassification parameters. When misclassification is limited, all study designs per-

form equally. In case of substantial (differential) disease misclassification, the test-negative

design performs worse.
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Conclusions

Misclassification can lead to significant bias in VE estimates and its impact strongly depends

on the scenario. We developed a web-application for assessing the potential (joint) impact

of possibly differential disease- and exposure misclassification that can be modified by

users to their own study scenario. Our results and the simulation tool may be used to guide

better design, conduct and interpretation of future VE studies.

Introduction

Vaccine effectiveness (VE) is defined as a measure of protection among vaccinated persons

attributable to a vaccine administered under field conditions to a given population, which is

different from vaccine efficacy being defined as the effect of vaccination among vaccinated

persons as measured in pre-licensure clinical trials with vaccination allocated under optimal

conditions [1]. Whilst aggregated data may be used for assessment of impact and uptake, indi-

vidual level data are usually required to estimate VE. Such data may be available nationally,

regionally or in health systems which are nationally representative.

When studying VE, it is essential to accurately identify cases of the vaccine preventable dis-

ease and the vaccination status (e.g. defined as 1 dose vs none, 2 doses vs 1 dose, or completely

vs partially vaccinated, depending on the research question of interest). Indeed, assuming mis-

classification is non-differential and independent of other errors, both disease and exposure

misclassifications tend to bias the VE estimates toward the null [2]. Disease and exposure sta-

tuses may reciprocally affect each other’s ascertainment (i.e. differential misclassification) and

lead to biased estimates in either direction [3]. For example, differential disease misclassifica-

tion might arise from differences in healthcare seeking behavior, with subjects more likely to

seek care being more likely vaccinated and also being more likely correctly diagnosed as dis-

eased. Laboratory confirmation is desirable when assessing VE [4]. However, laboratory test

results are not always available or perfectly accurate and, especially in health care database-

based analyses, case definitions often rely on clinical criteria, potentially resulting in disease

misclassification. Different sources of disease misclassification exist and they might be broadly

categorized as under-ascertainment (individuals that do not seek healthcare) and underreport-

ing (individuals that do seek healthcare, but whose health event is not accurately captured due

to various reasons) [5]. Likewise, the vaccination exposure information might be subject to

coding entry error or omissions potentially biasing estimates of VE as well [6].

Concerns regarding disease and exposure misclassifications are particularly relevant when

conducting epidemiological studies using health care databases [7]. Nonetheless, and despite

concerns on data validity, sample representativity and the limited ability to control for con-

founding, there is a strong interest in using large health care databases to study vaccine use

and the outcomes of vaccination by projects such as the Vaccine Safety Datalink [8], Post-

Licensure Rapid Immunization Safety Monitoring programme [9] and ADVANCE (http://

www.advance-vaccines.eu/). Indeed, the size of observational databases allows for the study of

rare events and, as they are embedded within clinical practice, they offer the potential to study

real-world vaccine effects relatively efficiently from both cost and time perspectives.

When conducting VE studies it is important to quantify the potential impact of misclassifi-

cation on the VE estimates in order to assess study feasibility, optimize study design and possi-

bly, the need to correct for misclassification. In earlier work, the impact of non-differential

disease misclassification on influenza VE has been quantified for cohort, case-control and test-
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negative designs based on mathematical derivations [10] and using simulation studies [10, 11].

We extended the simulation study by Orenstein [10] and Jackson [10, 11], to account for both

disease- and exposure misclassification and allow for both differential and non-differential

misclassification. Furthermore, as we show that the impact of misclassification on the esti-

mated VE depends both on the epidemiology of the vaccine preventable disease and the

expected vaccination coverage, we developed a web-application allowing to run simulations

with user-defined parameters. We illustrate the impact of misclassification on VE estimates

using two examples with clearly different disease attack rates and expected vaccination cover-

age; a) childhood pertussis and b) pediatric seasonal influenza VE estimations.

This work was carried out under the auspices of the ‘Accelerated development of vaccine

benefit-risk collaboration in Europe’ (ADVANCE) project, launched in 2013, funded by the

Innovative Medicines Initiative (IMI). The aim of ADVANCE is to help health professionals,

regulatory agencies, public health institutions, vaccine manufacturers, and the general public

make well-informed and timely decisions on benefits and risks of marketed vaccines by estab-

lishing a framework and toolbox to enable rapid delivery of reliable data on vaccine benefits

and risks.

Methods

In this section, we first present analytical derivations illustrating the impact of misclassification

on VE estimates at population level—hence ignoring estimation error—when considering

misclassification in its simplest form, being single source non-differential misclassification.

Although estimation error is ignored, such analytical derivations provide meaningful insights.

However, the derivations become tedious in situations where misclassification is more com-

plex, especially when considering the joint impact of disease and exposure misclassification.

Therefore, we also assess through simulation the impact of differential and non-differential

disease and exposure misclassification when estimating VE using cohort, case-control, test-

negative case-control and case-cohort (screening method) designs. These designs are used to

estimate VE, with the classical cohort and case-control designs being probably the most com-

monly used ones [12]. The test-negative case-control design is popular for estimating VE of

vaccines for influenza and rotavirus [13]. In the test-negative design, the study population are

patients who are seeking medical care for a defined clinical condition (e.g. acute respiratory ill-

ness) and are tested for a specific viral infection (e.g. influenza). Then, patients testing positive

are the cases and patients testing negative are the controls. Finally, the case-cohort or screening

method uses data on the exposure prevalence in cases and compares this to the exposure prev-

alence from an external coverage cohort, from which the cases originate [14].

Notation

First, let πVPD.0 be the unobserved ‘true’ risk of disease due to the pathogen targeted by the vac-

cine (vaccine preventable disease, VPD) in unvaccinated subjects, πOther the corresponding

risk of similar disease due to other pathogens than those targeted by the vaccine, and let γ be

the ‘true’ vaccination coverage. Vaccination affects the VPD risk, with the risk among the vac-

cinated πVPD.1 = (1 − VE)πVPD.0, but does not affect the other disease risk. Furthermore, let p0

be the observed disease prevalence among the subjects indicated as unvaccinated and p1 the

observed prevalence among the subjects indicated as vaccinated. Finally, let SEd be the disease

sensitivity (probability of being indicated as diseased if truly diseased) and SPd the disease

specificity (probability of being indicated as not diseased if truly not diseased) of the case defi-

nition. Similarly let SEe be the exposure sensitivity (probability of being indicated as exposed if

truly exposed) and SPe the exposure specificity (probability of being indicated as unexposed if
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truly unexposed) of the exposure ascertainment definition. In the case of differential misclassi-

fication, the disease misclassification parameters depend on exposure status and vice versa,

yielding four disease misclassification parameters; SEd,E = 0, SEd,E = 1, SPd,E = 0, SPd,E = 1 (with

E = 0 indicating unvaccinated subjects and E = 1 vaccinated subjects) and four exposure mis-

classification parameters; SEe,D = 0, SEe,D = 1, SPe,D = 0, SPe,D = 1 (with D = 0 indicating not dis-

eased subjects and D = 1 diseased subjects).

Impact of misclassification at population-level

Non-differential disease misclassification. Given the simplifying assumptions of no

exposure misclassification and no co-infection between the VPD and the similar disease due

to other pathogens, the observed disease risk among the unvaccinated is the sum of the proba-

bility of having the VPD and being correctly indicated as such (true positive for disease) and

the probability of having the non-VPD and being incorrectly indicated as having the VPD

(false positive for disease) or

p0 ¼ SEd pVPD:0 þ ð1 � SPdÞpOther: ð1Þ

Similarly, for the vaccinated, the observed disease risk equals

p1 ¼ SEd pVPD:1 þ ð1 � SPdÞpOther; ð2Þ

with πVPD.1 = (1 − VE)πVPD.0.

In line with Orenstein [10] and analogous to the statistical definition of bias, we define the

population-level bias as the difference in VE for a population with and without misclassifica-

tion or

D ¼ 1 �
p1

p0

� �

� 1 �
pVPD:1

pVPD:0

� �

¼
pVPD:1

pVPD:0
�

SEd pVPD:1 þ ð1 � SPdÞpOther

SEd pVPD:0 þ ð1 � SPdÞpOther
: ð3Þ

This expression can be rewritten as

D ¼
ðpVPD:1 � pVPD:0Þð1 � SPdÞpOther

pVPD:0ðSEd pVPD:0 þ ð1 � SPdÞpOtherÞ
; ð4Þ

showing that the bias equals zero if the disease specificity equals one, and this irrespective of

the disease sensitivity.

Now, solving (1) for πVPD.0 and (2) for πVPD.1, we have

pVPD:0 ¼ ðp0 � ð1 � SPdÞpOtherÞ=SEd: ð5Þ

pVPD:1 ¼ ðp1 � ð1 � SPdÞpOtherÞ=SEd; ð6Þ

based on which, and given accurate estimates of disease misclassification parameters, an esti-

mate of the ‘true’ VE corrected for disease misclassification can be obtained as

VEp ¼ 1 �
p1 � ð1 � SPdÞpOther

p0 � ð1 � SPdÞpOther
: ð7Þ

Interestingly, the correction equation requires an estimate of disease specificity but not of

disease sensitivity. Obviously, the latter only holds if the disease misclassification is non-differ-

ential by vaccination status.

Non-differential exposure misclassification. Given the simplifying assumption of no

disease misclassification the disease prevalence among subjects indicated as unvaccinated is
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the sum of the probability of having the VPD and being incorrectly indicated as unvaccinated

(false negative for vaccination), and the probability of having the VPD and being correctly

indicated as unvaccinated (true negative for vaccination) or

p0 ¼ ð1 � SEeÞ g pVPD:1 þ SPeð1 � gÞpVPD:0; ð8Þ

with true vaccination coverage γ. Similarly, the true positives and false positives for vaccination

determine the disease risk among the subjects indicated as vaccinated or

p1 ¼ SEe g pVPD:1 þ ð1 � SPeÞð1 � gÞ pVPD:0: ð9Þ

The population-level bias due to exposure misclassification is now defined as

D ¼ 1 �
p1

p0

� �

� 1 �
pVPD:1

pVPD:0

� �

¼
pVPD:1

pVPD:0
�

SEe g pVPD:1 þ ð1 � SPeÞð1 � gÞ pVPD:0

ð1 � SEeÞ g pVPD:1 þ SPeð1 � gÞpVPD:0
: ð10Þ

This expression shows that the impact of sensitivity will be largest when coverage is high

whereas the impact of specificity will be largest when coverage is low.

Solving (8) and (9) for πVPD.0 and for πVPD.1, we obtain

pVPD:0 ¼ ðp0SEe � p1ð1 � SEeÞÞ=ðð1 � gÞðSEe þ SPe � 1ÞÞ; ð11Þ

pVPD:1 ¼ ðp1SPe � p0ð1 � SPeÞÞ=ðgðSPe þ SEe � 1ÞÞ: ð12Þ

Then, an expression of the ‘true’ VE corrected for exposure misclassification corresponds to

VEp ¼ 1 �
1 � g

g

� �
p1SPe � p0ð1 � SPeÞ

p0SEe � p1ð1 � SEeÞ
: ð13Þ

This correction equation depends—next to the observed disease risks—on both exposure

sensitivity and specificity as well as on the ‘true’ vaccination coverage.

Simulation tool

Similar to Jackson [11], we simulate populations at risk for two outcomes; the VPD and a com-

parable outcome due to infection with one or more pathogen(s) not targeted by the respective

vaccination. We assume that a number of subjects are vaccinated with coverage γ. Unvacci-

nated subjects could develop the VPD (only once) with a risk equal to πVPD.0 and the health

outcome due to infection with other pathogens (only once) with a risk equal to πother. For vac-

cinated subjects, the risk of developing the VPD is reduced to πVPD.1 = (1 − VE)πVPD.0, whereas

the risk due to other pathogens is unaffected by vaccination. We furthermore assume that the

risks of developing both outcomes are independent. After having allocated the ‘true’ disease-

and exposure status, we randomly allow these events to be misclassified. In particular, for the

disease events, diseased cases are misclassified as not diseased with a probability of 1 − SEd and

not diseased cases are misclassified as diseased with a probability of 1 − SPd. The same holds

for the exposure events, but using the exposure sensitivity SEe and specificity SPe parameters to

simulate misclassification. In the case of differential misclassification, the disease misclassifica-

tion parameters depend on exposure status and vice versa, yielding eight misclassification

parameters in total; four disease misclassification parameters; SEd,E = 0, SEd,E = 1, SPd,E = 0,

SPd,E = 1 and four exposure misclassification parameters; SEe,D = 0, SEe,D = 1, SPe,D = 0, SPe,D = 1.

Then, for a given parameter setting, a large number of simulated populations (k = 1,2,. . .K)

of a predefined population size N are generated. Based on the observed exposure and disease

statuses in each population k, VE is estimated using the cohort, case-control, test-negative

Misclassification and vaccine effectiveness
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case-control and case-coverage designs, using case-cohort sampling as recommended in [10,

11] for the case-control designs (Table 1). Then, these estimates are compared with the true

VE used to generate the simulated populations. The biases are compared graphically.

The simulation model is developed using R 3.3.1[15]. To allow modifying the simulations

for other parameter settings/diseases while maximizing user-friendliness, we have encapsu-

lated the source code of the simulation model in a web application created using the Shiny

package [16]. Through the web application, the user can set all the necessary input parameters

and the output files can be downloaded. The application can be found at the ADVANCE web-

site (http://www.advance-vaccines.eu/) or at http://apps.p-95.com/VEMisclassification/.

Scenarios

General settings. In this paper, we present two specific vaccination scenarios, pediatric

seasonal influenza and childhood pertussis vaccination. For each subsequent simulation sce-

nario, we set K = 1000 and N = 50 000 whereas VE, vaccination coverage and the respective

attack rates depend on the specific scenarios detailed below. We vary one-by-one the disease-

or exposure misclassification from {0.50,0.60,. . .1} while fixing the remaining misclassification

parameters to 1.

Pediatric seasonal influenza. For consistency with Orenstein [10] and Jackson [11], we

assumed a 1-dose VE of 70%, an attack rate (AR) of influenza in the unvaccinated of 15% and

an AR of influenza-like illness not caused by influenza of 30%. The pediatric seasonal influenza

vaccination coverage was assumed to be 10%, in line with the coverage rates reported for the

majority of European countries [17].

Pertussis primary series. We assumed a VE of 80%, derived as a conservative value from

a Cochrane systematic review of vaccine efficacy estimates obtained in random clinical trials,

which found the efficacy of acellular pertussis vaccines in pediatric primary series to range

between 71% and 85% for a follow-up period ranging from 17 to 22 months after vaccination

Table 1. Estimation of vaccine effectiveness (VE) for the cohort, case-control, test- negative case-control and case-coverage (screening method) design.

Cohort Case-control Test-negative case-control Screening method

For each

simulated

population

We calculate the VPD risk in

the vaccinated vs in the

unvaccinated.

We identify cases of VPD and sample

controls from the full population at

risk (case-cohort sampling); and for

these two groups compare the odds of

exposure as an odds ratio. We used

case-cohort sampling as it was

recommended in [10].

Here, the cases are the outcome events

due to the VPD pathogen (test-

positives) and the controls are the

outcome events due to other

pathogens (test-negatives).

We use only the exposure statuses of the

observed cases and compare the odds of

exposure in these cases with the odds of

exposure in the external coverage cohort.

Estimate

VE as

cVECo ¼ 1 � cRRCo

¼ 1 �
bpv

bpu
;

with cRRCo the estimated

ratio of the VPD risk in the

vaccinated vs. unvaccinated;

and estimated risks bpv and

bpu based on observed

proportions of VPD in the

vaccinated and unvaccinated

respectively.

cVE CC ¼ 1 � cORCC

¼ 1 �
bpd=ð1 � bpd Þ

bpn=ð1 � bpn Þ
;

with cORCC the estimated ratio of odds

of exposure in cases vs. controls,

which is equivalent to the odds of

VPD in the vaccinated versus

unvaccinated; and bpd and bpn being

the observed proportions of exposure

in the cases and controls respectively.

cVE TN ¼ 1 � cORTN

¼ 1 �
cptp=ð1 � cptp Þ

cptn=ð1 � cptn Þ
;

with cORTN the estimated ratio of the

odds of exposure in the cases versus

controls; cptp and cptn observed

proportions of exposure in test-

postitive and test-negative individuals

respectively.

cVE SCREEN ¼ 1 � cORSCREEN

¼ 1 �
bpd=ð1 � bpd Þ

bX=ð1 � bXÞ
;

with cORSCREEN being the estimated ratio

of the odds of exposure in the cases vs

the odds of exposure in the external

coverage cohort; bpd is as defined for the

case-control design and bX an estimate of

the vaccine coverage for the external

coverage cohort. For the simulation

model, bX is estimated as the proportion

of individuals with observed exposures,

assuming same levels of misclassification

in the external coverage cohort as in the

cases.

https://doi.org/10.1371/journal.pone.0199180.t001

Misclassification and vaccine effectiveness

PLOS ONE | https://doi.org/10.1371/journal.pone.0199180 June 15, 2018 6 / 13

http://www.advance-vaccines.eu/
http://apps.p-95.com/VEMisclassification/
https://doi.org/10.1371/journal.pone.0199180.t001
https://doi.org/10.1371/journal.pone.0199180


[18]. We furthermore assumed that the AR of pertussis in the unvaccinated was 15% [19] and

the AR of the non-vaccine preventable pathogens was 10.5% [20]. For the vaccination cover-

age, we assumed a value of 95%, which reflects a coverage rate commonly reported for the

pediatric primary series in high-income countries[21].

Results

Pediatric seasonal influenza

In the seasonal influenza scenario and assuming non-differential misclassification (Fig 1, left),

the exposure specificity had the largest impact when fixing the remaining parameters to 1

followed by disease specificity and this across all designs. Indeed, the VE was most strongly

underestimated when lowering the exposure specificity from 1 to 0.5. The underestimation in

VE was still pronounced but less when lowering the disease specificity. Lowering the exposure

sensitivity had a negligible impact on the VE whereas lowering the disease sensitivity had no

impact when the remaining parameters were fixed to 1.

In case of differential exposure misclassification (Fig 1, middle), the bias could go in either

direction, with the estimated VE showing very large deviations from the true VE. Across all

designs, the exposure specificity for the diseased had the strongest impact among all four expo-

sure misclassification parameters when fixing the remaining parameters to 1 and biases the VE

estimates downwards. Also the exposure sensitivity for the undiseased yields a downwards

bias. Lowering the exposure sensitivity for the diseased and the exposure specificity for the

undiseased both show a slightly upwards bias.

In case of differential disease misclassification (Fig 1, right), the bias could go in either

direction as well. Across all designs, the disease specificity for the exposed had the largest

(downwards biasing) impact among the four disease misclassification parameters when fixing

the remaining parameters to 1 followed by the disease sensitivity in the unexposed. The disease

sensitivity for the exposed and the disease specificity for the unexposed are both associated

with a slightly upwards bias. The test negative design performs worse than the other designs,

particularly for low levels of disease specificity in the exposed.

Pertussis primary series

In the pertussis scenario and assuming non-differential misclassification (Fig 2, left), the expo-

sure sensitivity had the largest impact when fixing the remaining parameters to 1 followed by

disease specificity. In case of differential exposure misclassification (Fig 2, middle), the expo-

sure sensitivity for the un-diseased had the strongest impact among all four exposure misclassi-

fication parameters and biased the VE estimates downwards. Finally, in case of differential

disease misclassification (Fig 2, right), the disease specificity for the exposed had the largest

impact among the four disease misclassification parameters. The impact of the misclassifica-

tion parameters was comparable across designs. As with pediatric influenza, the bias due to

differential misclassification could go in either direction and lead to very large deviations from

the true VE. Again, misclassification more strongly affects VE estimates from test-negative

designs.

Discussion

The development of the simulation tool has presented an opportunity to explore the inter-

play of disease- and exposure misclassification in VE estimations from different study

designs. In this study, we explored the single impact of non-differential and differential

disease- and exposure misclassification on childhood seasonal influenza and pertussis VE

Misclassification and vaccine effectiveness
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estimation. Depending on the scenario, the misclassification parameters had differing

impacts. Decreased exposure specificity (poorer identification of non-vaccinees) had great-

est impact for influenza VE estimation. Conversely decreased exposure sensitivity (poorer

identification of vaccinees) had greatest impact for Pertussis VE estimation. These different

impacts correspond to the respectively low and high vaccine coverage in the two scenarios,

which is also supported by the analytical derivation (10) in Section 2.2. Similar observations

were made regarding the impact of the exposure prevalence on the predictive values of the

exposure assessment. Indeed, in low prevalence settings, the exposure specificity has the

Fig 1. Influenza scenario: Vaccine effectiveness by design for varying levels of exposure- and disease misclassification while fixing the

remaining parameters to 1. The dashed horizontal lines indicate the true VE used to simulate the data.

https://doi.org/10.1371/journal.pone.0199180.g001
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greatest impact with the lower the specificity the lower the positive predictive value. Con-

versely, in high prevalence settings, the exposure sensitivity has the greatest impact with the

lower the sensitivity the lower the negative predictive value. Finally, it is interesting to note

that, for the influenza and pertussis scenarios investigated, we found exposure misclassifica-

tion to have a larger impact compared to disease misclassification whereas previous research

focused on disease misclassification only.

The impact of the misclassification parameters was found to be more noticeable than that

of the different study designs, with the different study designs performing similarly when

Fig 2. Pertussis scenario: Vaccine effectiveness by design for varying levels of exposure- and disease misclassification while fixing the

remaining parameters to 1. The dashed horizontal lines indicate the true VE used to simulate the data.

https://doi.org/10.1371/journal.pone.0199180.g002
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misclassification is limited. Jackson [11] found earlier that VE estimates from test-negative

case-control designs are more biased than those from classical cohort and case-control designs

in case of substantial non-differential disease misclassification. We were able to replicate these

results, and also found that the test-negative design performs particularly worse in case of

substantial differential disease misclassification, with strong downward biases for low levels of

disease specificity in the exposed. The worse performance of the test-negative design can be

intuitively explained by comparing the case-control and test-negative design. In case-control

designs, the false positives originate from the entire population of subjects free of the VPD

with the false positive risk equal to the product of non-VPD risk and 1 minus the disease speci-

ficity. On the other hand, in test-negative designs, the false positives originate from the popula-

tion of test-negatives with the false positive risk equal to 1 minus the disease specificity. Hence,

the relative number of perturbations due to falsely classifying controls as cases is much smaller

for the classical case-control design compared to the test-negative design.

Although the test-negative design is more sensitive to disease misclassification compared to

other designs, its performance remains good when misclassification is limited. Next to misclas-

sification, other sources of bias such a confounding and selection bias should be considered

when selecting an appropriate study design. For instance, observational studies on influenza

VE might be strongly confounded by differences in healthcare seeking behavior between vacci-

nated and unvaccinated persons, therefore the test-negative design might still be the appropri-

ate choice in this case [22].

The dependence of the impact of misclassification on the scenario urged us to develop a

user-friendly simulation tool that can be modified by users to their own study scenario. The

tool allows users to assess the single and joint impact of both differential and non-differential

disease- and exposure misclassification on VE estimates from cohort, case-control, test-nega-

tive case-control and case-coverage studies. The simulation tool can be accessed through

the ADVANCE website (http://www.advance-vaccines.eu/) or using http://apps.p-95.com/

VEMisclassification/.

It is well-known that exposure- and disease misclassification might jeopardize the validity

of VE studies and that such studies require careful design. The simulation tool might help

researchers to anticipate at design stage the magnitude and direction of the bias when estimat-

ing VE based on potentially misclassified data. As such, this tool can guide the selection of the

exposure- and disease definitions that will minimize bias due to misclassification. In addition,

if the potential impact of misclassification is found to be unacceptable, several methods to

adjust estimates for misclassification exist, although they are not yet commonly used in phar-

macoepidemiology [23]. We provided the correction equations for VE estimates in case of

non-differential single source (either exposure or disease) misclassification (Section 2.2).

Other correction methods include amongst others probabilistic bias analyses [24, 25], Bayesian

bias analyses [26–28], modified maximum likelihood methods [29] and imputation-like meth-

ods [30–33]. All these methods require assumptions on or estimates of the disease- and expo-

sure misclassification parameters, which—if deemed required—can be obtained using internal

or external validation studies.

Several limitations or areas of further development are worth considering. The simulation

tool singles out the impact of disease- and exposure misclassification and ignores other sources

of bias. Specifically, it is assumed that there is no confounding and no selection bias. In addi-

tion, the tool does not include dependent misclassification. For binary variables, misclassifica-

tion is dependent when the probability of misclassification of one variable depends on the

correctness of classification on the other variable [34]. Dependent measurement errors might

arise, for example, if data on both exposure and outcome were obtained from medical records

with data paucity for some but not all subjects. Furthermore, the tool assumes binary disease-
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and exposure variables, whereas particularly the exposure variable might be polytomous (no

vaccination, partial or complete vaccination).

The results presented in this paper and the simulation tool may be useful to guide research-

ers to better design, conduct and interpret future VE studies when data are subject to misclas-

sification. We advocate to use such a simulation tool and modify the parameters according to

the study specifics since we have shown that the impact of misclassification strongly depends

on the study scenario.
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