
RESEARCH ARTICLE

Image-based model of the spectrin

cytoskeleton for red blood cell simulation

Thomas G. Fai1*, Alejandra Leo-Macias2, David L. Stokes3, Charles S. Peskin4

1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, United States of America, 2 Leon H. Charney Division of Cardiology, New York University

School of Medicine, New York, New York, United States of America, 3 Skirball Institute of Biomolecular

Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York, United

States of America, 4 Courant Institute of Mathematical Sciences, New York University, New York, New York,

United States of America

* tfai@seas.harvard.edu

Abstract

We simulate deformable red blood cells in the microcirculation using the immersed bound-

ary method with a cytoskeletal model that incorporates structural details revealed by tomo-

graphic images. The elasticity of red blood cells is known to be supplied by both their lipid

bilayer membranes, which resist bending and local changes in area, and their cytoskele-

tons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are

tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model

the cytoskeleton as a random geometric graph, with nodes corresponding to junctional com-

plexes and with edges corresponding to spectrin tetramers such that the edge lengths are

given by the end-to-end distances between nodes. The statistical properties of this graph

are based on distributions gathered from three-dimensional tomographic images of the

cytoskeleton by a segmentation algorithm. We show that the elastic response of our model

cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good

agreement with the experimentally measured shear modulus. By simulating red blood cells

in flow with the immersed boundary method, we compare this discrete cytoskeletal model to

an existing continuum model and predict the extent to which dynamic spectrin network con-

nectivity can protect against failure in the case of a red cell subjected to an applied strain.

The methods presented here could form the basis of disease- and patient-specific computa-

tional studies of hereditary diseases affecting the red cell cytoskeleton.

Author summary

Red blood cells are responsible for delivering oxygen to tissues throughout the body.

These terminally differentiated cells have developed a fascinating flexibility and resiliency

that is critical to navigating the circulatory system. Far from being rigid bodies, red blood

cells adopt biconcave disk shapes at equilibrium, parachute-like shapes as they move

between large vessels and small capillaries, and more extreme shapes as they traverse the

endothelial slits of the spleen. Understanding the remarkable mechanical properties that
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allow red cells to experience such large deformations while maintaining structural integ-

rity is a fundamental question in physiology that may help advance treatments of genetic

disorders such as hereditary spherocytosis and elliptocytosis that affect red cell flexibility

and can lead to severe anemia. In this work, we present a model of the red blood cell cyto-

skeleton based on cryoelectron tomography data. We develop an image processing tech-

nique to gather statistics from these data and use these statistics to generate a random

entropic network to model the cytoskeleton. We then simulate the behavior of the result-

ing red blood cells in flow. As we demonstrate through simulations, this method makes it

possible to examine the consequences of changes in microstructural properties such as the

rate of cytoskeletal remodeling.

Introduction

Red cells possess a lipid membrane and cytoskeleton that together enclose a viscous cyto-

plasm characterized by a high concentration of hemoglobin. The elastic properties of the cell

can be separated into contributions from the lipid bilayer, which supplies bending rigidity

and resistance to local changes in area, and from the cytoskeleton, which is a polymer net-

work of spectrin tetramers connected at actin-based junctional complexes that supplies shear

resistance. In previous work [1], we used a continuum neo-Hookean model [2] to describe

the coupled membrane-cytoskeleton system, and we simulated the behavior of red cells in

flow using the immersed boundary method, a numerical method for fluid-structure interac-

tion problems [3]. However, applying the continuum approach to both the lipid membrane

and cytoskeleton can be inadequate for certain applications because of the wide range of

scales needed to describe the system (e.g. the phospholipids that make up the membrane are

approximately 8 Å apart [4], whereas the average size of spectrin tetramers in the cytoskele-

ton is about 50 times larger [5]). On the one hand, continuum models correctly predict that

red cells “remember” the positions of their biconcave dimples [6], but on the other hand

there is evidence that the cytoskeleton is constantly remodeling [7] so that the reference con-

figuration changes over time, a property not taken into account in standard neo-Hookean

continuum models. The sensitivity of measuring the shear modulus to the particular experi-

mental setup [8, 9] also suggests that neo-Hookean models of the cytoskeleton may be overly

simplistic. Characterizing the cytoskeletal mechanics in detail, including the nature of net-

work remodeling, is crucial for understanding the red cell’s exceptional deformability [7]

and for explaining the experimental effects of repeated osmotic swelling and shrinking on

red cell elasticity [10].

In light of these issues, the approach taken here is to build a model based on the molecular

cytoskeletal structure. In particular, we retain the continuum description of the lipid mem-

brane but replace the continuum cytoskeletal model with a discrete one. Significant steps in

this direction have already been made, starting with Boal’s early work involving Monte Carlo

simulations of small regions of the cytoskeleton that suggested the importance of volume

exclusion effects for polymer models [11]. Later, Discher et al. studied the mechanical response

of red cells during micropipette aspiration experiments using a discrete cytoskeleton model

[12]. More recently, the group of Suresh simulated whole cells using a detailed cytoskeleton

model that considered interactions between spectrin monomers via molecular dynamics

and allowed for network reorganization [13–15]. Cytoskeletal structure has also been incorpo-

rated into composite models, in which the membrane and cytoskeleton are treated as distinct

components, and which explicitly model the vertical connections between membrane and
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cytoskeleton that are affected in conditions such as hereditary spherocytosis [16–18]. In such

composite models, the cytoskeleton is able to undergo changes in density, an effect that has

been observed during micropipette aspiration [19]. Further, Pivkin et al. used coarse-graining

techniques to calculate the spectrin network’s effective shear modulus as a function of the

number of degrees of freedom used to represent the red cell surface [20]. Although some simu-

lations of red cell cytoskeletons assume a hexagonal topology, our work allows for the irregular

topology, as do e.g. Saxton [21], Hansen et al. [22], Li et al. [13], and Gov [23].

Here, we propose a mesoscopic model of the cytoskeleton that we use for whole cell

immersed boundary method simulations. Although others have used random graph models

of the spectrin cytoskeleton, a novel feature of our work (to the best of our knowledge) is

that we derive the statistical properties of the random graph from 3D electron tomographic

images. Representing the cytoskeleton as an explicit polymer network allows us to investigate

the effect of changes at the microscopic level, such as network remodeling, in a relatively

straightforward manner. This approach allows us to investigate changes in the horizontal

connections within the cytoskeleton, complementing the studies cited above that model

the vertical connections between the cytoskeleton and membrane. We use the immersed

boundary method to account for the coupling of the red cell to the surrounding fluid. The

immersed boundary method has previously been applied to many problems in cellular

mechanics, including cytoskeletal mechanics [24, 25], tumor cell adhesion [26], flagellar

motion [27, 28], and cytoplasmic streaming [29].

This article is structured as follows: we first describe an algorithm to generate random

graphs on surfaces with a specified node density, edge length distribution, and mean number

of edges per node. In our model, the edges represent spectrin polymers that span junctional

complexes, and we treat these polymers as entropic springs. We next show, using a simple

two-dimensional geometry, that properly-initialized random networks exhibit elastic

responses that are in good agreement with continuum models. No parameter fitting is needed

to obtain this agreement; the entropic spring constant and parameters needed to generate the

random graph have been measured in experiments described in the literature. Next, we intro-

duce a segmentation algorithm that we use to extract geometrical information from 3D images

generated by electron tomography. We apply this segmentation algorithm to a tomogram and

use the resulting distributions as geometrical and statistical constraints for our model. We gen-

erate a random cytoskeleton on a triangulated surface representing a whole red cell and per-

form three-dimensional immersed boundary simulations to study the behavior of red blood

cells in a prescribed shear flow. We further show how network remodeling can be included in

this model and consider its effects on the frequency of spectrin polymer failure when the cell is

subjected to a prescribed strain, as can be done in optical tweezer experiments.

Methods

Generating the cytoskeleton

We represent the cytoskeleton as a random graph on a surface, with the junctional complexes

serving as nodes and the spectrin tetramers serving as edges. The node positions are drawn

from a uniform distribution with respect to area, and nodes are randomly connected by edges

using an algorithm that recovers the prescribed end-to-end length distribution. Here, we

describe this two-step process in the case of N total nodes.

Step 1. Choose N points independently on a surface with surface area S from the uniform dis-

tribution with respect to area.
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Step 2. For each pair of points i and j, make a connection independent of any other pair with

probability p(Dij), where Dij is the distance between nodes i and j and p(D) is some given

function satisfying 0� p(D)� 1.

We assume that there is a maximum edge length Dmax such that p(D) = 0 for D> Dmax. As

a result of Step 1, there is a probability density function %(D) such that

Z b

a
%ðDÞdD ¼ PrðDij 2 ða; bÞÞ; ð1Þ

where the right-hand side denotes the probability that Dij is in the interval (a, b). Note that

%(D) gives the distribution of distances between arbitrary nodes on the surface independent of

whether those nodes are connected. The probability P that there is an edge between any given

pair of nodes is given by

P ¼
Z Dmax

0

pðDÞ%ðDÞdD: ð2Þ

Since an arbitrary pair of points is assigned an edge with this probability, independent of any

other pair of points, the probability that exactly k edges touch any given node is given by the

binomial distribution

N � 1

k

� �

Pkð1 � PÞN� 1� k
; ð3Þ

which has mean

m ¼ ðN � 1ÞP: ð4Þ

We are interested in N large and P small, so that (3) is well approximated by the Poisson distri-

bution

mk

k!
e� m: ð5Þ

Another quantity of interest is the distribution of edge lengths, σ(D), which is defined by

Z b

a
sðDÞdD ¼ PrðDij 2 ða; bÞ j i and j are connectedÞ; ð6Þ

where the right-hand side denotes the probability that Dij is in the interval (a, b), conditioned

on nodes i and j being connected by an edge. Note that

PrðDij 2 ða; bÞ and i and j are connectedÞ

¼ P
Z b

a
sðDÞdD

¼

Z b

a
pðDÞ%ðDÞdD:

ð7Þ
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Since a and b are arbitrary, this implies the following instance of Bayes’ Theorem:

sðDÞ ¼
pðDÞ%ðDÞ

P

¼
pðDÞ%ðDÞ

R Dmax
0

pðD0Þ%ðD0ÞdD0
:

ð8Þ

It follows from (8) that

Z Dmax

0

sðDÞdD ¼ 1 ð9Þ

as required. The probability density functions σ(D) and %(D) and mean node degree μ can be

measured from tomograms or taken from the literature, so we treat them as known and use

them to determine p(D). From (8),

pðDÞ ¼ P
sðDÞ
%ðDÞ

; ð10Þ

and we can use (4) to express P in terms of μ. Since N is large, we replace (N − 1) by N in (4).

Thus

pðDÞ ¼
m

N
sðDÞ
%ðDÞ

: ð11Þ

Eq (11) is a recipe for p(D) that will produce a random graph with the prescribed edge-

length probability density function σ(D) and mean node degree μ. In order to be a valid proba-

bility, p(D) must satisfy 0� p(D)� 1 for all D. Two conditions necessary for this to be true are

that sðDÞ ¼ OðDÞ as D! 0 and N� μ maxD (σ(D)/%(D)).

Since the maximum edge length Dmax is typically much smaller than the surface’s radius of

curvature, we can neglect curvature so that to good approximation,

%ðDÞ ¼ 2pD=S; ð12Þ

where S is the surface area as stated above. Substituting this formula into (11) gives

pðDÞ ¼
m

2p

sðDÞ
D

S
N
: ð13Þ

As a validation test, we have used the random graph algorithm to generate a graph on the

surface of a sphere with N = 1,200 nodes and mean node degree μ = 5, and setting the sphere

radius so that the node density satisfies N/S = 300/μm2. The node density is chosen to be in

line with the observed density of junctional complexes in the red cell cytoskeleton, but note

that the total surface area of the sphere used in this test is a small fraction of the surface area of

an intact red cell. As shown in Fig 1, the statistical properties of the resulting random graph

agree with the target distributions.

Note that in the case of the red cell cytoskeleton, the nodes are located in a thin layer below

the membrane rather than on a true surface. This gives a correction to (12) that is described in

the section “Density through slab” of S1 Text. However, since the formula (11) is valid in either

case and given the continuous transition between surface and thin slab geometries we do not

draw a significant distinction between the two cases here.

Cytoskeletal model for RBC simulation
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Elastic response of random graphs

The cytoskeleton may for many purposes be considered as a continuum neo-Hookean mate-

rial with a shear modulus E satisfying E� 2 × 10−3 to 6 × 10−3 dyn/cm, as established through

experiments and model studies [9]. Here, we use a simple two-dimensional test problem to

compare this continuum formulation, discussed in detail in [1], to the discrete cytoskeleton

Fig 1. Random graph with specified statistical properties generated on the sphere. (a) Random graph on a spherical surface

generated with a specified node density N/S = 300/μm2 mean node degree μ = 5, and edge length distribution σ(D). Note that, while the

density of nodes is consistent with the value for a whole red cell, the surface area of the sphere used in this test is a small fraction of the total

surface area of a red cell. (b) and (c) Histograms demonstrating that the generated graph has the specified edge-length distribution σ(D) and

Poisson node degree distribution, respectively.

https://doi.org/10.1371/journal.pcbi.1005790.g001
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model proposed in this article. We show that the energetic response to shear deformations of

our discrete cytoskeleton model is in excellent agreement with a neo-Hookean material having

a shear modulus in the experimentally determined range.

We test several randomly generated model networks connected to a 2D sheet that resists

changes in area. The random graph algorithm is used to generate a model cytoskeleton with

mean node degree μ = 5, node density N/S = 300/μm2, and edge-length probability density

function (PDF) σ(D) on a periodic patch of membrane. The formulas used for σ(D) and %(D)

are computed from electron microscopy data, as will be described in the section “Data analy-

sis”. Further, we compute a triangulation of the plane associated with the random graph by

performing a Delaunay triangulation on the nodes (see Fig 2(a)).

This associated triangulation serves a dual role; it is used to enforce local area incompressi-

bility, thus preventing the entropic spring network from collapsing, and to compute the con-

tinuum shear energy. To account for the periodicity, we surround the unit cell with periodic

copies, triangulate the whole region, and keep the set of unique triangles that contain at least

one point from the unit cell.

There are two contributions to the total elastic energy. First, each edge of the model cyto-

skeleton represents a worm-like chain, which is a model of an entropic spring with restoring

force Fwlc given by Eq (4) of S1 Text. The total entropic force on a node with position X is

X

j

FwlcðXj � XÞ; ð14Þ

where fXjg
n
j¼1

is the set of n nodes connected by an edge to X. Second, there is a continuum

bulk force Fbulk(X) that penalizes changes in local area in the elastic sheet. The bulk energy is

defined in terms of the reference configuration Z and the deformed state X via

Wbulk ¼
k

2

Z

Z

ðJ � 1Þ
2da; ð15Þ

where κ is the membrane bulk modulus, J is the Jacobian relating areas in the reference and

deformed configurations, and da is the area element in the reference frame. By using the same

nodes for the discretizations of both the membrane and cytoskeleton, so that both lie in the

same plane with no slip allowed between them, we have made the idealization of strong vertical

interactions between the membrane and cytoskeleton. In reality, the cytoskeleton and mem-

brane can move relative to one another, and their relative deformabilities become evident in

experiments such as micropipette aspiration in which the lipid bilayer becomes uniformly dis-

tributed in the tip of the pipette, whereas the cytoskeleton dilates and develops protein gradi-

ents in the tip [19]. The idealization of strong vertical connections is useful since it allows us to

isolate the effects of changes to horizontal connections within the cytoskeleton that occur in

hereditary elliptocytosis. Further, one of the constituents that make up the junctional complex

and connects the cytoskeleton to the lipid membrane, the transmembrane protein Band 3, has

a long-range diffusion timescale on the order of seconds [19, 30]. Therefore, holding it fixed to

a certain point in the membrane is reasonable for our simulations, which take place over a few

hundredths of seconds and involve network remodeling timescales on the order of 0.01–0.1

seconds. Note that the cytoskeleton resides in a thin layer with a width of just 200 nm beneath

the membrane, as observed for instance in the tomograms analyzed here. Since this thickness

is small compared to the red cell diameter, it is reasonable to make the approximation that the

membrane and cytoskeleton occupy the same surface.

Since we consider the red cell membrane to be locally area-incompressible, in practice κ is a

penalty parameter that is set such that the absolute value of local changes in area are not greater

Cytoskeletal model for RBC simulation
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than 2–4% on average [31]. In our simulations, we use values for κ in the range 0.1–1.0 dyn/

cm. We have neglected the cytoskeleton bulk modulus since it is smaller than the membrane

bulk modulus by several orders of magnitude [32]. On a triangulated domain, Wbulk can be as

discretized as in [1] with

Wbulk ¼
k

2

X

s

areaðtÞ
areaðsÞ

� 1

� �2

areaðsÞ; ð16Þ

where s and t are triangle indices in the reference and deformed configurations, respectively.

Fig 2. Comparison between the continuum shear energy and the energy of a random network of worm-like chains. (a) The

triangulation associated with the random polymer network, (b) Relaxation to equilibrium of random network, (c)-(d) Comparison of energies

from continuum shear formulation and random spring network on two periodic patches with R = 1 μm and R = 2 μm, respectively. The red

curves are the corresponding energies computed from the continuum model using upper and lower values of measured shear moduli E

obtained from the literature [9]. Error bars are computed by running simulations with several randomly generated networks.

https://doi.org/10.1371/journal.pcbi.1005790.g002
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The force at node X due to bulk elasticity is given by Fbulk(X) = −rX Wbulk. The total force is

simply the sum of entropic and bulk elasticity forces.

We fix the time step Δt = 1 � 10−9 s and κ = 0.2 dyn/cm, and move the nodes by overdamped

dynamics z _X ¼ FðXÞ ¼ FbulkðXÞ þ
P

j FwlcðXj � XÞ using the forward Euler method. In a pre-

computation, we let the nodes equilibrate as shown in the energy curves of Fig 2(b). The fric-

tion coefficient is calculated through the Stokes relation z = 6πνr with a radius of 15 nm for the

actin nodes [5] and dynamic viscosity ν = 1.2 cP, resulting in a value of z� 3.3 � 10−7 g/s.

Next, the nodes are advected in the prescribed incompressible flow

u ¼ ðcos 2py=R; sin 2px=RÞ; ð17Þ

and changes in the entropic spring energy and continuum shear energy are observed over a

2 μs timespan. This test is performed using square unit domains of length R = 1 μm and

R = 2 μm with periodic boundary conditions, repeating 10 times on each domain with differ-

ent randomly generated networks and discarding any trials in which the mesh becomes tan-

gled. On the timescale over which this deformation is applied, the nodes of the network

undergo a maximum displacement of 14% relative to the contour length L. Although the dis-

placements from the initial configuration are small, the initial edge lengths themselves are not

necessarily small (based on the tomogram data), and we find that the maximum strain krk/L
experienced by edges is 93%. Although the mean strain is significantly smaller, nonlinearities

in the polymer force do therefore play a role.

We find that the behavior of the random entropic spring network falls within the experi-

mental range of the continuum shear energy, as illustrated in Fig 2(c)–2(d). Note that, since

the deformation is prescribed, the shear energy could be computed analytically. However, we

find it convenient to approximate using a discretization on triangles, as done later on to calcu-

late bulk energies in the 3D simulations. Although the continuum shear energy changes deter-

ministically on the elastic sheet, the error bars over the red curves in Fig 2(c)–2(d) come from

calculating it on several different random triangulations.

These tests show that the total entropic spring energy increases remarkably like the con-

tinuum shear energy, and that the discrete cytoskeletal network has an effective shear modu-

lus within the experimentally determined range. Performing this simulation using several

random networks, we find that the variance in the computed energies decreases as the

domain gets larger. This is expected since the random networks generated appear quite

different when viewed close-up, but are alike on larger scales since they all have identical sta-

tistical properties. These results demonstrate that, because of the cytoskeleton’s locally irreg-

ular structure, the variance in measurements of its shear modulus depends on the scale of

observation.

Tomogram preparation

The edge-length PDF σ(D) and node-node distance PDF %(D) used in the random graph algo-

rithm are based on three-dimensional images of the isolated red cell cytoskeleton obtained by

cryoelectron tomography (Fig 3(a)). The use of such image data ensures that our model cyto-

skeletons have realistic statistical properties. Methods for separating and preparing the cyto-

skeletons for electron microscopy are described in [5]. The tomographic images reveal the

convoluted structure and irregular topology of the native cytoskeleton, in contrast to some

early cytoskeleton models mentioned in the introduction that assumed the topology of

the cytoskeleton to be that of a hexagonal lattice. Although such a hexagonal topology is sug-

gested by electron microscopy images of the spread and negatively stained cytoskeleton, it

has been suggested [5, 33] that this topology results from negative staining and/or network

Cytoskeletal model for RBC simulation
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reorganization in response to stretching and adsorption to a carbon substrate. To be able to

reproduce the observed irregularity with our random graph model, we first analyze tomo-

graphic images to gather statistics on the network topology, contour lengths, and end-to-end

distances of putative spectrin tetramers. Since the tomograms do not distinguish between

Fig 3. Cryoelectron tomography and pattern matching of RBC skeletons. (a) A virtual slice of a cryoelectron tomogram of a red blood

cell skeleton. Putative junctional complexes containing the actin protofilaments are indicated with arrows. Structures inside dashed lines are

uncharacterized protein clusters (circles) and lipidic remains (squares), (b) Cross-correlation map resulting from comparing the actin

template with the tomogram. The brighter the spot, the higher the probability of a good match, (c) The corresponding cross-correlation

coefficient plot with a line indicating the cutoff value used. The 2nd knee of the curve is used to avoid false negatives, (d) The identified actin

protofilaments overlaid on the actual densities of the tomogram with obvious false positives discarded (for example, some spots with high

cross-correlation values are found at locations of lipid remains and unknown protein clusters).

https://doi.org/10.1371/journal.pcbi.1005790.g003
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different protein species, in order to extract these distributions from the three-dimensional

images, a segmentation algorithm must be used to identify the cytoskeleton constituents.

Image processing

Our segmentation algorithm to extract the statistical data for our model consists of two steps.

In the first step, actin polymers are identified within the tomogram using an existing method

[34] based on correlation with the spatial electron density of a 13 subunit-long filament of

actin (Fig 3). We use the software package MolMatch [34], which rotates the electron density

computed from the known crystal structure of actin through various Euler angles and com-

putes the correlation at each voxel of the tomogram. The positions with the highest correla-

tions are designated as junctional complexes, subject to the constraint that no two nodes are

closer than 14 nm. Although the actin polymers take up a non-trivial volume relative to the

cytoskeleton, they are considered to be points for the next step of the segmentation algorithm.

In the second step, the tomogram is converted to a three-dimensional binary image by

choosing a density threshold and setting all values above and below the threshold to be 1 and

0, respectively. (In what follows, the cytoskeleton refers to the set of voxels with value 1.) The

threshold is chosen in order to produce a mean number of edges per node of μ = 5, in accor-

dance with published values based on direct inspection of cytoskeletons [5, 33]. Next, the larg-

est connected component of the cytoskeleton is found by using flooding, i.e. breadth-first

search.

Restricting attention to nodes within this largest connected component, we next segment

the skeleton using a watershed algorithm [35] that, in addition to computing the topology,

yields geometrical information about the end-to-end distances and contour lengths of spectrin

tetramers. Though similar to a standard breadth-first search, the watershed algorithm is differ-

ent in that instances of flooding are launched synchronously from each node, stopping in vox-

els where instances initiated from different nodes meet. The measure of distance implicit in

this segmentation is not the Euclidean distance, but rather the shortest path length through the

connected component, as approximated by counting the number of steps through adjacent

(non-diagonal) voxels. Interpreting this procedure in terms of the cytoskeleton structure, the

halfway points at which instances of flooding meet are the locations at which spectrin dimers

join to form tetramers. These halfway points are also located near the binding sites of the pro-

tein ankyrin, which links the cytoskeleton to the red cell membrane. See S1 Video and Fig

4(a)–4(d) for illustrations.

Results

Data analysis

Our first goal is to extract parameters relevant for our simulations from the 3D images pro-

duced by electron tomography. In particular, we use our segmentation algorithm to determine

the edge-length PDF σ(D) and node-node distance PDF %(D), and test whether these distribu-

tions are consistent with the assumptions of the random graph algorithm and entropic spring

model, respectively.

We use two tests to establish that the nodes in the tomogram satisfy the assumption in the

section “Generating the cytoskeleton” that the nodes are uniformly distributed. For the first

test, we partition the tomogram (with approximate dimensions 400 nm × 900 nm × 160 nm)

into 125 boxes of approximate size 80 nm × 180 nm × 32 nm. If the nodes are uniformly dis-

tributed, the probability that a given node lies within a particular box will be r = 1/125 = 0.008,

i.e. the ratio of the box’s volume to the volume of the entire tomogram. More generally, for N
total nodes, the probability that k nodes lie within the same box is given by the binomial
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distribution, which may be approximated as Poisson with mean rN since r is small and N is

large. Fig 4(e) shows that the histogram of nodes per box is indeed in close agreement with the

Poisson distribution.

For the second test, %(D) is extracted from the tomogram and compared to an analytic for-

mula for uniformly distributed nodes derived in the section “Density through slab” of S1 Text

(see Fig 4(f)). To extract %(D) from the tomogram (see Fig 5(a)), we compute the distance Dij

between each pair of nodes i and j and create a histogram on the interval [0, 300] nm. Edge

effects have been mitigated by placing periodic copies in the horizontal directions, and only

counting those pairs with at least one member in the original volume. To correctly normalize

this distribution, we compute the vertically-averaged volume of intersection VI(η, Dmax)

between the slab of thickness η = 160nm and a sphere of radius Dmax. This computation is sim-

ilar to those in the section “Density through slab” of S1 Text and we only state the result here:

VIðZ;DmaxÞ ¼ pD2
maxZ � pZ3=3 in the case of interest that Dmax > η. The resulting distribution

is consistent with the presence of uniformly distributed nodes in the skeleton, as shown by the

close match to the analytical formula computed in the case of uniformly distributed points in a

3D slab.

To extract σ(D) from data, we make a histogram of the end-to-end distances between nodes

identified as neighbors by the segmentation algorithm (see Fig 5(a))). We observe that the

computed σ(D) vanishes below a certain cutoff value. The template-matching algorithm

imposes a lower cutoff of 14 nm to prevent multiple identifications of the same junctional

Fig 4. Image processing procedure. (a)-(d) The centers of mass of the actin protofilaments shown in Fig 3(d) are used as nodes for the

watershed procedure that segments the cytoskeleton. This segments the cytoskeleton into regions associated with the nodes, as illustrated

here with different colors. (e) Histogram of nodes per box compared to the Poisson distribution, (f) Plot of observed pairwise distances

compared to the density PDF for uniformly distributed points in a 3D slab.

https://doi.org/10.1371/journal.pcbi.1005790.g004
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complex, but in fact the edge length distribution that arises from the segmentation algorithm

reveals very few nodes connected by distances of less than 30 nm. This is consistent with the

physical characteristics of the cytoskeleton: since the junctional complexes themselves have a

radius of about 15 nm [5], excluded volume prevents their centers from coming within 30 nm

of one other.

The contour-length PDF and probability mass function of connections per node are com-

puted similarly (Fig 5(b)–5(c))). We find that the distributions extracted by the segmentation

algorithm are consistent with the constraint σ(D)� %(D)/P on inputs to the random graph

model described in the section “Generating the cytoskeleton”. Recalling that P is the probabil-

ity that two nodes are connected, that μ is the average number of connections at each node,

and that N is the total number of nodes, P = μ/N under the assumption that all connections

are independent. This assumption is justified by the data because, according to Fig 5(c), the

observed node degree distribution is close to being Poisson. Since μ = 5 by design and the total

number of junctional complexes satisfies N� 40,000 in red cells [36], the value of P is fixed.

Therefore, the inequality σ(D)� %(D)/P becomes a constraint on the PDF’s %(D) and σ(D). Fig

5(a) shows that the extracted distributions satisfy this constraint to within experimental noise

(i.e. the blue histogram lies nearly beneath the green dots).

The template-matching algorithm for identifying junctional complexes results in a density

of approximately 340 points/μm2, which is in reasonable agreement with the experimentally-

determined density of 290 points/μm2 computed using a total of 40,000 junctional complexes

[36] and the surface area 138 μm2 [9]. However, visual inspection reveals both false positives

and false negatives. It would be valuable to validate the template-matching algorithm experi-

mentally, for instance by labeling actin or ankyrin and using super resolution fluorescence

microscopy.

Generating the model cytoskeleton on a triangulated surface

In order to carry out simulations on whole red cells, we used the random graph algorithm of

the section “Generating the cytoskeleton” to generate a full model cytoskeleton on a triangu-

lated surface representing a whole cell using the distributions σ(D) and %(D) extracted from

data together with the target density of 290 nodes/μm2. The number of random points on each

triangle is drawn from a Poisson distribution. Each of these points is given a random position

that is chosen independently from the uniform distribution on the corresponding triangle.

Fig 5. Results of the segmentation algorithm. (a)-(c) Probability density functions of edge-lengths versus distances between nodes,

contour lengths, and probability mass function of the number of connections per node computed from tomograms by our segmentation

algorithm.

https://doi.org/10.1371/journal.pcbi.1005790.g005
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This is done by generating candidate points within the bounding rectangle of the triangle and

then rejecting points that fall outside the triangle. The end result of the above construction is

that we have distributed the nodes according to a Poisson process on the whole triangulated

surface with the target density (see the section “Immersed boundary method” in S1 Text for a

close-up of the nodes and triangulation).

For the subsequent step of determining which pairs of nodes are connected by entropic

springs, the large number of nodes makes it impractical to test each pair explicitly. Instead,

we bin the nodes into Nbox boxes of edge length at least Dmax in each direction. This makes

the determination of edges more efficient, since for a given node only the approximately

OðN=NboxÞ nodes in the same or adjacent boxes must be tested as candidate neighbors. We

find that the resulting graph is percolated; over 99% of the total nodes belong to the same con-

nected component.

Note that the cytoskeleton tends to stay attached to the membrane in our simulations since

all points move in the same interpolated velocity according to the immersed boundary formu-

lation (Eq (16) of S1 Text). In the absence of a membrane, the model cytoskeleton is compress-

ible; however, in our simulations the cytoskeleton moves in the same velocity field as the

incompressible membrane. This is analogous to considering the motion of tracer particles

within an incompressible fluid; although the tracer particles themselves do not resist compres-

sion, their local density does not change over time by virtue of the incompressibility of the

fluid.

Simulating response to flow and applied strain

In order to test the response of our model skeleton to flow, we examined the response of the

red cell to different flow conditions using the immersed boundary method (see the section

“Immersed boundary method” in S1 Text). The model cytoskeleton resists in-plane shear

deformation, whereas the lipid bilayer resists bending and changes in local area. We simulate a

red cell with equal internal and external fluid viscosities (i.e. a red cell ghost) and examine how

the edge length distribution changes during the resulting motion. A shear flow is generated by

applying equal and opposite body forces in two planes of the computational domain, as in [1,

37]. The strength of the resulting flow is given in terms of the dimensionless capillary number

G, defined by G ¼ m _ga=E, where μ is the dynamic viscosity, _g is the shear rate, a is the effective

cell radius, and E is the shear modulus as above.

Placing cells in shear flow produces tank-treading behavior, in which cells elongate and

align their long axis toward the flow, with the membrane revolving around the perimeter of

the cell in a periodic fashion [38, 39]. This complex behavior is a good test of the model

because tank-treading frequencies can be quantified and compared with existing values in the

literature. This test not only helps validate the cytoskeleton model: it can also be used to dem-

onstrate the effect of network dynamics on a cell’s response in flow.

In the flow regime we investigate, red cell ghosts undergo a breathing motion that is inter-

mediate between tumbling and tank-treading, the behavior seen at high shear rates. We find

the dependence of the nondimensional frequency f ¼ 2p=ðT _gÞ on the breathing period T
computed in our simulations to be consistent with previous studies [1, 40] (see Fig 6(c)). Over

the course of the cell’s breathing motion, we monitor the edge length distribution of its cyto-

skeleton (see Fig 6(d) and S2–S4 Videos). S4 Video shows that the edge length distribution

oscillates with each breathing period.

In contrast to the above simulations in which the network connectivity has been taken to be

static, there is experimental evidence that the cytoskeleton continually remodels over time.

The rate of remodeling is not yet well-characterized; Ungewickell and Gratzer report that the
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timescale is of the order of 10 minutes for a red cell at rest [42] and Fischer reports a stress

relaxation timescale ≳ 10 hours [43], while others have reported a more rapid, highly shear-

dependent remodeling in red cell ghosts with significant implications for the red cell’s deform-

ability [7, 44]. It has been suggested that hemoglobin may stabilize the cytoskeleton, which

could explain the faster remodeling observed in red cell ghosts [43], but there is no consensus

in the literature on the reason for the discrepancy in remodeling timescales. To examine the

hypothesis that network dynamics plays a key mechanical role, we test the effect of network

dynamics on our model by incorporating rate constants kon and koff for edge formation and

breakage, respectively. We model the network dynamics in a stochastic manner using an on-

rate that is length-dependent and an off-rate that is independent of length (see the section

“Dynamic connections” in S1 Text and S5 Video, a close-up of the remodeling cytoskeleton in

a cell at rest).

We repeat the shear flow simulations, now including network dynamics, and observe the

changes in the cytoskeletal structure over time. In order to follow shape changes, we define

Fig 6. Red cell ghost in steady shear flow with fixed cytoskeletal topology. See also S2–S4 Videos. (a) Side view of a red cell tank-

treading in shear flow with capillary number G = 0.54 and period T = 0.026 seconds. Based on the results of the section “Elastic response of

random graphs”, the capillary number is calculated using the shear modulus E = 6 × 10−3 dyn/cm. A material point is marked in red to

illustrate the counterclockwise rotation of the cell membrane, (b) Top view of the same cell, (c) Frequency of tank-treading versus capillary

number for several values of G and comparison to previous results [1, 41], (d) The distribution of edge lengths in the cytoskeletal network is

observed to oscillate during tank-treading.

https://doi.org/10.1371/journal.pcbi.1005790.g006
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I1� I2� I3� 0 to be the ordered eigenvalues of the moment of inertia tensor of the red cell

membrane. The moments of inertia are related to the principal axes of an ellipsoid, so that

changes in the ratio I1/I2 correspond to shape deformations. Fig 7(a) shows increasing tank-

treading periods and overall deformations as koff increases from koff = 0, 10, and 100 s−1, which

we interpret as a loss of elasticity and an increase in viscoelastic creep as the network becomes

more dynamic. Fig 7(a) shows the breathing period to be�0.02 s, and in our simulations the

network dynamics are observed to have a significant effect when the timescale of remodeling

k� 1
off is of the same order, i.e. koff� 100s−1.

One potential physiological advantage of having dynamic network connectivity is that it

may decrease the chance of polymer failure. To model this behavior, we assume that a bond is

broken irreversibly when its length exceeds L = 200 nm, which is the unfolded contour length

of spectrin [45]. This failure model can be interpreted biologically as a spectrin tetramer

unfolding upon being sufficiently stretched, so that it no longer acts like a spring, with refold-

ing requiring times so long that it may be neglected over the course of the simulation. Experi-

mental evidence for spectrin unfolding under extension has been presented in [46–48] and

ankyrin has also been shown to unfold in response to large forces [49]). Upon incorporating

polymer failure in this manner, we next ask: do network dynamics decrease the number of

irreversibly broken bonds over time?

Somewhat counterintuitively, we find that the presence of network dynamics in shear flow

increases the number of edges passing the threshold for irreversible breakage, as shown in Fig

7(c). The explanation for this observation is that network dynamics makes the cell less elastic,

decreasing the shear modulus E and consequently increasing the dimensionless capillary num-

ber, which is inversely proportional to E. The benefit of having edges that spontaneously dis-

connect before the threshold is reached is outweighed by the cost of decreased shear resistance

and greater extension seen by plotting the cell’s first principal moment of inertia (Fig 7(b)).

To isolate the effect of network dynamics from that of extension in shear flow, we consid-

ered a situation in which we prescribe the strain, rather than the shear stress, on the cell.

Inspired by optical tweezer experiments and simulations [13, 50–53], the cell is attached by

stiff springs at both ends to small clusters of virtual tether points. Of the approximately 40,000

Fig 7. Behavior of a dynamic cytoskeleton under shear flow. (a) I2/I1 over time for koff = 0, 10, and 100 s−1, (b) The lower effective shear

modulus for a dynamic network leads to a higher dimensionless capillary number and greater deformations, as evidenced by the greater

maximum value of I1 for the network with the fastest rate of remodeling, (c) The total number of irreversibly broken edges is plotted versus

time. The network with the fastest dynamics, i.e. koff = 100s−1, accumulates the most irreversibly broken edges in shear flow. The benefit of

having more edges that spontaneously disconnect before breaking is outweighed by the cost of decreased shear resistance and greater

extension.

https://doi.org/10.1371/journal.pcbi.1005790.g007
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vertices composing the triangulated mesh, about 1,500 vertices are attached to tether points.

The tether points are uniformly distributed over 3–4% of the red cell surface area. The motion

of the tether points is prescribed to pull the ends of the cell in opposite directions at a constant

rate and place the cell under increasing tension. As noted above, prescribing the extension rate

rather than the force allows us to isolate the effect of network dynamics from changes in overall

shape. To help validate the model, we compare the force-extension curves obtained from simu-

lation to the results of optical tweezers experiments [53]. The force-extension curves calculated

using a static spectrin network are in agreement with experiment results (Fig 8(c)).

In the following simulations, we replace the worm-like chain model on each edge of the

spectrin network by a linear entropic spring force given by Eq (3) of S1 Text that has the same

behavior at small strains. Although the linear spring force allows for infinite extension in prin-

ciple, large extensions will not occur in our simulations since spectrin tetramers break irrevers-

ibly upon reaching their contour length. Further justification is provided in the section

“Dynamic connections” of S1 Text. Upon extending the cell by about 100% over the course of

approximately 0.23 seconds, we find that the total number of irreversible breakage events

decreases by about 20% in the presence of network dynamics (Fig 9 and S6 Video). As shown

in Fig 9, the cytoskeleton edges become less dense in regions of high strain where more irre-

versible damage occurs. Since the spectrin network initially has approximately 110,000 edges,

the 2,000 edges broken over the course of our simulation make up less than 2% of the total net-

work and have a negligible effect on the overall cell mechanics. However, the difference in

breakage rates is greatly magnified over the course of time and in the context of positive feed-

back. Whereas we have considered only one full deformation cycle because of computational

constraints, the average transit time through the circulation is approximately twenty seconds,

so that a red cell experiences on the order of 105 such cycles over their lifespans [32]. These

deformations can be extreme, e.g. when passing across the spleen’s narrow endothelial slits

having dimensions of approximately 2 μm ×1 μm [54, 55]. There is positive feedback because

the more broken bonds a cell has, the less able it is to return to its rest shape after large

Fig 8. Mechanical properties of red cell model with static spectrin networks under deformation typical of an optical tweezer

experiment. (a) Initial shape of membrane with overlaid cytoskeleton, (b) Final state (see also S6 Video), (c) Comparison of the simulated

force-extension curve to optical tweezer experiments [53], in the axial (upper curve) and transverse (lower curve) directions. Error bars from

the simulation were computed by comparing forward and reverse deformations.

https://doi.org/10.1371/journal.pcbi.1005790.g008
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deformations, and therefore the more likely it is that remaining bonds will become progres-

sively stretched and break.

It is surprising that, depending on the type of deformation the red cell is subjected to, the

presence of dynamics can either lead to more or less damage to the cytoskeleton, but it is con-

sistent with previous studies showing that dynamics can generate both enhanced and deficient

spectrin networks [17]. This prediction of how cytoskeletal dynamics decrease the number of

polymer failures over time could be tested experimentally by using optical tweezers to deform

red cell mutants in which the persistence of spectrin tetramer connections has been altered.

For example, hyperstable spectrin tetramers that disconnect less frequently than wild type cells

Fig 9. Comparison of static and dynamic spectrin networks under deformation typical of an optical tweezer experiment. (a) Heat

map on the cell surface representing the number of irreversibly broken edges on the static (blue) and dynamic with koff = 10s−1 (red)

networks at several instants in time. The static network has an excess of irreversibly broken edges at the cell ends, as illustrated by the deep

blue color, (b) Dynamic networks (koff = 10s−1, red symbols and koff = 100s−1, black symbols) accumulate fewer irreversibly broken edges

under a prescribed strain than the static network (koff = 0s−1, blue symbols). Error bars were computed by performing each simulation at

64 × 64 × 128 and 128 × 128 × 256 grid resolutions, (c) Final state of stretched membrane with irreversibly broken edges overlaid from

dynamic network (red edges) and static network (blue edges) simulations.

https://doi.org/10.1371/journal.pcbi.1005790.g009
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and have been produced in transgenic mice (N. Mohandas, New York Blood Center, personal

communication, 2015).

Discussion

We have used our image-based model to investigate the physiological consequences of cer-

tain cytoskeletal properties at microscopic scales, specifically the importance of network

dynamics. We have used simulations to address the consequences of allowing the spectrin

network to reorganize over time, an effect which is thought to take place in vivo. This model

predicts that, in the presence of cytoskeletal reorganization, repeated deformations will lead

to changes in the structure of the cytoskeleton. When a cell undergoes tank-treading in shear

flow, we find that faster cytoskeletal reorganization leads to more irreversibly broken spec-

trin tetramers and a smaller dimensionless tank-treading frequency. This is because the loss

of elasticity from remodeling leads to larger capillary numbers, which causes greater exten-

sions and has previously been shown to generate smaller dimensionless tank-treading fre-

quencies [41, 56].

In contrast to the case of shear flow, results from our model suggest that, when the cell is

placed under a repeated strains, cytoskeletal dynamics may play a protective role by allowing

spectrin tetramers to disconnect before they would break. In particular, we found that by

allowing transient disassembly of spectrin tetramers, the cytoskeleton suffered fewer irrevers-

ibly broken edges in response to applied strains that simulate the conditions of optical tweezer

experiments. We used a relatively fast disassociation constant of at least koff = 10s−1, based on

the rapid remodeling that was previously reported [7, 44]. However, recent measurements sug-

gest that the stress relaxation timescale is at least 10 hours [43], indicating that the true rate of

remodeling is significantly slower than the value of koff = 10s−1 used for our modeling. Any

potential protective effect of dynamics may therefore only be significant on the timescale of

hours to days, over which cells undergo hundreds to thousands of deformation cycles. The

same results also suggest that, under conditions of fixed strain, mutant red cells with static con-

nectivity may accumulate damage more quickly than dynamic wild type cells. Further study

using biophysically-realistic models of networks dynamics, together with optimized algorithms

and higher thoroughput simulation techniques, is needed to quantify these predictions over a

wider range of parameter space. Empirical testing of this hypothesis by using optical tweezers

or microfluidic devices [57] to apply strain or shear stress to red cells with hyperstable spectrin

tetramers would be an important step in validating the model and identifying any possible pro-

tective effect of network dynamics on the cytoskeleton.

This model could be used to investigate in detail the consequences of mutations that occur

in hereditary elliptocytosis, a genetic disorder that affects proteins responsible for horizontal

connections within the spectrin cytoskeleton [58]. The statistical properties of the spectrin net-

work are likely to be affected by these mutations. Our model makes it possible to investigate

mechanisms of the disease, since we can define parameters that govern cytoskeletal structure,

including the number of junctional complexes, the number of polymers attached to each junc-

tional complex, the length of the polymers, the polymer elasticity, and network dynamics. The

microscopic details that govern polymer connections in the cytoskeleton can have an effect on

the macroscopic behavior, as evidenced by the change in the tank-treading frequency caused

by dynamics within the spectrin network. As noted in the introduction, composite models

have been developed [16–18] that capture the disruptions in vertical connections between the

membrane and cytoskeleton that occur in hereditary spherocytosis and during extreme defor-

mations. Although we have enforced strong vertical connections in the present work, it is pos-

sible to incorporate relative motion within the immersed boundary framework by including a
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slip velocity [59]. Given the recent progress on composite models this would be an interesting

application of our image-based approach.

This approach starts with structural tomography data, uses a random graph algorithm to

generate a representative cytoskeleton, and then simulates the behavior of a cell with those

cytoskeletal properties under realistic flow conditions. In order to make this computational

framework generally valuable for studying questions in red cell physiology, the existing limita-

tions of this method must be addressed. With regard to the segmentation algorithm used for

processing tomographic images, one challenge is to accurately identify the junctional com-

plexes linked by spectrin. The method used, which involves cross-correlation to actin’s known

electron density, is appealing because it gives reasonable results and can be done using freely

available third-party software. However, visual inspection suggests both false positives and

false negatives. Establishing the accuracy of this method, e.g. through experiments in which

different cytoskeletal components are labeled by streptavidin [60], would be an important vali-

dation of the node identification step. Further, the threshold used to binarize the tomograms is

presently determined by prescribing the mean degree μ, but it would be preferable if μ were an

output out of the data analysis. We have not taken this approach since μ has been found to be

sensitive to the threshold used, making it difficult to identify a value robust to the image pro-

cessing parameters. It is possible that using a single threshold is too simplistic; by considering

the known electron densities of spectrin and actin, it may be possible to compute more appro-

priate independent thresholds. Of course, tomograms with a higher signal-to-noise ratio

would greatly aid our analysis and the new direct detectors currently being used for electron

microscopy are likely to make this possible.

Several simplifying assumptions have been made in the cytoskeletal model presented here,

including the independence of edges in the random graph model, the treatment of spectrin

polymers as Hookean springs with no self-avoidance, and our particular implementation of

spectrin network dynamics. Further investigation may reveal the need for more complicated

models. For example, in addition to forming tetramers, spectrin dimers can join together in

the red cell cytoskeleton to form hexamers and other higher-order oligomers. Although the

number of such higher-order oligomers is significantly less than the number of tetramers, it

has been shown that including even a relatively small number of hexamers can drastically

change the network elasticity [22].

We note that spectrin cytoskeletons play important physiological roles in other settings as

well: they have been shown to be important regulators in Drosophila development and to be

present in axons, to which they may provide structural stability to help the axons span long

distances [61, 62]. They also play a role in cardiomyocyte differentiation and heart develop-

ment [63]. Dysfunction in the spectrin-dependent cytoskeleton in cardiomyocytes has been

shown to underlie severe arrhythmia associated with aberrant calcium phenotypes, identify-

ing spectrin as critical for normal myocyte electric activity [64]. Although we have focused

here on spectrin networks, the modeling of networks made up of polymers besides spectrin

is of course of significant interest. For example, Lee et al. [65] examined cytoskeletal remodel-

ing in fibroblasts, in which the cytoskeleton is made up of actin-based stress fibers, and

Magatti et al. examined the complex polymer networks that occur in fibrin gels during blood

clotting [66]. These works are related to ours in that they also involve initializing a random

network of polymers, so that the algorithm described here to generate a random graph with

specified statistical properties may be applicable. With regard to the image processing, our

segmentation algorithm falls into the general class of thinning algorithms [67], which have

been used elsewhere for biological applications such as extracting the structure of collagen

gels [68, 69].
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Although the present work has not been focused on the numerical details of the immersed

boundary method, we nevertheless wish to mention a few challenges and potential research

directions related to simulating red cells under flow. Whereas red cells in our bodies repeatedly

experience many cycles of deformation over their lifespans, at present we are unable to simulate

more than a few cycles because of the prohibitive computational cost of long simulations at

high resolution. Continual deformations may also lead to numerical challenges in the form of

long and skinny triangles in the mesh. In our simulations the aspect ratio, i.e. the ratio of the

longest triangle edge length to the shortest triangle edge length, ranges from an average of 1.1 to

an average of 1.3 in the tank treading simulations and of 3.3 in the optical tweezer simulations.

The maximum aspect ratio over all triangles ranges from 1.8 initially to 13 in the tank treading

simulations and to 920 in the optical tweezer simulations. Given the nature of the deformation

in the optical tweezer simulation, it is physically reasonable that triangles become severely

skewed in that case. This interplay of numerical and structural stability merits further study

given that skewed triangles can decrease the accuracy of discretizations on the mesh [70].

Taken as a whole, this work describes a method to use tomographic data as a basis for simu-

lating the effects of changes in cytoskeletal structure and dynamics on how red cells respond

to different flow conditions. By applying this framework to a wider selection of tomographic

samples, we believe it can provide a more detailed understanding of the cytoskeleton and its

role in disorders affecting red cell fluid mechanics.
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