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Tissue intrinsic emission fluorescence provides useful diagnostic information for various

diseases. Because of its unique feature of spectral profiles depending on tissue types,

spectroscopic imaging is a promising tool for accurate evaluation of endogenous

fluorophores. However, due to difficulties in discriminating those sources, quantitative

analysis remains challenging. In this study, we quantitatively investigated spectral-spatial

features of multi-photon excitation fluorescence in normal and diseased livers. For

morphometrics of multi-photon excitation spectra, we examined a marker-controlled

segmentation approach and its application to liver fibrosis assessment by employing

a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis. We formulated a

procedure of internal marker selection where markers were chosen to reflect typical

biochemical species in the liver, followed by image segmentation and local morphological

feature extraction. Image segmentation enabled us to apply mathematical morphology

analysis, and the local feature was applied to the automated classification test based

on a machine learning framework, both demonstrating highly accurate classifications.

Through the analyses, we showed that spectral imaging of native fluorescence from liver

tissues have the capability of differentiating not only between normal and diseased, but

also between progressive disease states. The proposed approach provides the basics of

spectroscopy-based digital histopathology of chronic liver diseases, and can be applied

to a range of diseases associated with autofluorescence alterations.

Keywords: autofluorescence, spectral imaging, multi-photon microscopy, digital pathology, liver fibrosis, image

segmentation

INTRODUCTION

Cells and tissues of multicellular organisms intrinsically contain many kinds of chemical
compounds that emit fluorescence. These include nicotinamide adenine dinucleotide (NADH),
flavins, lipofuscin, melanin, porphyrins, collagen, elastin, vitamins, and other metabolites (1–4). To
date, much of the attention about fluorescence microscopic analysis was on selective labeling with
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exogenous fluorophores or fluorescent proteins. In these types
of analyses, native fluorescence was considered as background
signals. However, these native molecules play important roles in
tissue development, homeostasis, and disease progression, and
thus can be used to reflect cellular states in living organisms.
Therefore, monitoring the spatial distribution of endogenous
fluorophores as biological markers in living systems enables us
to explore cells and tissues in their original states.

Recent technological developments in fluorescence
microscopy opened up a new window for use of endogenous
fluorophores in clinical medicine. Multi-photon (MP)
microscopy is a novel optical tool for intravital fluorescence
imaging with high spatial resolution (5, 6). Due to its advantage
of deeper tissue penetration, MP microscopy is suited for
observation of in vivo molecular signals. Furthermore, second
harmonic generation (SHG) enables direct imaging of molecules
possessing non-centrosymmetric structures such as collagen
and myosin (7). SHG and MP-based autofluorescence has been
extensively used for the assessment of various diseases, including
liver fibrosis and cancer (1, 2, 8–15).

Hyperspectral recording of intrinsic emission images make
the label-free method especially informative (16–18). Native
fluorescence in tissues generally shows broad spectral profiles,
which are derived from a mixture of multiple distinct
fluorophores. It is therefore difficult to separate individual
sources of fluorescence due to their highly overlapping spectra.
However, the spectral profile at each location in the images
reflects a different biochemical composition. Thus, quantitative
characterization of this spatial-spectral content of tissue intrinsic
fluorescence would be useful for assessing tissue states. In
microscopic analysis which uses targeted labeling with exogenous
fluorophores, fluorescence source separation methods are
commonly used. However, application of these methods to
discriminate between the endogenous fluorophores is difficult,
because of difficulty in obtaining the reference spectral data
which reflect pure fluorophore sources. Therefore, in order to
address this issue, instead of separating the distinct emission
sources, in this study we took advantage of a different image
processing technique called image segmentation.

The image segmentation approach is a powerful way
for extracting spatial information from spectral images.
Segmentation methods partition an image into non-overlapping
homogeneous regions based on set criteria. A difficulty in
hyperspectral segmentation is the construction of the appropriate
criteria which separates spectra with several characteristic
profiles. Some techniques have been applied for hyperspectral
image segmentation, such as a watershed algorithm (19). Another
approach proposed for image segmentation was internal marker-
based segmentation. Markers are representatives of the spectra
of typical objects in images, and hence are considered as bases
for the spectra. Markers are often defined by flat zones, image
extrema, or other morphological features (20–24). Once the
markers are selected, it is easy to obtain accurate segmentation
images by assigning pixels to the markers.

In this study, we aimed to apply this idea to the analysis
of tissue intrinsic emission spectral images acquired using MP
microscopy. We proposed a simple procedure for building

internal spectral markers that reflects tissue-specific biochemical
species, by combining a morphological feature extraction
algorithm and a clustering method. We further developed
an image processing pipeline for performing segmentation
based morphometrics. This method was comprised of three
successive steps—internal marker selection, image segmentation,
and local morphological feature extraction. Image segmentation
was performed using markers, which enabled us to apply
mathematical morphology analysis. In order to extract the
morphological features of the images, we employed an image
patch-based approach, in which the local morphological feature
of the spectra is represented as a collection of spectra within
image patches. The local feature was applied to the automated
classification test based on a machine learning framework.

In order to evaluate the feasibility of our method, we
focused on liver fibrosis assessment. Liver tissue emits strong
fluorescence, and tissue states associated with fibrosis have
been analyzed using the SHG imaging technique (13, 25–31).
These studies demonstrated that the SHG imaging of fibrillar
collagen deposits correlates well with conventional scoring based
on histological staining samples. Although information from
native fluorophores is equally important as fibrillar collagen
deposition, quantitative methods that utilize the full potential
of MP-based fluorescence in early fibrosis assessment have
been poorly investigated. Since autofluorescence can be used to
evaluate cellular metabolic and inflammatory states, alterations
in fluorescence could be potentially beneficial in detecting early
fibrosis signals emanating prior to collagen deposition. In this
study, we showed that the spectral imaging of native emission
fluorescence from liver tissue has the capability of differentiating
not only between normal and diseased tissue, but also between
progressive disease states in early stages of fibrosis. The proposed
approach provides the basics of imaging spectroscopy-based
digital histopathology for diagnosis of chronic liver injury,
and can be applied to a range of diseases associated with
autofluorescence alterations.

RESULTS

Intrinsic Emission Spectral Imaging of
Mouse Liver Tissues by MP Microscopy
In order to investigate the usability of MP microscopy in
evaluating liver tissue states, we began with a comparison
of laser scanning microscopic images obtained from tissue
intrinsic emission spectra including autofluorescence and SHG
signals in healthy and intact liver tissue samples, without
additional extrinsic marker fluorophores. The images were
acquired by using a MP microscope through the spectral
detector (SD) unit with a 1,050 nm wavelength excitation light
(Figure 1A, left and Figure S1), and 1-photon (1P) confocal
laser scanning microscope through the SD unit with four
excitation laser lines with wavelengths of 405, 488, 561, and
640 nm (Figure 1A, right). In both images, hepatic parenchyma
primarily composed of hepatocytes were captured in yellow
to orange color signals, showing a regular array of hepatic
cells. Vascular structures featured as dark regions, including
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sinusoids and portal and central veins, were also recognized in
the images. The spectral profile of hepatic parenchyma marked
by the magenta arrow in Figure 1A was plotted as a function
of wavelength (Figure 1B, magenta line), indicating that the
fluorescence intensity increased between 500 and 650 nm. This
profile is consistent with the fact that NADH and flavins, which
are major sources of intracellular fluorescence, have broader
emission bands over 500 nm (1, 2, 32). The white dot-like
structures possessing broader spectral profiles were observed
only in the MP microscopy image (Figure 1A, blue arrow and
Figure 1B, blue line), but not in the 1P microscopy image.
These structures appeared to be concentrated on the periphery
of the sinusoids. A possible source of this autofluorescence is
retinol, a form of vitamin A. The SHG signal was detected
at a wavelength of 525 nm, exactly half the wavelength of the
excitation light, in the MP microscopy images, and highlighted
the fibrous morphology of hepatic collagen fibrils. The signal
showed sharp and narrow peak spectra (Figure 1B, green line).
In the 1P microscopy image, only the hepatic parenchyma
structures were recognizable, but not collagen fibrils or white dot-
like structures. These data demonstrated a benefit of the use of
MP microscopy.

Next, we performed analyses of MP excitation spectral
imaging of tissue sections obtained from paraffin-embedded
samples (Figure 1C). Hepatic morphology was well-
characterized by their autofluorescence from hepatic
parenchyma and SHG signals from collagen fibrils, but the
white dot-like structures were not detected. This may be
that retinol, a fat-soluble substance, disappears during the
preparation of tissue sections. Therefore, these structures can
be detected only in intact tissue samples, demonstrating a clear
advantage of MP microscopy for evaluating intact liver tissue
samples without the need for tissue section preparation.

MP Excitation Spectral Imaging for Liver
Tissues of CCl4-Induced Liver Fibrosis
In order to explore the feasibility of MP-based native emission
spectra for the diagnosis of liver disease, we employed a mouse
model of carbon tetrachloride (CCl4)-induced liver fibrosis.
To focus on the detection of early signs of liver fibrosis, we
generated the model mice by intraperitoneal administration of
CCl4 twice a week for 2 weeks. The pathological states of the mice
were investigated by a histological approach with the Masson-
Goldner (MG) staining method, in which nuclei, cytoplasm, and
connective tissues are stained in dark brown, red, and blue,
respectively. Histological sections revealed that a representative
image from the control groups shows normal hepatic cellular
architecture (Figure 2A, upper), while that from the CCl4 group
indicates an irregular array of hepatocytes, and an increase
in collagen deposition around the portal vein (Figure 2A,
lower). Excessive deposition of collagen forms bridges between
portal veins. To evaluate these abnormal structures by intrinsic
emission spectra, we acquired MP microscopy images of CCl4-
exposed and control liver tissues. The images successfully
captured areas of the extensive collection of collagen fibrils
surrounding vessels and the Glisson’s capsule—the surface layer

FIGURE 1 | Intrinsic emission spectral imaging of healthy mouse liver tissues

with MP microscopy. (A) Laser scanning microscopy images of intrinsic

emission light for healthy and intact mouse liver tissues. Left: MP excitation

image through the SD unit with an excitation wavelength of 1,050 nm. The

emission spectra were detected as 25 channel images at a wavelength range

of 400–650 nm with a bandwidth of 10 nm. Blue arrow indicates white-colored

dot-like objects, green arrow indicates regions of emission of strong SHG

signal, and magenta arrow indicates regions of hepatic parenchyma, primarily

composed of hepatocytes. Right: 1P confocal laser scanning microscopy

image through the SD unit. Four laser lines (405, 488, 561, and 640 nm) were

used for excitation. (B) Profiles of the emission spectra of the indicated arrows

in (A). (C) Sectional examinations for liver tissues. MP excitation spectral

image of a paraffin-section. Scale bar: 100µm.

of the liver—indicating fibrotic changes of collagen organization
(Figure 2B). Furthermore, the accumulated collagens bridged
between vessels, indicating consistency between MP microscopy
images and histological images. In reflecting the fibrotic changes,
the surface shape showed an undulated structure and depressed
areas appeared in the images of the CCl4 model compared
with those of the control model (Figure S2). Additionally,
objects that emit a strong, orange-red colored fluorescence
was observed (Figure 2B, red arrow). The size and form of
these objects were similar to cells. The collection of spectra
revealed that the intensity largely increases at wavelengths
of 500–650 nm (Figure 2C, red line). This profile is similar
to that from hepatocytes (Figure 2C, magenta line), but the
fluorescence intensity of these red cell-like objects was higher
than that of hepatocytes. These structures could be recognized
in MP microscopy images of tissue sections. Comparison of the
serial sections of the histological and MP microscopy images
from paraffin-embedded samples revealed that the red cell-
like objects exist where collagen is bridged between vessels
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FIGURE 2 | MP excitation spectral imaging for liver tissues of the CCl4-induced liver fibrosis model. (A) Histological images of the MG-staining sections for liver

tissues of the control and CCl4 models. (B) MP excitation spectral images for liver tissues of the 2-weeks control and CCl4 model. In the CCl4 image, blue arrow

indicates white-colored dot-like objects, green arrow indicates SHG, magenta arrow indicates hepatic parenchyma, and red arrow only observed in the CCl4 image

indicates cellular-sized objects that appeared in yellow or orange color. (C) Profiles of the emission spectra of the indicated arrows in the control and CCl4 images in

(A). (D) Quantification result of the ratio of SHG signal area to the total image area. Scale bar: 100µm.

(Figure S3). Therefore, these objects would be a sign of early
fibrosis.

In order to estimate the rate of excessive collagen fibril
accumulation, we quantified the SHG images extracted from the
spectral images. The z-stack image sequences were converted
to maximum intensity projection (MIP) images, in which the
highest pixel intensity among the images in the z-stack was
projected on to a new single-layer image (Figure S4). Then, these
images were binarized with appropriate thresholding, before
performing the calculation of the ratio of the SHG area to the
total image area for both the CCl4-exposed and control samples
(Figure 2D). The results showed increased areas of collagen fibers
in the CCl4 model compared with control samples, quantitatively
confirming the excessive collagen deposition.

Selection of Internal Markers
As seen previously, native fluorescence in liver tissue showed
broad spectral profiles. It is therefore difficult to discriminate
individual sources of fluorescence, and this problem is associated
with the limited availability of reference data. However, the
spectral profile at each location in the images corresponded to
the liver disease state. Thus, for quantitative evaluation of liver
tissues, we employed an image segmentation approach, called
marker-controlled segmentation (23, 24), instead of attempting
to separate the various sources of fluorophores. The basic idea

of this approach is to find internal markers, which indicate
significant objects appearing in spectral images. Possible markers
need to include manually selected spectra (Figures 1B, 2C).
Hence, in order to examine the reproducibility of these spectral
profiles using automated algorithms, we first attempted to
construct markers by performing a pixel-by-pixel collection of
spectra and classifying the spectra using the k-means clustering
method. The spectral profiles that were obtained include ones
which were similar to manually selected ones, a sharp peak
profile of SHG, broader profiles of white dots (WD), and
hepatic parenchyma (HP) and red cell (RC)-like structures
at the longer wavelength with low and high intensity levels,
respectively (Figure S5). However, this method of calculation
requires high computational costs because of the large size of the
collected spectra. Therefore, we looked for an alternative way of
constructing markers. For computational cost-savings, we used
dimensionality reduction and morphological feature extraction
techniques. This workflow is shown in Figure 3A. First, to make
the high dimensional images easy to handle with general image
processing techniques, we performed a dimensionality reduction
of spectral images to three image types. These were defined
by wavelengths: 550–650 nm (longer wavelength band), 520–
530 nm (SHG band), and 400–500 nm (shorter wavelength band).
Next, we ran a morphological feature detection algorithm, called
features from accelerated segment test (FAST)-algorithm (33), to
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FIGURE 3 | Selection of internal markers. (A) Schematic of the image processing workflow. First, the dimensionality of spectra was reduced by defining color bands

of shorter wavelengths 400–500 nm, SHG 520–530 nm, and the longer wavelengths 550–650 nm. The lower dimensional images were generated by averaging the

spectra intensities among each of the bands. Using these image sets, a feature detection algorithm was applied to detect key points in the images. With the

coordinates of the detected points, spectra were collected from the original spectral image sets and were stored in a spectral pool. Next, the pooled spectra were

quantized to the centroid values of a k-means cluster, in which each cluster represents a spectral marker. (B) Key point extraction was by FAST feature detection

algorithm. The results for bandpass images with shorter wavelengths, SHG, and longer wavelengths were shown. The detected points were denoted as green cross

marks. (C) Spectral profiles collected from the detected key points for the 2-weeks control and CCl4 model. (D) Quantization of the collected spectra for the cluster

number k = 10 of k-means clustering. Interpretation of quantized spectra is indicated for HP, SHG, WD, and RC.

collect key points of these three types of images independently
(Figure 3B). At each point, the spectral profile was collected for
the control and CCl4 models (Figure 3C). Finally, the spectral
markers were created by quantizing these collected spectra. This
was performed by the k-means clustering method (Figure 3D).
In the case of the clustering number k= 10, the obtained spectral
profiles resembled those that were obtained by pixel-by-pixel
construction. The spectral curve can be interpreted as noted.
The k = 20 case can also characterize the typical features of the
spectra, while in the k = 4 case, the peak intensity of the profile
reflecting the SHG signal (Figure S6, blue line) was not as high as
that of the SHG profile in the k= 10 case.

Marker-Controlled Image Segmentation
and Mathematical Morphology Analyses
Image segmentation was performed in such a way that a
spectrum at each pixel was assigned to the nearest centroid
of the constructed spectral markers (Figure 4A). Thus, each
pixel was k-valued, except for low signal pixels, which were
excluded in the analysis. To confirm that the image segmentation
method worked well, we compared SHG images between the

spectral band (520–530 nm) extracted images and marker-
controlled segmentation images from the spectral and three-
channel image data obtained through the emission filter sets.
For image segmentation of the emission filter-based images,
we followed the same procedure used in the analysis of the
spectral images. The ratios of overlapping pixels to the total
signal area with respect to the SHG signal of the k = 10 case
between the spectral-band segmentation images and the marker-
controlled segmentation image sets were calculated. The results
for spectral data demonstrated that over 98% of the regions
coincided (Figure S7). On the other hand, the ratios calculated
from the images through the emission filters showed that <90%
of the regions coincided. Furthermore, the segmented images
from the spectral data separated the individual objects well
(Figure S8), while the segmented images from the emission filters
seemed to differentiate the objects less (Figure S9). These data
demonstrated that there was an improvement in segmentation
performance for images when spectral detection was used,
rather than emission filter-based multi-channel detection. The
segmented images can be interpreted as SHG, WD, HP, and RC
objects by the spectral marker profiles (Figure 4B and Figure S8).
These image data made it possible to perform morphometric
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FIGURE 4 | Image segmentation and mathematical morphology analyses of spectral image data. (A) Schematic of the image processing workflow. The segmentation

of spectral images was performed by assigning each pixel to the nearest centroid of the markers. The mathematical morphology analysis was then performed on the

segmented images. (B) Original and segmented images reflecting the regions of HP, SHG, WD, and RC are shown. Segmented images representing HP, SHG, WD,

and RC are in yellow, green, white, and red, respectively. (C) Mathematical morphology analyses of the segmented images. The graphs shown are the ratios of the

number of WD sites and RC sites to the total signal area, the averaged nearest neighbor distance between WD sites, and the averaged areas of RC to the total signal

area. Asterisks indicated statistical significance with the Kolmogorov-Smirnov test with a p < 0.05.

analyses using mathematical morphology. We quantified the
ratios of the number of WD and RC sites to the total signal
area. These data revealed increased numbers of objects in the
CCl4 model compared with the control model (Figure 4C). To
further explore the morphological characteristics of the images,
local density of the WD sites and averaged areas of the RC
objects were calculated (Figure 4C). The local density of the WD
sites measured by the nearest neighbor distances between the
objects demonstrated that local accumulation of the sites are
enhanced, and the areas of RC objects dramatically increased,
in the CCl4 model. Therefore, these morphometric analyses
successfully characterized the pathophysiological image patterns
of the WD and RC objects in liver tissues.

Local Morphological Feature Description
and Automated Image Classification Test
So far we showed that the morphological features of individual
segmented objects could characterize liver tissue states. This

suggests that local information of quantized spectra can be
used as image features for image recognition. Thus, it is
worth investigating whether simple construction of feature
vectors, such as local sets of spectra, would be advantageous
in automated image classification. In order to investigate this
point, we employed a machine learning method for image
classification, called the Bag-of-Features (BoF) framework (34–
36). This method is described briefly in Figure 5A. A key to
this algorithm is to construct the codebook comprising a set
of quantized vectors, called visual words, which describe image
patterns of image patches. Image patches were created using a
regular square grid, which divides images with a division level
l (Figure S10). We represented a feature vector of an image
patch as the frequency of spectral markers (Figure 5B). Then, the
feature vectors of the image patch sets were used to create visual
words by performing vector quantization of size c. In the training
step, the term vector, a histogram of visual word occurrences
for each image, was calculated based on visual words. The BoF
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FIGURE 5 | Automated image classification test by the BoF machine learning method. (A) Procedure of the BoF framework. BoF is comprised of three steps,

codebook construction, training, and testing. In the codebook construction step, image patch sets were created and feature vectors corresponding to the image

patches were calculated. The feature vectors were defined as histograms of spectral markers collected within image patches. Visual words, which comprise the

codebook, were created from these vectors by performing vector quantization. In the training step, an image was represented as a set of image patches that are

subjected to feature vector calculations and visual word assignments. A histogram of visual word occurrences (term vector) was subsequently calculated for each

image. Based on these data, the SVM classifier was constructed. In the test step, image prediction was performed based on the classifier. (B) Term vector calculation

for an image. A divided image using the regular square grid with the division level l = 2 was shown. An image which is represented as a set of visual words was

converted to a term vector. (C) Results of the classification test performed on 2-weeks models. The machine learning parameters are the division level l, the cluster

number of the spectral markers k, and the codebook size c. The total, CCl4, and control accuracy rates are depicted as blue, red, and yellow lines, respectively. (D)

Results of the classification test performed on 2-weeks models excluding SHG marker information. The total, CCl4, and control accuracy rates are depicted as blue,

red, and yellow lines, respectively.

algorithm depends on three parameters, namely the number of
markers k, the image division level l, and the codebook size c.
We investigated parameter sensitivities for image classification.
We evaluated classification performance by overall accuracy
and individual accuracy for the control and CCl4 model at 2
weeks. The results were shown as averaged values performed on
k = 4-fold cross-validation test. The numbers of images used

for training and test samples are summarized in Figure S11.
Overall, the highest classification performance achieved over
95% accuracy. The accuracy of the CCl4 model was higher than
that of the control model. The performance depended on the
division level, i.e., the accuracy increased as the division level
increased (Figure 5C and Figure S12A). This indicated that the
classification became more accurate as the image patch size
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gets smaller and division level number becomes larger. The
number of markers did not affect the results greatly (Figure 5C,
flrefsup1Figure S12B), suggesting that there is no need to create
a larger number of markers. We observed no clear advantage for
using a larger codebook size (Figure 5C and Figure S12C).When
the analysis was applied to the images which excluded the SHG
markers, the accuracy showed a level equal to that of full markers,
indicating that the liver pathological state in CCl4-induced liver
injury can be classified without the use of collagenous fibrillar
information (Figure 5D).

Spectral Morphometric Analysis: 2- vs.
4-Weeks CCl4-Exposed Model
In order to apply our algorithm to the discrimination of the
liver fibrosis pathological state, we used the 2- and 4-weeks
CCl4-exposed mouse models. Representative emission spectral
images of these models are shown in Figure 6A. In contrast to
the control models, images of CCl4 models exhibited abnormal

signal patterns. As observed in the 2-weeks CCl4 model, the
undulated liver surface with extensive collagen fibrosis and RC
objects were also observed in the 4-weeks model. Although
these observations reflected typical features of hepatic pathology
during fibrosis progression, it is difficult to distinguish the
two model images without quantitative image analysis. For
the purpose of quantitative evaluation of hepatic morphology
associated with fibrosis, we performed image morphometric
analysis as was done for the 2-weeks model previously. First, the
ratios of the SHG area to the image total area for both the 2-
and 4-weeks CCl4-exposedmodels were calculated using theMIP
method as was done previously (Figure 6B). The results showed
that the collagen fibril deposition on the surface area of the liver
did not change. However, this did not indicate that the fibrosis
would not proceed, as the estimation of the ratios of the SHG
area in internal areas using tissue sections revealed an increased
collagen amount in the 4-week model when compared to the
2-week model (Figure S13). To proceed further, we performed

FIGURE 6 | Spectral image morphometry: 2-weeks model vs. 4-weeks model. (A) MP excitation spectral imaging for liver tissues of the 2- and 4-weeks CCl4
models. Scale bar, 100µm. (B) Quantification result of the ratios of SHG signal area to the total image area. (C) Mathematical morphology analyses performed on the

2- and 4-weeks CCl4 model. The graphs shown are the ratios of the number of WD sites and RC sites to the total signal area, and the averaged nearest neighbor

distance between WD sites, and the averaged areas of RC to the total signal area. Asterisks indicate statistical significance with the Kolmogorov-Smirnov test with p

< 0.05. (D) Results of the automated classification test performed on the 2- and 4-weeks CCl4 models. The total, CCl4, and control accuracy rates are depicted as

blue, red, and yellow lines, respectively. (E) Results of the classification test performed on the 2- and-4 weeks CCl4 models excluding SHG marker information. The

total, CCl4, and control accuracy rates are depicted as blue, red, and yellow lines, respectively.
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image segmentation of the spectral images with the marker size
k = 10. The mathematical morphology analyses revealed that
the ratios44 of the number of the WD sites to the total area
indicated no significant differences between the models, while
those of the number of RC sites becomes larger as the period
of the drug administration becomes longer (Figure 6C). The
local density of the WD sites indicated no significant differences.
The averaged areas of the RC increased in the 4-weeks CCl4
model compared to those of the 2-weeks model. Therefore, only
the image patterns of the RC objects characterized the liver
tissue pathological state between the 2- and 4-weeks models. We
next performed an automated classification test using the BoF
framework. The numbers of images used for training and test
samples are summarized in Figure S11. Overall, the prediction
accuracy achieved∼90% accuracy (Figure 6D). Possibly because
of its very high accuracy rate, the result did not show any division
level dependence. Application of the analysis to images excluding
the SHG information provided an equal level of accuracy to that
achieved from full markers (Figure 6E).

DISCUSSION

In order to establish a digital histopathological assessment for
liver fibrosis, we used liver tissue intrinsic emission spectra-
based analysis, and demonstrated a methodology for performing
image morphometric analysis. This method was composed of
three successive tasks: selection of internal spectral markers,
image segmentation followed by mathematical morphology
analysis, and construction of spectral feature vectors followed
by an automated classification test with a machine learning
method. We evaluated the potential utility of this method for
classifying images derived from liver tissues as either normal
or diseased based on the mouse model of CCl4-induced liver
fibrosis. We showed that our method possesses high classification
performance not only between normal and diseased states, but
also between progressive disease states. Therefore, the proposed
image processing pipeline would be a promising platform of
spectral morphometrics for tissue fluorescence diagnosis of
various tissues or organs.

MP Excitation Intrinsic Emission Spectra in
Liver Tissue
MP microscopy is becoming a promising tool for observing
living, thick, and opaque tissues in a non-invasive manner.
Label-free imaging using this method enables us to observe
unstained samples using endogenous sources of nonlinear
signals and to diagnose several types of disorders. In the
liver, fibrosis assessment based on the SHG signal, which
comes from collagen molecules upon two-photon excitation,
has been extensively investigated (13, 25–31). Liver fibrosis
is characterized by the excessive accumulation of collagen in
the extracellular matrices of the liver tissue (37). Changes in
collagen architecture that occur in the liver can be obtained by
this high resolution imaging method. Therefore, SHG has been
used to quantitatively characterize fibrillar collagen deposition,
which was shown to correlate with conventional histological

analyses. On the other hand, strong native fluorescence is
also emitted in liver tissue. Endogenous fluorescent molecules
found in tissues include NADH, flavins, lipofuscin, porphyrins,
and vitamins (1–3). Fibrosis progression is related to cellular,
fibrotic, and microvascular changes, therefore monitoring the
histopathological information connected with liver fibrosis is key
to the diagnosis of chronic liver diseases. In our microscopy
settings that use an MP excitation laser at a 1,050 nm wavelength,
the primary intracellular sources of fluorescence in liver tissues
are NADH, flavins, and retinol, with absorption maxima of 350–
400 nm and emission at 400–600 nm. In contrast, for tryptophan
and its indoleamine derivatives, the absorption maxima is
at a wavelength of <300 nm and emission at a wavelength
<400 nm. NADH and flavins allowed us to visualize silhouettes
of hepatic cells and to discuss histological characteristics. In
the CCl4-admistered liver tissue samples, we observed strong
fluorescence at a longer wavelength range of 500–650 nm, which
was possibly derived from lipofuscin or porphyrin. These have
been reported to emit longer wavelength fluorescence and are
associated with inflammation or cell damage (1–3). Thus, this
object is a possible sign of early fibrosis progression. However,
since this type of structure could not be detected in histological
sections, and its origin is still not clear, further studies on
the functional roles of this fluorescence in liver injury are
required. Vitamin A, with a maximum excitation wavelength
of 350 nm and a broad emission spectrum of 400–600 nm (38),
was detected as white dot-like objects across the sinusoids.
This suggested that retinol is excited with the three-photon
absorption process around the 350 nm. It is well-known that this
vitamin plays an important role in liver homeostasis. Hepatic
stellate cells store vitamin A and their activation is related to
hepatitis. Hepatic stellate cells are considered to be the principal
effector of liver fibrogenesis, and are localized at the space
of Disse, located between the sinusoids and the hepatocytes.
Thus, these morphological features are consistent with the fact
that the white dot-like structures are primarily derived from
vitamin A fluorescence. Moreover, we confirmed the specific
distributions of stellate cells around vessels in CCl4 model tissues
using immunohistochemical staining with α-SMA (Figure S14).
Additionally, we found that the vitamin A signal disappeared
in paraffin sections. Therefore, intact tissue observation is well-
fitted to MP microscopy and the information gathered regarding
the fluorophores excited at ultraviolet wavelengths shows its
merit.

For further investigations on whether variation in MP
excitation wavelength alters image features, we performed
MP microscopy imaging through emission filters with three
different excitation wavelengths at 800, 1,050, and 1,200 nm
(Figure S15). Autofluorescence from hepatic parenchyma and
the white dot-like structures (detected in the 1,050 nm excitation
image) was also observed in the 820 and 1,200 nm excitation
images, although the efficiency of the excitation seems to
decrease in the 1,200 nm excitation images. The broad excitation
wavelength of this object indicates flexibility of wavelength
adjustment, suggesting the possibility for simultaneous imaging
of hepatic stellate cells with exogenous fluorescent markers such
as GFP.
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Marker-Controlled Image Segmentation
Approach for Spectral Morphometry
In the labeling of fluorescence such as fluorescent proteins
and fluorescence emitting chemical compounds, source spectral
profiles can be measured and these can be used in source
separation methods. However, the intrinsic emission spectra are
composed of a mixture of several fluorophores and hence showed
broad spectral profiles, making it difficult to separate individual
sources of fluorophores. For morphometric analysis of spectral
images, in this study, we considered an image segmentation
approach in which bases of spectra, called internal markers,
were chosen from the original images. The idea behind this is
that the spectral profile at each location in the images reflected
a different biochemical composition and thus spatial-spectral
information of liver tissue intrinsic fluorescence has the ability
to describe liver tissue states. In order to select markers, we
employed a combination of dimensionality reduction, a feature
detection scheme, and clustering of spectra. The reason for
doing this was to reduce computational cost, and to simplify the
process for obtaining markers as much as possible. Compared
with the manually selected spectral profiles, we showed that the
profiles reproduce the ones typical of those corresponding to
significant objects in the images: a sharp peak profile of SHG,
broader profiles of white dots, and hepatic parenchyma and red-
cell like structures at the longer wavelength and low and high
intensity levels, respectively. Different techniques for spectral
marker selection were proposed based on spatial features such
as flat zones or image extrema, and these techniques were applied
in the field of general scene recognition and geoscience (20–23).
Furthermore, image patch-based feature descriptors which use
the Gabor filter were proposed to include spatial and spectral
information (39). Development of a marker selection scheme by
incorporating these spectral-spatial feature extraction methods
may improve the segmentation results, and is a subject of future
research.

Classification Performance of the BoF
Machine Learning Method
The discrimination ability of the spectral imaging data was
evaluated using an automated classification test by the BoF
machine learning framework. For this, we defined a local feature
vector by a histogram of spectral markers within a local patch.
The highest accuracy we obtained was over 95% for the 2-
weeks control and CCl4 model, as well as for the 2- and 4-
weeks CCl4 model. We investigated how parameters influence
the results. The parameters we have are the division level l, the
number of spectral markers k, and the codebook size c. As the
division level, which is equal to the number of patches per image,
increases so does the classification accuracy. This means that
the higher accuracy requires use of a large number of image
patches, resulting in higher computational demand. On the other
hand, the number of spectral markers did not affect the results,
and the improvements on the increased codebook size was not
clearly observed. These data indicated that no greater values
for the marker number and the codebook size are required,
suggesting low computational cost. When information about

SHG signal markers was excluded in the classification analysis,
the accuracy did not change compared with that performed on
full spectra. This indicated that the liver pathological state in
CCl4-induced liver injury can be classified only through use of
autofluorescence. The mathematical morphology analyses also
supported this result, i.e., differences between the CCl4-induced
liver injury models were only recognized in the image patterns
of RC autofluorescence. This provides a potential application of
our methods to the diagnosis of diseases that are associated with
autofluorescence alteration, but do not yet show fibrotic changes.
Therefore, it would be interesting to investigate acute liver injury
models using our method.

Digital Diagnosis of Liver Fibrosis
Liver biopsy is the gold standard for staging liver fibrosis
progression although it has the risks of sampling error and
of being an invasive procedure. Grading and scoring methods
using stained liver tissue sections have been developed (40–
43). However, these methods are descriptive or semi-quantitative
and the results therefore suffer from inter/intra observer
discrepancies (44, 45). Although an automated quantification
algorithm for fibrosis evaluation have been developed (46, 47),
inter-assay differences such as staining variability, which biases
reproducibility and objectivity of the quantification method,
still remain. Therefore, stain-free imaging methods using MP
and SHG microscopy combined with automated quantification
methods have been developed for liver fibrosis assessment. The
feasibility of these methods for clinical diagnosis was validated
using biopsy specimens from human patients (25, 27, 28, 48).
While extensive investigations on SHG-based fibrillary collagen
assessment were made, fluorescence information from cells and
tissues in MP microscopy images remains poorly exploited. We
here showed that autofluorescence observation with quantitative
morphometric analysis allowed us to discriminate liver disease
not only between normal and CCl4-induced diseased states,
but along the progression of liver fibrosis. Although the
usability of our method was shown only in the drug-induced
liver fibrosis models, our quantification methodology using
intrinsic emission spectra and a computational pipeline possibly
contributes as a multifaceted evaluation of chronic liver diseases,
such as nonalcoholic steatohepatitis (NASH) or hepatocellular
carcinoma (HCC).

Development of endoscopic techniques using MPmicroscopy
is of great importance for the clinical application of MP
microscopy, which allows real-time histological examination of
the liver without conventional biopsy for liver disease diagnosis.
A miniaturized probe for MP microscopy were developed (49,
50), together with the development of a quantitative technique
for analysis of data, which may be advantageous for overcoming
constraints of nonlinear microscopy in clinical studies.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in accordance with
the recommendations of the Guidelines for Animal Experiments
of Ehime University, the Ethics Committee for Animal
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Experiments of Ehime University. The protocol was approved
by the Ethics Committee for Animal Experiments of Ehime
University.

Mouse Model of Carbon Tetrachloride
(CCl4)-Induced Liver Fibrosis
Male C57BL/6J mice at 5 weeks of age were purchased (CLEA
Japan, Inc.), and these mice were divided into four groups, 2-
weeks CCl4 (n = 3), 4-weeks CCl4 (n = 3), 2-weeks control
(n = 2), and 4-weeks control (n = 3). To produce mouse
models of CCl4-induced chronic liver injury in which prolonged
administration leads to liver fibrosis, cirrhosis, and hepatocellular
carcinoma (51), intraperitoneal injection of 20% CCl4 dissolved
in olive oil was administered twice a week at a dose of 0.2
mL/100 g body weight for 2 weeks (2-weeks CCl4 group) and
4 weeks (4-weeks CCl4 group). For control groups (2-weeks
control and 4-weeks control), olive oil was administered. The
mice were sacrificed via cervical dislocation, and then cardiac
perfusion with phosphate-buffered saline (PBS) was performed
to flush out blood, before collection of liver tissues. The
harvested liver samples were fixed overnight at 4◦C in 4%
paraformaldehyde (PFA) in PBS.

Preparation of Tissue Sections
After fixation of liver tissues, samples were soaked in PBS
for a least a day prior to analyses of the tissue sections. For
preparation of the tissue sections, the samples were embedded
in paraffin. The paraffin-embedded samples were cut into 5µm
thick sections. The sliced sections were then deparaffinized with
xylene, and subjected to microscopy. The sections subjected to
the histological analysis were stained with the Masson-Goldner
staining technique. Bright field images of the sections were
acquired using a wide field inverted microscope (All-in-one
fluorescence microscope BZ-X700, Keyence, Inc.) with a 20×
magnification objective lens (PlanFluor 20× NA:0.45, Nikon).
Image acquisition of the sections using confocal laser scanning
and a multi-photon excitation microscope are described below.

Image Acquisition by Laser Scanning
Microscopy
In order to perform microscopic image acquisition, we utilized
an upright confocal laser scanning (A1R, Nikon, Inc.) and
multi-photon (MP) microscope (A1R-MP, Nikon, Inc.). The
microscopes were equipped with a water immersion objective
lens (CFI75 Apo 25×W MP, NA:1.1, Nikon, Inc.), and the non-
descanned detector (NDD) unit and the spectral detector (SD)
unit (A1-DUS, Nikon, Inc.). Emission spectra were detected at
a wavelength range of 400–650 nm with a bandwidth of 10 nm
(recorded as 25 channels in total), through the SD unit. A
Ti:sapphire laser oscillator (Insight DeepSee, Spectra-Physics,
Inc.) and four confocal laser lines (405, 488, 561, and 640 nm)
were used for excitation. For the detection of MP excitation
fluorescence and SHG signals, excitation wavelengths of 800 nm,
1,050 nm, and 1,200 nmwere used. MP excitation spectral images
were acquired at a wavelength of 1,050 nm. Emission filter sets
used for detection through the NDD unit inMPmicroscopy were
as follows: (1) the dichroicmirror (DM) 450 nm and the bandpass

filter (BF) 417/60 nm (center wavelength/bandwidth), (2) DM
560 nm and BF 525/50 nm, (3) DM 662 nm and BF 617/73 nm.
The field of view of the acquired images was 0.5mm × 0.5mm
and the resolution was 512 × 512 pixels. The images originally
recorded as 12-bit gray level images were converted to 8-bit gray
level images when analyzed computationally. To observe intact
hepatic tissues, excised tissues (middle lobe of the liver) were
embedded in 1% agarose in a plastic dish and the liver mid-
ventral aspect facing upwards was exposed under the objective
lens of the microscopy system as previously described (13). The
images were acquired as z-stack image sequences with a step
size of 2µm ranging from the deepest portions (100∼200µm
in depth) to the surface of liver tissue. In total, 3–4 regions for
each mouse were imaged. To observe tissue sections, sections
mounted on glass slides were placed on the microscope stage
before acquiring images.

Image Processing
Internal Marker Selection
The process of internal marker selection consisted of four parts:
(1) dimensionality reduction of spectral images, (2) key point
detection by a feature detection algorithm, (3) spectra collection,
(4) spectra quantization. First, dimensionality of spectra was
reduced through a projection of a space of spectrum to a space
with few dimensions. We simply defined three color bands,
the shorter wavelength band 400–500 nm, the SHG band 520–
530 nm, and the longer wavelength band 550–650 nm, because
this is similar to the RGB color space, which is the simplest choice
for manipulating color. Then, the three band images were created
by integrating spectral signal intensities within the defined bands.
After the conversion to images with low dimensionality, which
in turn can be easily handled with general image processing
methods, features from the accelerated segment test (FAST)-
algorithm (33) were applied for each image to detect spatially
localized features, such as corners. Next, from the detected
feature points, the spectra were collected from the original
spectral image sets, and were stored in a pool of spectra. When
collecting spectra, in order to reduce signal noise, we used the
structure elements of disk with a 2 pixel radius and averaged
the collected spectral signals within this region. Finally, we
created markers of spectral vectors by performing quantization
of the collected spectra. In order to do this, we used a k-means
clustering method with k = 4–20. All the extracted spectra are
thereby partitioned into k regions in which each spectral vector
belongs to the region with the nearest centroid.

Image Segmentation and Mathematical Morphology

Analyses
The segmentation of spectral images was performed using the
spectral markers. A spectral vector collected from each pixel was
assigned to the nearest centroid of the markers. k-valued images
were created by doing this for every pixel of the images. For
spectrum assignment, we selected high signal pixels in which
the intensities averaged over spectral bands are larger than 4, to
avoid the inclusion of low signal pixels in the following image
analysis. The mathematical morphology analysis was applied
to the segmented images. This includes extracting regional
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properties of simply-connected objects, such as number and areas
of the objects, and distances between the objects. The total signal
area in an image was defined as the sum of the high signal pixels
as defined above.

Automated Image Classification Using the BoF

Machine Learning Method
We employed the BoF framework for an automated image
classification strategy, as previously described (36). This
method has been applied to the classification of two photon
excitation fluorescence images (35, 52). This approach to image
classification is based on an unordered collection of image
feature descriptors derived from local patches. Thus, the image
was represented as a histogram of the number of occurrences of
particular patterns in a given image, and the histograms were
subjected to a machine learning based classification test.

In order to obtain local feature descriptors, we first created
the image patch sets. We used a regular square grid for image
division to represent images as a collection of image patches to
be subjected to feature extraction. The division levels employed
were l = 2, 3, 4, and 5, hence each extracted image patch size was
128× 128, 64× 64, 32× 32, and 16× 16 pixels, respectively. We
represented a feature vector of an image patch as a histogram of
the spectral markers. This calculation was performed individually
on each image patch. The next step was to construct the codebook
which consisted of quantized vectors in a feature space called
visual words. The feature vectors were extracted from the image
patches from each image and added to the codebook feature
space. To develop the codebook, k-means clustering with size c
= 10, 20, 50, 100 was performed. The feature vectors were thus
quantized to centroid values in a codebook space, in which each
cluster represented a visual word. Within the BoF framework,
an image was represented as term vectors, a histogram of visual
words. Given an image in the sets, features were detected and
assigned to the nearest codes in the codebook. We employed a k-
nearest neighbor (kNN) classifier to assign the extracted images
to the closest terms in the codebook. For machine learning,
we used the SVM classifier. The BoF parameters we used were
the division level of the image, l and codebook size, c. The
division level controlled image patch size and sampling density.

The codebook size, which corresponded to the dimensions of
the term vectors, was configured during the clustering stage of
the BoF algorithm. We investigated the parameter sensitivity
of the automated classification test by varying these parameter
values. In order for all images in a set to be tested, we employed
the strategy of running several consecutive implementations of
the BoF algorithm using the k-fold cross validation method
with k = 4, and the performance results were represented
as averaged values over the implementations. The numbers of
images used for training and test samples are summarized in
Figure S11.
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