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Abstract
1.	 At	the	landscape	level,	intensification	of	agriculture,	fragmentation,	and	destruc-
tion	of	natural	habitats	are	major	causes	of	biodiversity	loss	that	can	be	mitigated	
at	 small	 spatial	 scales.	However,	 the	complex	 relationships	between	human	ac-
tivities,	landscapes,	and	biodiversity	are	poorly	known.	Yet,	this	knowledge	could	
help	private	 stakeholders	managing	 seminatural	 areas	 to	play	 a	positive	 role	 in	
biodiversity	conservation.

2.	 We	 investigated	 how	water-	abstraction	 sites	 could	 sustain	 species	 diversity	 in	
vascular-	plant	communities	and	two	taxonomic	groups	of	insect	communities	in	a	
fragmented agricultural landscape.

3.	 Landscape-	scale	 variables	 (connectivity	 indices	 and	 surrounding	 levels	 of	 her-
bicide	use),	as	well	as	 site-	specific	variables	 (soil	 type	 for	vascular	plants,	 floral	
availability	for	Rhopalocera,	and	low	herbaceous	cover	for	Orthoptera),	were	corre-
lated	to	structural	and	functional	metrics	of	species	community	diversity	for	these	
taxonomic	groups,	measured	on	35	industrial	sites	in	the	Ile-	de-	France	region	in	
2018–	2019.

4.	 Rhopalocera and Orthoptera	 consisted	essentially	of	 species	with	 a	high	degree	
of	dispersal	and	low	specialization,	able	to	reach	the	habitat	patches	of	the	frag-
mented	landscape	of	the	study	area.	Sandy	soil	harbored	more	diverse	vascular-	
plant	 communities.	 Plant	 diversity	 was	 correlated	 to	 a	 greater	 abundance	 of	
Rhopalocera and a lower richness of Orthoptera.

5.	 Increasing	landscape	connectivity	was	related	to	higher	abundance	of	plants	and	
Rhopalocera,	and	a	higher	evenness	index	for	Orthoptera	communities.	Higher	lev-
els	of	herbicide	use	were	related	to	a	decrease	in	the	biodiversity	of	plants	and	
Rhopalocera	abundance.	High	levels	of	herbicide	favored	high-	dispersal	generalist	
plants,	while	high	 levels	of	 connectivity	 favored	 low-	dispersal	plants.	Specialist	
Orthoptera	species	were	associated	with	low	herbaceous	cover	and	connectivity.

6.	 Water-	abstraction	 sites	 are	 valuable	 seminatural	 habitats	 for	 biodiversity.	
Changing	intensive	agricultural	practices	in	surrounding	areas	would	better	con-
tribute	to	conserving	and	restoring	biodiversity	on	these	sites.
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1  | INTRODUC TION

Human	activities	are	bringing	about	profound	changes	 in	 land	use	
worldwide.	Among	others,	industrial	and	agricultural	activities	that	
fragment,	pollute,	and	destroy	natural	habitats	are	 responsible	 for	
the	 current	 erosion	 of	 biodiversity	 (Barbault,	 2001;	 Fahrig,	 2003;	
Pimm	et	al.,	1995;	Vitousek	et	al.,	1997).	Composition	and	config-
uration	 of	 landscapes,	 in	 particular,	 strongly	 influence	 dispersal,	
spatial	distribution,	and	persistence	of	species	(Beier	&	Noss,	1998;	
Debinski	 et	 al.,	 2001;	 Jeanneret	 et	 al.,	 2003;	Mazerolle	&	Villard,	
1999;	Turner,	1989;	Waldhardt,	2003).	Within	landscapes,	connec-
tions	 between	 habitat	 patches	 are	 essential,	 as	 they	 facilitate	 or-
ganism	dispersal,	gene	flow,	and	multiple	other	ecological	functions	
(e.g.,	 Devictor	 et	 al.,	 2007;	 Grashof-	Bokdam	&	 Langevelde,	 2005;	
Ricotta	et	al.,	2000;	Taylor	et	al.,	1993).	Connectivity	of	a	landscape	
is defined as “the degree to which it facilitates or impedes movement 
along	 resource	patches”	 (Taylor	 et	 al.,	 1993).	 Thus,	 the	more	 con-
nected	a	patch	 is,	 the	 richer	 its	biodiversity	should	be.	 Identifying	
the	main	reservoirs	and	corridors	for	species	movement,	as	well	as	
the	obstacles	to	the	functioning	of	ecological	continuities,	is	import-
ant	because	connections	are	the	basis	on	which	policies	for	biodi-
versity	preservation	are	founded	to	manage	territorial	development	
(Bennett,	2003).

Nevertheless,	a	given	landscape	can	be	perceived	as	either	con-
nected	or	disconnected	by	species	having	different	dispersal	abili-
ties	(Bunn	et	al.,	2000).	Connectivity	is	likely	influenced	not	only	by	
distance	between	sites	but	also	by	the	permeability	of	the	inter-	site	
matrix	(Ewers	&	Didham,	2006;	Powney	et	al.,	2011;	Vergara,	2011),	
which	 is	 constituted	 by	 structures	more	 or	 less	 easy	 to	 cross	 de-
pending	on	the	species.	Various	methods	exist	to	model	landscape	
connectivity,	which	can	be	separated	into	three	categories:	(a)	those	
oriented	toward	the	analysis	of	structural	connectivity	(spatial	anal-
ysis	of	landscape	components);	(b)	potential	functional	connectivity	
(analysis	based	on	landscape	structure	and	species	dispersal	data);	or	
(c)	actual	functional	connectivity	(analysis	based	on	precise	knowl-
edge	of	actual	species	movements).	The	graph	theoretical	approach,	
which	 allows	 modeling	 potential	 functional	 connectivity,	 offers	 a	
good	 trade-	off	 between	 data	 requirements	 and	 information	 pro-
vided	(Calabrese	&	Fagan,	2004).

In	European	rural	areas,	the	drastic	change	in	agricultural	prac-
tices	since	the	second	half	of	the	20th	century	has	particularly	af-
fected	 landscape	 connectivity	 and	 biodiversity.	 Agriculture	 has	
intensified,	 leading	to	an	 increase	 in	external	 inputs	such	as	 fertil-
izers	 and	pesticides,	mechanization,	parcel	 sizes,	 and	monoculture	
(Meeus,	1993;	Stoate	et	al.,	2001;	Tilman	et	al.,	2002).	Thus,	by	frag-
menting,	destroying,	and	polluting	seminatural	habitats,	these	prac-
tices	have	contributed	to	the	homogenization	of	landscapes	(Benton	
et	al.,	2003;	Foley	et	al.,	2005).	Numerous	studies	have	shown	the	

impacts	 of	 agricultural	 intensification	 on	many	 taxa	 (e.g.,	 Cherrill,	
2010;	Ekroos	et	al.,	2010;	Hutton	&	Giller,	2003;	Krebs	et	al.,	1999),	
and	pesticides	are	in	particular	blamed	for	their	persistent	negative	
effects	(Geiger	et	al.,	2010).

In	 these	 fragmented	 landscapes,	 seminatural	 elements	 such	as	
hedgerows,	 woodlands,	 permanent	 meadows,	 grassy	 strips,	 and	
ditches	make	the	landscape	more	heterogeneous	and	more	favorable	
to	 biodiversity	 (Benton	 et	 al.,	 2003).	 Their	 richness,	 diversity,	 and	
composition of communities depend on the regional pool of species 
and	on	local	and	landscape	factors,	which	interact	in	complex	ways.	
These	elements	are	known	to	play	a	role	as	habitats,	refuges,	or	cor-
ridors	for	many	species,	depending	on	their	management,	structure,	
and	composition	within	their	landscape	context	(Concepción	et	al.,	
2012;	Reeder	et	al.,	2005;	Rodríguez	&	Bustamante,	2008;	Villemey	
et	al.,	2015).	 Industrial	sites	often	contribute	to	the	fragmentation	
and	destruction	of	habitats,	 and	 can	be	a	 source	of	 various	 types	
of	pollution	(Jones	et	al.,	2015;	Krannich	&	Albrecht,	1995;	Zeiss	&	
Atwater,	 1987).	However,	 in	 some	 cases,	 they	 consist	 of	 seminat-
ural	 habitats	 and,	 depending	 on	 the	 landscape	 context,	 they	 can	
therefore	play	a	key	role	as	stepping	stones,	refuges,	or	habitats	for	
biodiversity,	particularly	when	they	are	managed	ecologically	(Serret	
et	 al.,	 2014;	 Snep	 et	 al.,	 2009;	 Thuillier,	 2020).	 Among	 industrial	
sites,	water-	abstraction	 sites,	which	provide	drinking	water	 to	 the	
population,	are	found	all	over	the	world.	They	consist	of	extracting	
water	 from	a	 source	 and	 transporting	 it	 to	 a	 distribution	network	
or	 to	 a	 treatment	 facility.	 Although	 their	 characteristics	may	 vary	
according	 to	 the	 country	 and	 the	 type	 of	 source	 (groundwater	 or	
surface	water),	 they	are	generally	 small	 sites	 that	 include	a	 catch-
ment	and	a	protective	perimeter	to	prevent	physical	damage	and	the	
direct	introduction	of	toxic	substances	into	the	water	or	soil.	For	this	
reason,	water-	abstraction	sites	are	often	covered	with	seminatural	
vegetation	and	are	relevant	to	study	relationships	between	local	and	
landscape	 characteristics	 and	 biodiversity.	 Indeed,	 the	 studies	 on	
these	sites	mainly	highlight	their	impacts	on	aquatic	biodiversity	and	
stream	function,	but	there	are	gaps	in	knowledge	about	their	poten-
tial	 role	 in	maintaining	 terrestrial	biodiversity	 (Arroita	et	al.,	2017;	
Brooks	et	al.,	2015;	Pardo	&	García,	2016).

We	 conducted	 our	 study	 in	 an	 agricultural	 landscape	 mainly	
composed	of	 croplands	 and	 including	water-	abstraction	 sites.	Our	
questions	were	the	following:	What	is	the	species	richness	and	com-
position	of	seminatural	habitats	in	water-	abstraction	sites?	What	is	
the	relative	importance	of	the	local	environmental	conditions,	land-
scape	connectivity,	and	the	management	of	 the	surrounding	crop-
lands	for	the	flora	and	fauna	of	these	sites?

To	answer	these	questions,	we	studied	three	taxonomic	groups,	
namely	 vascular	 flora,	 Rhopalocera	 (butterflies),	 and	 Orthoptera 
(crickets,	 grasshoppers,	 and	 locusts).	 These	were	 chosen	 because	
they	 are	 regarded	 as	 ecological	 indicators	 of	 habitat	 quality	 and	
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landscape	composition	(Bazelet	&	Samways,	2011;	Pe’er	&	Settele,	
2008;	 Terwayet	 Bayouli	 et	 al.,	 2021)	 with	 dispersal	 capacities	
consistent	with	 the	 scale	of	 the	 study	 (Defaut	&	Morichon,	2015;	
Hernández	 et	 al.,	 2015;	 Stevens	 et	 al.,	 2010).	 In	 addition,	 these	
groups	have	different	movement	characteristics,	which	make	them	
interesting for testing the impacts of local and landscape factors. 
Plants	form	the	basis	of	the	ecosystem	and	are	resources	for	the	two	
other	 taxa.	While	butterflies	 are	 rather	mobile	 and	 relatively	 spe-
cialized,	Orthoptera	 species	 are	more	 sedentary	 and	 less	 selective	
(Marini	et	al.,	2009).	As	several	studies	have	shown	the	potential	of	
industrial	sites	for	biodiversity	when	managed	in	an	ecological	way	
(Serret	et	al.,	2014;	Snep	et	al.,	2009;	Thuillier,	2020),	we	expected	
that	 the	 studied	 water-	abstraction	 sites,	 which	 are	 subject	 to	 a	
biodiversity-	friendly	 late	mowing	per	year,	will	host	many	species.	
Furthermore,	we	assume	an	 influence	of	both	 local	and	 landscape	
factors,	with	greater	importance	of	local	factors	for	all	taxa	studied,	
especially	for	the	flora	that	is	sessile	(even	if	propagules	can	disperse	
over	long	distances)	(Marini	et	al.,	2008;	Pöyry	et	al.,	2009;	Sutcliffe	
et	al.,	2015).

2  | METHODS

2.1 | Study region and sites

Our	 study	 focused	 on	 an	 area	 of	 13	 ×	 18	 km	 in	 the	 Yvelines	
Department	in	France	(west	of	Paris),	between	the	cities	of	Mantes-	
la-	Jolie	 and	 Les	 Mureaux	 (Supplementary	 Material).	 This	 area	 is	
marked	by	increasing	urban	development	along	the	Seine	River	and	
is	 dominated	 by	 agricultural	 land	with	 some	 seminatural	 habitats.	
Thirty-	five	water-	abstraction	sites	were	studied	in	this	area,	ranging	
in	size	from	0.1	to	1	ha	and	regularly	distributed	in	an	essentially	agri-
cultural	matrix	(mostly	field	crops	and	vegetable	cropping)	(Figure	1).	
All	created	between	1960	and	1970,	these	small	industrial	sites	are	
fenced	and	include	a	groundwater	catchment,	covered	by	a	concrete	

base	 and/or	 a	 building,	 and	 a	 protective	 perimeter	where	 the	 use	
of	pesticides	 is	prohibited.	They	mainly	consist	of	open	areas,	dry	
grasslands,	 or	 mesophilic-	to-	meso-	hygrophilic	 meadows,	 managed	
with	one	late	mowing	per	year.

2.2 | Biodiversity sampling

2.2.1 | Flora

We	used	the	Vigie-	Flore	protocol	 (www.vigie	-	flore.fr)	 to	 inventory	
the	 plant	 species	 present	 on	 the	 35	 water-	abstraction	 sites.	 We	
visited	each	site	in	mid-	June	2018	to	inventory	a	ten-	square-	meter	
plot,	divided	into	10	quadrats	of	1	m2.	In	each	quadrat,	a	presence–	
absence	list	of	all	plant	species	was	produced.	For	each	species,	we	
calculated	the	abundance	as	the	number	of	quadrats	in	which	it	was	
present.

2.2.2 | Rhopalocera

We	recorded	Rhopalocera	species	by	visiting	the	35	sites	four	times	
in	2018,	during	the	periods	(May,	June,	July,	and	August)	of	maximum	
activity	and	density	of	the	species	and	under	favorable	weather	con-
ditions.	We	used	 the	 STERF	 (Temporal	Monitoring	 of	Rhopalocera 
in	France)	protocol	 (Manil	&	Henry,	2007)	 in	which	butterflies	are	
counted	and	 identified	by	moving	along	one	transect	per	site	over	
a	period	of	10	min.	For	each	visit,	we	noted	the	cover	for	flowering	
plants on the site.

2.2.3 | Orthoptera

To	study	Orthoptera,	we	visited	34	water-	abstraction	sites	(one	of	
the	 sites	was	no	 longer	 accessible)	 in	 early	August	2019,	 that	 is,	
the period when the adults were the most numerous and active. 
We	used	the	protocol	described	in	Lacoeuilhe	et	al.	(2020),	based	
on	the	linear	abundance	index	(LAI)	and	the	method	used	by	Voisin	
(1986),	which	 consists	 of	walking	 along	 transects	20	m	 long	 and	
noting	the	number	of	specimens	fleeing	in	front	of	the	observer's	
footsteps	over	a	strip	approximately	one	meter	wide	(Jaulin,	2009).	
Two transects per site were inventoried under good weather con-
ditions.	We	 also	 noted	 the	 cover	 (%)	 for	 three	 classes	 of	 herba-
ceous vegetation for each site: low (<20	cm),	medium	(20–	40	cm),	
and high (>40	cm).

The	position	of	the	quadrats	and	transects	on	the	sites	 is	 indi-
cated	in	Figure	2.

2.3 | Species traits

We	 studied	 different	 diversity	 dimensions	 including	 functional	 di-
versity,	which	allows	a	better	understanding	of	the	different	aspects	

F I G U R E  1  Water-	abstraction	site	and	agricultural	fields	
(©	Chloé	Thierry)

http://www.vigie-flore.fr
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of	the	functioning	of	an	ecosystem	such	as	its	dynamics	or	its	stabil-
ity	(Goswami	et	al.,	2016).

To	examine	whether	community	characteristics	could	be	linked	
to	functional	traits	of	species	constituting	them,	we	calculated	the	
community-	weighted	mean	trait	values,	that	is,	the	mean	values	of	
traits	of	the	species	weighted	by	their	abundance	in	the	community,	
for	different	selected	traits	 (Garnier	et	al.,	2004).	For	 the	vascular	
flora,	we	used	the	maximum	seed-	releasing	height	drawn	from	the	
LEDA	Traitbase	(Kleyer	et	al.,	2008)	as	a	dispersal	metric	as	proposed	
by	Thomson	et	al.	(2011).	We	also	used	for	each	species	the	species	
specialization	index	θwb,	as	calculated	by	Mobaied	et	al.	(2015)	who	
used	Whittaker׳s	beta	(1960)	on	an	independent	database:

where γ	is	the	cumulative	number	of	species	over	all	plots	containing	a	
given	species,	and	µ(α)	is	mean	plot	species	richness.

Finally,	we	took	into	account	the	species	dependence	on	insect	
pollination	by	combining	pollen-	vector	information	from	CATMINAT	
(Julve,	 1998),	 Ecoflora	 (Fitter	&	Peat,	 1994),	 and	BiolFlor	 (Klotz	&	
Durka,	2002;	Kühn	et	al.,	2004)	traitbases	according	to	the	method	
described	in	Martin	(2018).

For	Rhopalocera	species,	we	used	their	dispersal	 (1–	3)	and	spe-
cialization	(1–	4)	classes	as	described	in	the	DuPont	(2015)	database.

For	Orthoptera,	we	also	used	three	classes	of	dispersal	and	two	
classes	 of	 specialization	 according	 to	 Reinhardt	 et	 al.	 (2005)	 and	
Marini	et	al.	(2010).	When	the	specialization	class	was	not	available	
for	a	species,	we	deduced	it	from	their	habitat	descriptions	in	Bellman	
and	Lucquet	(2009),	considering	species	that	require	specific	mois-
ture	and	vegetation	conditions	as	specialists,	and	undemanding	me-
sophilic	species	as	generalists.	For	individuals	identified	at	the	genus	
level,	we	assigned	a	trait	value	if	all	species	within	the	genus	shared	
the	same	trait.	If	not,	no	value	was	assigned.	All	observations	with	
unknown	traits	were	removed	from	the	analyses	(Table	1).

2.4 | Connectivity metrics

We	compiled	the	GIS	databases	of	 the	study	area,	as	described	 in	
Thierry	et	al.	(2020),	in	order	to	obtain	the	land-	use	map.	All	these	

data	elements	were	combined	into	a	single	raster	layer	with	a	resolu-
tion of 2 m in order to highlight linear elements or small construc-
tions that can impact the movement of species.

To	estimate	the	connectivity	of	the	study	sites,	we	used	graph	
theory	(Urban	&	Keitt,	2001)	with	Graphab	software	(Foltête	et	al.,	
2012)	and	cost	distances.	We	allocated	costs	to	each	land-	use	cat-
egory	 according	 to	 its	 resistance	 to	 movement	 for	 each	 species	
type,	based	on	ecological	literature	and	opinions	of	experts	on	the	
taxa	studied	(see	Acknowledgments).	These	costs	are	as	follows	for	
Rhopalocera and Orthoptera	in	herbaceous	environments:

1	for	their	habitat	patches,
10	for	favorable	elements,
100	for	unfavorable	elements,	and
1000	 for	 elements	 considered	 as	 "barriers"	 (Supplementary	
Material).
In	the	case	of	small	habitat	mosaics,	we	pooled	them	into	a	single	

habitat	and	assigned	 the	average	value	of	 the	composite	habitats.	
For	plant	species,	given	that	dispersal	in	herbaceous	environments	
is	complex	and	largely	driven	by	wind	(57.4%	of	the	species	studied	
are	partially	or	totally	wind-	dispersed),	we	considered	only	forests	
and	buildings	over	15	m	tall	as	barrier	elements	(cost	of	1000)	and	
all	herbaceous	environments	as	habitat	patches	(cost	of	1),	and	the	
other	land-	use	categories	(e.g.,	agricultural	fields,	shrubs,	roads,	and	
other	artificial	spaces)	were	assigned	a	cost	of	10.

We	designed	planar,	non-	thresholded	graphs	and	used	the	prob-
ability	of	connectivity	(PC)	index,	which	is	defined	as	“the	probability	
that	two	organisms	randomly	placed	within	the	 landscape	fall	 into	
habitat	areas	that	are	reachable	from	each	other”	(Saura	&	Pascual-	
Hortal,	2007).	The	PC	was	calculated	as	follows:

where pij	 is	 the	 maximum	 probability	 of	 movement	 between	 the	
patches i and j,	ai and aj are the areas of the patches i and j,	A is the total 
area	of	the	study	zone,	and	n	is	the	total	number	of	patches.

An	exponential	function	can	be	used	to	calculate	pij as follows:

�wb = �∕�(�)

PC =

∑n

i=1

∑n

j=1
aiajpij

A2

pij = e−kdij

F I G U R E  2  Sampling	plan	implemented	
in	the	35	water-	abstraction	sites	studied
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Where	dij	is	the	least-	cost	distance	between	the	patches	i and j,	
and k (0 < k <	1)	expresses	the	reduction	in	dispersal	probabilities	
resulting	 from	 this	 exponential	 function	 (Saura	 &	 Pascual-	Hortal,	
2007).

For	 Rhopalocera and Orthoptera,	 we	 used	 dispersal	 distances	
of	100	m	for	poorly	mobile	species	and	300	m	for	moderately	mo-
bile	 ones	 (Defaut	&	Morichon,	 2015;	Olivier	 et	 al.,	 2016;	 Stevens	
et	al.,	2013).	For	Flora,	we	chose	150	m	for	poorly	mobile	species	
and	 500	 m	 for	 moderately	 mobile	 ones	 (Hernández	 et	 al.,	 2015;	
Rambaud,	2018).	Given	the	scale	of	the	study,	it	was	not	relevant	to	
consider	highly	mobile	species.

In	order	 to	obtain	a	connectivity	value	 for	each	study	site,	we	
assigned	to	each	the	dPC	value	of	the	habitat	patch	 in	which	they	
were	located,	ranked	by	their	contribution	to	overall	landscape	con-
nectivity	according	to	the	PC	index	(Keitt	et	al.,	1997;	Urban	&	Keitt,	
2001;	Pascual-	Hortal	and	Saura,	2006;	Rae	et	al.,	2007):

where	PC	is	the	value	when	the	landscape	element	is	present	in	the	
landscape,	and	PC'	is	the	value	after	removal	of	that	landscape	element	
(e.g.,	following	the	loss	of	a	habitat	patch)	(Supplementary	Material).

2.5 | Agricultural effects through herbicide use

We	used	the	treatment	frequency	indices	(TFIs)	of	herbicides	avail-
able	for	the	agricultural	land	around	the	sites.	We	calculated	an	av-
erage	TFI	based	on	the	amount	of	areas	treated	within	100-	m	and	
300-	m	 buffer	 zones	 (data	 from	 Ile-	de-	France	 Interdepartmental	
Chamber	of	Agriculture,	2015).	We	chose	these	distances	to	repre-
sent	the	landscape	around	the	study	sites	while	avoiding	too	much	
overlap.	NA	 (not	 available)	was	 assigned	 to	 sites	with	 information	
available	for	less	than	half	of	the	surrounding	land	(three	sites	having	
buffer	zones	with	a	radius	of	300	m,	and	four	having	buffer	zones	
with	a	radius	of	100	m).

2.6 | Statistical analyses

For	 each	 taxon,	 we	 used	 linear	 models	 with	 a	 Gaussian	 error.	 In	
order	to	avoid	model	overfitting,	we	retained	only	three	explanatory	
variables	per	model.	We	divided	the	variables	into	three	categories	
(herbicide	treatments	at	the	landscape	level,	landscape	connectivity,	
and	 local	variables)	and	selected	one	variable	per	category	among	
the	least	correlated	ones	(Table	2).	We	used	the	following	structure:	
Response	variable	~	landscape	explanatory	variable	1	(herbicides)	+ 
landscape	explanatory	variable	2	(connectivity)	+	local	explanatory	
variable	3.

For	 plants,	 we	 analyzed	 the	 influence	 of	 the	 level	 of	 herbicide	
treatment	within	a	 radius	of	300	m	around	sampled	 sites,	 site	con-
nectivity	(dPC)	modeled	for	plants	with	a	dispersal	distance	of	500	m,	
and	 soil	 type,	 on	 the	 variation	 in	 species	 richness,	 total	 abundance	
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TA B L E  2  Descriptive	statistics	of	the	explanatory	variables	considered	for	each	taxon.	Variables	in	bold	are	those	that	have	been	
retained,	the	others	having	been	excluded	because	of	collinearity	(correlation	coefficient	>0.3)

Scale Name Description and unit Mean SD Min Max

Flora

Landscape Herbicide	treatment Average	treatment	
frequency	indices	for	
herbicides	within	a	
radius of 100 m

0.44 0.62 0 2.09

Average treatment 
frequency indices for 
herbicides within a 
radius of 300 m

0.41 0.50 0 1.82

Connectivity dPC	calculated	for	flora	
with dispersal distances 
of 150 m

3.37e−4 9.03e−4 1.19e−6 4.08e−3

dPC calculated for 
flora with dispersal 
distances of 500 m

4.89e−4 1.10e−3 1.10e−5 4.82e−3

dPC	calculated	for	
Rhopalocera with 
dispersal distances 
of	100	m	(only	when	
pollination dependence 
is used as the response 
variable)

2.70e−4 1.09e−3 1.29e−6 6.49e−3

dPC calculated for 
Rhopalocera with 
dispersal distances 
of 300 m (only when 
pollination dependence 
is used as the response 
variable)

3.17e−4 1.29e−3 2.09e−6 7.70e−3

Local Soil	type Qualitative variable, 
divided into 2 
categories: clay vs. 
sandy soil

None None None None

Rhopalocera

Landscape Herbicide	treatment Average	treatment	
frequency	indices	for	
herbicides	within	a	
radius of 100 m

0.44 0.62 0 2.09

Average treatment 
frequency indices for 
herbicides within a 
radius of 300 m

0.41 0.50 0 1.82

Connectivity dPC	calculated	for	
Rhopalocera with 
dispersal distances of 
100 m

2.70e−4 1.09e−3 1.29e−6 6.49e−3

dPC calculated for 
Rhopalocera with 
dispersal distances of 
300 m

3.17e−4 1.29e−3 2.09e−6 7.70e−3

Local Flowering-	plant	
availability

Average cover for 
flowering plants over 
the 4 visits (%)

12.89 8.80 0.75 31.25

(Continues)
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(i.e.,	number	of	quadrats	in	which	species	were	recorded),	evenness,	
dispersal,	and	specialization	(Table	1).	We	also	studied	the	influence	
of	the	same	variables	on	pollination	dependence,	but	using	site	con-
nectivity	(dPC)	modeled	for	Rhopalocera with a dispersal distance of 
300	m.	Indeed,	Rhopalocera	play	an	important	role	in	pollination,	and	
the	results	of	connectivity	modeling	for	this	taxonomic	group	are	likely	
to	represent	connectivity	for	other	pollinators	using	the	same	environ-
ments.	Evenness	was	calculated	using	Pielou's	evenness	index	(1966).

For	Rhopalocera,	we	analyzed	the	influence	of	the	level	of	herbi-
cide	treatment	within	a	radius	of	300	m	around	sampled	sites,	site	
connectivity	(dPC)	modeled	for	Rhopalocera with a dispersal distance 
of	300	m,	and	flowering-	plant	availability,	on	the	variation	in	species	
richness,	 total	 abundance	 (total	 number	 of	 individuals	 observed),	
evenness,	dispersal,	and	specialization.

For	Orthoptera,	we	analyzed	the	influence	of	the	level	of	herbi-
cide	treatment	within	a	radius	of	100	m	around	sampled	sites,	site	
connectivity	(dPC)	modeled	for	Orthoptera with a dispersal distance 
of	300	m,	and	low	herbaceous	cover	(<20	cm),	on	the	same	variables	
as for Rhopalocera.

Full	 raw	 data	 and	 all	 statistical	 analyses	 are	 detailed	 in	 the	
Supplementary	 Material.	 More	 specifically,	 continuous	 explana-
tory	 variables	 were	 scaled	 to	 improve	 coefficient	 interpretation	
(Schielzeth,	 2010).	 The	 absence	 of	 collinearity	 was	 graphically	
checked,	and	all	variables	with	a	correlation	coefficient	>0.3 were 
excluded	 (Zuur	 et	 al.,	 2009,	 2010)	 (Table	 2).	 For	 this	 reason,	 the	

variables	selected	for	each	taxon	are	not	all	based	on	the	same	dis-
tances.	 Variance	 homogeneity,	 the	 absence	 of	 influential	 points,	
and	the	absence	of	spatial	autocorrelation	were	graphically	checked	
(Zuur	et	al.,	2009,	2010;	Supplementary	Material).	To	study	relations	
between	taxa,	we	computed	Pearson's	correlation	coefficients	(Sokal	
&	Rohlf,	1995)	on	the	different	community	species-	diversity	metrics.	
Mean	values	are	followed	by	a	standard	error	value	throughout	the	
manuscript,	unless	otherwise	stated.

3  | RESULTS

During	our	floristic	inventories,	we	observed	a	total	of	147	plant	spe-
cies	on	the	sites	(10.3%	of	regional	species,	14	of	which	are	rare	or	en-
dangered),	with	an	average	of	21	species	per	site	(min	=	8,	max	=	35).	
The	abundance	averaged	112	and	 ranged	 from	34	 to	203	per	site	
(3930	in	total,	with	95%	identified	to	the	species	level	and	5%	to	the	
genus	level).	Over	four	visits,	we	inventoried	a	total	of	32	species	of	
Rhopalocera	on	the	35	abstraction	sites	(28.6%	of	regional	species,	
3	of	which	are	rare	or	endangered),	with	an	average	of	6	species	per	
site (min =	1,	max	=	12).	We	counted	997	individuals	(94%	identified	
to	the	species,	5%	to	the	genus	level,	1%	non-	identified),	with	an	av-
erage	of	29	observed	per	site	(min	=	1,	max	=	86).	The	total	number	
of Orthoptera	 species	 recorded	was	17	 (25.0%	of	 regional	species,	
4	 of	which	 are	 rare	 or	 endangered),	with	 692	 individuals	 counted	

Scale Name Description and unit Mean SD Min Max

Orthoptera

Landscape Herbicide	treatment Average treatment 
frequency indices for 
herbicides within a 
radius of 100 m

0.44 0.62 0 2.09

Average	treatment	
frequency	indices	for	
herbicides	within	a	
radius of 300 m

0.41 0.50 0 1.82

Connectivity dPC	calculated	for	
Orthoptera	with	
dispersal distances of 
100 m

3.45e−4 1.49e−3 2.63e−6 8.89e−3

dPC calculated for 
Orthoptera with 
dispersal distances of 
300 m

4.16e−4 1.57e−3 2.22e−6 9.40e−3

Local Moisture Semiquantitative	variable	
based	on	site	habitat	
vegetation,	divided	
into three categories: 
1	(xerophilous),	2	
(meso-	xerophilous),	3	
(meso-	hygrophilous)

None None None None

Vegetation	height Low herbaceous cover 
(<20 cm) (%)

12.06 16.63 0 70

High	herbaceous	cover	
(>40	cm)	(%)

58.71 26.88 0 95

TA B L E  2   (Continued)
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(72%	identified	to	the	species,	12%	to	the	genus	level,	and	16%	non-	
identified).	The	average	richness	per	site	was	5	(min	=	1,	max	=	7),	
and	the	average	abundance	was	20	(min	=	6,	max	=	49).

3.1 | Flora

Species	richness,	total	abundance,	and	evenness	indices	for	vascular-	
plant	communities,	as	well	as	the	community-	pollination	metric,	all	de-
creased	with	increasing	levels	of	herbicide	treatments	within	a	radius	
of	300	m	around	sampled	sites	(Table	3;	Figure	3).	The	community-	
dispersal	metric	 increased	with	 levels	 of	 herbicides,	while	 speciali-
zation	 decreased	 (i.e.,	 the	 specialization	 index	 increased)	 (Table	 3;	
Figure	3).	Compared	 to	sites	with	sandy	soils,	 those	with	clay	soils	
harbored	vascular-	plant	communities	with	fewer	species	on	average	
(clay:	n =	12	sites,	15	±	2	species;	sandy:	n =	20,	24	±	1)	and	less	abun-
dance	in	plants	(clay:	n =	12,	83	±	8;	sandy:	n =	20,	132	±	9);	however,	
there	was	no	major	difference	in	the	evenness	indices	(Table	3;	clay:	
n =	12,	0.634	±	0.007;	sandy:	n =	20,	0.647	±	0.003).	Vascular-	plant	
abundance	increased	with	increasing	levels	of	the	floral	connectivity	
index	modeled	for	species	with	a	dispersal	distance	of	500	m,	while	
the	community-	dispersal	metric	decreased	with	the	increasing	floral	
connectivity	index	(Table	3;	Figure	3).

3.2 | Rhopalocera

Total	abundance	of	Rhopalocera	seemed	to	be	influenced	not	only	by	
the	connectivity	metric	calculated	for	species	with	a	dispersal	dis-
tance	of	300	m,	but	also	by	the	level	of	herbicide	treatment	within	a	
radius	300	m	around	sites	(Table	3).	Rhopalocera	abundance	increased	
with	 increasing	 levels	 of	 connectivity	 (Figure	 4a)	 and	 decreased	
with	 increasing	 levels	 of	 pesticide	 treatments	 (Figure	 4b).	 Species	
richness,	 evenness,	 and	 the	 community-	dispersal	 and	 community-	
specialization	metrics	did	not	vary	with	the	connectivity	index,	pes-
ticide	treatment	levels,	or	floral	availability	(Table	3).

3.3 | Orthoptera

Orthoptera	species	richness	increased	with	increasing	levels	of	herbi-
cide	treatments	within	a	radius	of	100	m	around	sampled	sites	(Table	3;	
Figure	5),	and	the	evenness	 index	 increased	with	 increasing	 levels	of	
the Orthoptera	connectivity	index	modeled	for	species	with	a	dispersal	
distance	of	300	m	(Table	3;	Figure	5).	Community-	specialization	met-
rics	 increased	when	low	herbaceous	cover	and	connectivity	 increase	
(Table	3;	Figure	5).	Total	abundance	did	not	vary	with	the	connectivity	
index,	pesticide	treatment	levels,	or	low	herbaceous	cover	(Table	3).

3.4 | Correlations between taxa

The	 abundance	 of	Rhopalocera	 correlated	 positively	with	 the	 spe-
cies	 richness	and	abundance	of	plants.	Conversely,	we	observed	a	

negative	correlation	between	species	richness	in	Orthoptera and all 
measures	of	plant	diversity.	The	abundance	of	Orthoptera and the 
species richness of Rhopalocera	correlated	positively,	as	well	as	the	
species richness of Orthoptera and the evenness of Rhopalocera,	
while the species richness of Orthoptera	 and	 the	 abundance	 of	
Rhopalocera	correlated	negatively	(Table	4).

4  | DISCUSSION

We	 found	 that	 the	 level	 of	 herbicide	 treatments	 on	 crops	 in	 the	
surrounding	 landscape	 affected	 species	 diversity	 of	 flora	 and	
Rhopalocera	 on	 the	water-	abstraction	 sites	we	 studied.	 Increasing	
landscape	connectivity	seemed	to	favor	more	diverse	communities	
of Rhopalocera and Orthoptera species.

4.1 | Effects of herbicide treatments

Herbicide	 use	 on	 agricultural	 land	 around	 abstraction	 sites	 (not	
treated)	seemed	to	 influence	all	 the	 taxa	we	studied.	As	expected	
(Geiger	et	al.,	2010),	vascular	plants	seemed	to	be	the	most	impacted	
in	terms	of	all	the	diversity	measures.	This	result	shows	how	herbi-
cides	probably	affect	all	 types	of	plants	within	a	 radius	of	at	 least	
300	m.	It	could	be	a	direct	effect	of	herbicides	through	the	spill	of	
chemicals	from	landscape,	or	an	indirect	one	if	herbicides	suppress	
species	 that	 cannot	 reach	 the	 plots	 via	 dispersal.	 In	 our	 study	 as	
in	others,	herbicide	use	also	correlated	with	a	 lower	abundance	of	
Rhopalocera.	The	impact	of	herbicides	on	insects	is	usually	attributed	
to	limited	amounts	of	available	resources	(e.g.,	Muratet	&	Fontaine,	
2015),	which	 could	 be	 the	 case	 for	 this	 study.	 The	 effect	 of	 crop	
types	could	also	play	a	role	as	cereal	crops	were	more	 likely	to	be	
treated.	Cereal	crops	are	generally	not	dependent	on	pollinating	in-
sects	compared	with	fruit,	vegetable,	or	legume	crops	(Schneider	&	
Huyghe,	2015).	More	surprisingly,	the	richness	of	Orthoptera on the 
sites	tended	to	be	higher	when	herbicides	were	used	around	them.	
Nevertheless,	 sites	 near	 a	 landscape	where	 herbicides	were	 used	
were	generally	wetter	with	more	cover	for	tall	herbaceous	vegeta-
tion.	 These	 conditions	 are	 favorable	 for	many	Orthoptera	 species,	
which	 are	 able	 to	 find	 refuge	 from	 predators	 in	 tall	 grass	 (Batáry	
et	al.,	2007;	Gavlas	et	al.,	2007;	Sutcliffe	et	al.,	2015).	This	confound-
ing	effect	between	herbicide	use	and	vegetation	structure	and	hu-
midity	made	it	difficult	to	detect	a	possible	herbicide	effect	on	these	
insects,	 which	 could	 be	 balanced	 by	 other	 favorable	 conditions.	
Furthermore,	some	studies	have	already	shown	that	Orthoptera can 
be	highly	resistant	to	pesticides	(Brahimi	et	al.,	2020).

4.2 | Connectivity effects

All	 taxa	 studied	 seemed	 to	 be	 influenced	 by	 site	 connectivity	 as	
well.	 Thus,	 the	 flora	 was	more	 abundant	 on	 the	 best-	connected	
sites,	but	we	did	not	observe	any	significant	relationship	between	
plant	richness	and	current	site	connectivity.	Similar	to	Lindborg	and	
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TA B L E  3  Results	of	linear	models	exploring	the	influence	of	the	connectivity	index,	herbicide	treatments	and	soil	types	for	vascular	
plants,	floral	availability	for	Rhopalocera,	and	cover	for	low	herbaceous	species,	on	community	diversity	measures	from	35	water-	abstraction	
sites	sampled	between	2018	and	2019

Taxonomic group Vascular plants Rhopalocera Orthoptera

Sources of variation β ± SE p β ± SE p β ± SE p

Species	richness

Intercept 16.57	± 1.58 <.001 6.36 ±	0.44 <.001 4.54	± 0.30 <.001

Connectivity 1.77	±	0.981 .081 −0.08	±	0.442 .857 −0.38	± 0.312 .236

Herbicide	treatment −2.08 ± 0.992 .045 −0.58	±	0.472 .223 0.92 ± 0.323 .009

Soil	type	Sandy	versus	Clay 6.30 ± 2.04 .004 – – – – 

Floral	availability – – 0.50 ±	0.48 .304 – – 

Low	herbaceous	cover – – – – −0.18	± 0.31 .569

Abundance

Intercept 92.35	±	8.42 <.001 27.20	±	3.19 <.001 20.21 ±	1.99 <.001

Connectivity 15.13 ± 5.241 .007 9.27 ± 3.142 .006 −3.10	± 2.132 .160

Herbicide	treatment −15.04 ± 5.312 .008 −8.84 ± 3.372 .014 −0.53	± 2.223 .814

Soil	type	Sandy	versus	Clay 33.72 ± 10.88 .004 – – – – 

Floral	availability – – 2.67	±	3.45 .445 – – 

Low	herbaceous	cover – – – – 0.63 ± 2.16 .772

Evenness

Intercept –	0.64	± 0.01 <.001 0.61 ± 0.01 <.001 0.55 ± 0.02 <.001

Connectivity <0.011 .451 0.01 ± 0.012 .521 0.05 ± 0.022 .020

Herbicide	treatment −0.01 ± 0.002 .004 0.01 ± 0.012 .289 0.03 ± 0.023 .267

Soil	type	Sandy	versus	Clay 0.01 ± 0.05 .257 – – – – 

Floral	availability – – −0.01	± 0.01 .302 – – 

Low	herbaceous	cover – – – – −0.01	± 0.02 .550

Dispersal

Intercept 1.01 ± 0.05 <.001 2.74	± 0.05 <.001 n.c. – 

Connectivity −0.09 ± 0.031 .017 −0.02	± 0.052 .731 n.c. – 

Herbicide	treatment 0.08 ± 0.032 .022 −0.07	± 0.052 .144 n.c. – 

Soil	type	Sandy	versus	Clay −0.09	±	0.07 .208 – – – – 

Floral	availability – – 0.05 ± 0.05 .316 – – 

Low	herbaceous	cover – – – – n.c. – 

Specialization

Intercept 18.13 ± 0.20 <.001 1.13 ± 0.21 <.001 0.18 ±	0.04 <.001

Connectivity 0.12 ± 0.121 .340 0.04	± 0.032 .168 0.08 ± 0.042 .040

Herbicide	treatment 0.26 ± 0.122 .043 −0.03	± 0.032 .244 −0.01	±	0.043 .855

Soil	type	Sandy	versus	Clay 0.05 ± 0.25 .856 – – – – 

Floral	availability – – 0.02 ± 0.03 .468 – – 

Low	herbaceous	cover – – – – 0.16 ± 0.04 .001

Pollination	dependence

Intercept 45.48	±	2.17 <.001 – – – – 

Rhopalocera	connectivity 0.30 ± 1.302 .820 – – – – 

Herbicide	treatment −4.46 ± 1.372 .003 – – – – 

Soil	type	Sandy	versus	Clay 2.05 ±	2.78 .466 – – – – 

Note: Calculated for distances of 1500	m,	2300	m,	and	3100	m	(see	the	Material	and	Methods	section);	n.c.:	not	calculated;	significant	results	at	the	
0.05	level	are	in	bold	type.
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Eriksson	 (2004),	 the	current	plant	diversity	we	observed	 is	prob-
ably	 better	 explained	 by	 the	 past	 landscape	 than	 by	 the	 current	
one,	or	else	we	poorly	evaluated	the	resistance	costs	of	land	uses	
when modeling.

The	abundance	of	Rhopalocera	was	most	strongly	linked	to	site	
connectivity.	Several	previous	studies	in	highly	fragmented	contexts	
have	shown	a	positive	effect	of	grassland	connectivity	on	butterflies	
(Brückmann	et	al.,	2010;	Pöyry	et	al.,	2009).	Studies	showing	little	or	
no	effects	on	butterfly	abundance	were	conducted	in	areas	with	a	
large	amount	of	favorable	habitat	(Villemey	et	al.,	2015).	Our	results	
therefore highlight the potential effect of landscape fragmentation 
in	the	study	area	and	suggest	that	Rhopalocera	species	could	be	lim-
ited	by	the	low	connectivity	of	open	habitats.

Other	 studies	 conducted	 on	 the	 influence	 of	 connectivity	 on	
Orthoptera	have	shown	an	absence	of	effects	(Löffler	&	Fartmann,	
2017)	or	a	positive	effect	(Badenhausser	&	Cordeau,	2012).	We	ob-
served	higher	evenness	on	the	most	connected	sites.	We	suppose	
that	highly	mobile	species	maintain	many	local	metapopulations	with	

high	turnover	rates,	reducing	the	 likelihood	that	a	few	species	will	
become	numerically	dominant.

4.3 | Local effects

The	 richness	and	abundance	of	 flora	on	 the	sites	seemed	 to	de-
pend	mainly	on	the	soil	 type.	Sandy	soils,	which	are	poorer,	may	
favor	greater	diversity	of	species	than	clay	soils,	which	are	richer	
and where competition could reduce species richness due to inter-
specific	competitive	exclusion	 (Rajaniemi,	2002).	Conversely,	the	
insect	communities	studied	were	globally	more	linked	to	the	land-
scape	than	to	local	site	conditions.	This	result	is	contrary	to	sev-
eral	studies	showing	an	equivalent	(Sutcliffe	et	al.,	2015)	or	even	
greater	(Pöyry	et	al.,	2009)	effect	of	local	conditions	than	that	of	
landscape	variables.	Nectar	availability	being	a	limiting	factor	for	
butterflies	on	the	 landscape	scale	 (Franzén	&	Nilsson,	2008),	we	
expected	that	floral	availability	would	have	a	greater	influence	on	

F I G U R E  3  Relationships	between	
herbicide	treatment	levels	within	a	300-	m	
radius around sites on vascular- plant 
species	richness,	evenness	and	functional	
metrics,	abundance,	and	the	floral	
connectivity	index,	from	32	sampled	sites.	
All	explanatory	variables	are	scaled
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Rhopalocera	communities.	However,	we	still	observed	that	butter-
flies	were	more	abundant	when	the	plants	were	more	diversified.

This was not the case for Orthoptera,	whose	richness	decreased	
with	increased	plant	diversity.	Indeed,	Orthoptera species are known 
to	react	more	to	different	vegetation	strata	than	to	the	diversity	of	
plant	 species	 (e.g.,	 Fartmann	 et	 al.,	 2012).	 However,	 the	 low	 veg-
etation	 cover	did	not	 seem	 to	 influence	 abundance,	 diversity,	 and	
evenness	of	those	insects.	It	should	be	remembered	that	site	mois-
ture	and	the	high	herbaceous	stratum	could	not	be	considered	in	the	
analysis	because	these	variables	were	too	dependent	on	pesticide	
use,	but	probably	influenced	the	results	in	our	case.	The	contradic-
tory	correlations	between	 the	diversity	measures	we	obtained	 for	
Orthoptera and Rhopalocera	could	be	explained	by	the	differences	in	
the	plant	species	on	which	they	depend.

4.4 | Functional traits

We	expected	that	specialist	and	less	mobile	species	would	suffer	
more	from	habitat	isolation	(Keller	et	al.,	2013;	Miller	et	al.,	2015;	
Villemey	et	 al.,	 2015).	Our	 results	 showed	 that	 site	 connectivity	

could	favor	low-	dispersal	plants,	while	herbicide	use	had	a	greater	
negative	 impact	 on	 specialist	 and	 less	 mobile	 plants.	 However,	
the	 dispersal	 capacities	 of	 the	 target	 species	 of	 the	 herbicides	
used	in	the	study	area	were	not	significantly	lower.	It	was	mainly	
competitive	and	highly	dispersive	 tall	 grasses	 that	 grew	on	 sites	
around	 which	 herbicides	 were	 used.	 We	 can	 assume	 that	 they	
could have colonized sites to the detriment of more pesticide- 
sensitive	species,	which	are	probably	less	mobile	and	less	general-
ist.	Furthermore,	the	vast	majority	of	Rhopalocera and Orthoptera 
recorded were species with a high degree of dispersal and low 
specialization,	 probably	 selected	 in	 such	 a	 highly	 artificial	 and	
fragmented	landscape	(Rochat	et	al.,	2017).	Our	results	showed	an	
increase in Orthoptera	 community	 specialization	when	 the	 cover	
for	 low	 herbaceous	 vegetation	 increased.	 Indeed,	 the	 species	

F I G U R E  4  Relationships	between	Rhopalocera	species	
abundance	and	(a)	the	level	of	herbicide	treatments	within	a	300-	m	
radius	and	(b)	the	connectivity	index	for	Rhopalocera	species	with	a	
dispersal	distance	of	300	m,	from	32	sampled	sites.	All	explanatory	
variables	are	scaled
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F I G U R E  5  Relationships	between	(a)	species	richness	and	the	
level	of	herbicide	treatments	within	a	radius	of	100	m,	(b)	evenness,	
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for Orthoptera	species	communities	from	29	sampled	sites.	All	
explanatory	variables	are	scaled
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considered	 in	 the	 study	 as	 specialists	 were	 dependent	 on	 xeric	
environments	and	could	have	been	favored	by	 lower	vegetation.	
Orthoptera	community	specialization	also	tended	to	be	higher	on	
more	connected	sites,	suggesting	greater	sensitivity	of	specialist	
species	to	the	isolation	of	their	habitat.

4.5 | Scale- dependent processes

Vascular-	plant	 and	 hexapod	 communities	 on	 industrial	 water-	
abstraction	sites	were	 influenced	by	both	 local	and	 landscape	fac-
tors,	with	overall	a	greater	effect	of	 local	factors	on	flora	richness	
and	abundance	and	a	greater	effect	of	 landscape	factors	on	these	
same	 measures	 for	 insects.	 The	 intensity	 of	 site	 management,	
which	 induces	disturbance	and	changes	 in	habitat,	 is	often	a	 local	
factor	that	has	a	strong	influence	on	species	communities	in	herba-
ceous	environments	(e.g.,	Stoner	&	Joern,	2004).	In	our	case,	man-
agement	was	 the	same	on	our	 sites,	which	may	partly	explain	our	
results.	Conversely,	 landscape	 factors	mainly	 influenced	 the	 func-
tional	diversity	of	flora,	and	local	factors	mainly	 influenced	that	of	
Orthoptera.	This	study	shows	the	importance	of	taking	into	account	
different	dimensions	of	biodiversity	and	different	 spatial	 scales	 to	
better	understand	ecological	processes.

5  | CONCLUSION

Similar	 to	 other	 types	 of	 industrial	 sites,	 water-	abstraction	 sites,	
when	managed	ecologically,	 can	constitute	seminatural	habitats	 in	
landscapes	 that	 are	 increasingly	 fragmented	 by	 agricultural	 inten-
sification	and	urbanization.	They	could	play	a	key	 role	 in	biodiver-
sity	by	providing	habitats	and	refuges	for	species,	and	by	improving	
landscape	connectivity.	A	 landscape-	wide	approach	involving	 local	
stakeholders	would	be	more	effective	 in	conserving	and	 restoring	
biodiversity,	 given	 the	 influence	 of	 the	 landscape	 on	 the	 species	
found	on	the	sites.	Partnerships	and	discussions	with	farmers	should	
be	favored	and	pursued	because	the	impact	of	their	practices	was	
preponderant in our results.
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