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Abstract 

Background:  The collection and examination of social media has become a useful mechanism for studying the 
mental activity and behavior tendencies of users. Through the analysis of a collected set of Twitter data, a model will 
be developed for predicting positively referenced, drug-related tweets. From this, trends and correlations can be 
determined.

Methods:  Social media data (tweets and attributes) were collected and processed using topic pertaining keywords, 
such as drug slang and use-conditions (methods of drug consumption). Potential candidates were preprocessed 
resulting in a dataset of 3,696,150 rows. The predictive classification power of multiple methods was compared 
including SVM, XGBoost, BERT and CNN-based classifiers. For the latter, a deep learning approach was implemented to 
screen and analyze the semantic meaning of the tweets.

Results:  To test the predictive capability of the model, SVM and XGBoost were first employed. The results calculated 
from the models respectively displayed an accuracy of 59.33% and 54.90%, with AUC’s of 0.87 and 0.71. The values 
show a low predictive capability with little discrimination. Conversely, the CNN-based classifiers presented a signifi-
cant improvement, between the two models tested. The first was trained with 2661 manually labeled samples, while 
the other included synthetically generated tweets culminating in 12,142 samples. The accuracy scores were 76.35% 
and 82.31%, with an AUC of 0.90 and 0.91. Using association rule mining in conjunction with the CNN-based clas-
sifier showed a high likelihood for keywords such as “smoke”, “cocaine”, and “marijuana” triggering a drug-positive 
classification.

Conclusion:  Predictive analysis with a CNN is promising, whereas attribute-based models presented little predictive 
capability and were not suitable for analyzing text of data. This research found that the commonly mentioned drugs 
had a level of correspondence with frequently used illicit substances, proving the practical usefulness of this system. 
Lastly, the synthetically generated set provided increased accuracy scores and improves the predictive capability.
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Background
Introduction
Collecting accurate and up-to-date trend information 
regarding drug-use is an arduous task [1]. The illicit 
nature of the topic makes surveying a population dif-
ficult, as the potentially illegal nature tends to generate 
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a less honest or unwilling response. This limits the use-
fulness of the data collected and provides a demand for 
an accurate system. A prospective solution is in social 
media, which has been used as a source for studying 
the mental activity and behavior tendencies of users 
[2]. Current research has gone so far as to suggest the 
possible validity in utilizing the information posted 
online as a substitution for actual surveyed data [3–5]. 
This fact is not necessarily surprising, as there is wide-
spread utilization and sites such as Twitter are consist-
ently accessed by a significant population of people. As 
social media is prevalent in today’s society, it provides 
an excellent opportunity for developing a generalized 
drug detection system, as well as a manner for extract-
ing relevant trends.

Twitter data is not the most consistent or stable infor-
mation to work with[6, 7]. Inconsistencies within the 
wording and the lack of discrete variables made analysis 
and classification a difficult task. Traditional machine 
learning methods have proved ineffective for our pur-
poses (see “Results” section). As a result, a deep learning 
approach was used in this research to screen and analyze 
positively referenced, drug-related tweets. Topic pertain-
ing keywords, such as slang and use-conditions (methods 
of drug consumption) were used to collect Twitter data. 
A subset of dataset was then manually labeled with two 
categories: positive or negative. For clarity, a text such as 
“smoke weed every day” would register as drug-positive, 
while a tweet like “all drugs should be illegal” would reg-
ister as drug-negative. A normal text without reference 
to any particular drug would also register with a negative 
result. Following this, a deep learning model using a con-
volutional neural network (CNN) [8] was trained on the 
labeled data to classify between positive and negative. A 
word2vec algorithm was used which allowed the embed-
ding of alike words (words having a comparable mean-
ing) to be seen as similar [9]. This helped the CNN care 
less about the variety of words and instead focus on the 
semantic meaning of words and their corresponding rela-
tionships. Further details are provided in “Methods”.

Training the CNN showed a strong capability for accu-
rately classifying, the details of which can be found in 
“Classification by CNN-Based Classifier”. Additional 
classification methods were used to compute the quality 
of classification; however, the deep learning algorithm 
with synthetic data was found to outperform them (see 
“Results” section). Deep learning is not a unique method 
for performing this task; however, there is little research 
in utilizing it as a general drug detection system. At the 
same time, our research found promising results in com-
bining this methodology with synthetically generated 
data (see “Data pre-processing” section). The following 
points have been concluded from this research:

•	 This work verifies that the “possibly_sensitive” tag 
generated by the Twitter API cannot be used for the 
classification of drug-positive tweets.

•	 A CNN model with synthetic data was developed 
and outperformed other methods in classifying drug-
related tweets.

•	 A novel approach of generating labeled synthetic data 
improved the accuracy and classifying capability of 
the model.

•	 Commonly mentioned drugs had a level of corre-
spondence with frequently used illicit substances.

The remainder of this paper is arranged as follows. The 
“Related work” describes previous or similarly docu-
mented techniques. “Methods” section presents the 
methodology utilized, with details on the data and pre-
processing performed and the quality. “Results” sec-
tion shows the experimental metrics gained from the 
SVM, XGBoost, and CNN-based classifiers. Addition-
ally, respective keyword strength and patterns in the data 
were determined. “Conclusion” section ends the paper 
and discusses possible future works.

Related work
Health analysis using social media data
Social media data reflects a population’s characteristics, 
including public health information. Many social media 
platforms such as Twitter and Facebook have a massive 
user base, constantly generating an enormous amount 
of messages. For instance, based on a 2019 statistic, 500 
million tweets were sent out on a daily basis. Therefore, 
monitoring and analyzing social media data should be 
prominent in population-based research, including pub-
lic health.

In [10], Lampos et  al. proposed a way to detect and 
track influenza in the United Kingdom. Their method 
was utilizing regression in learning a set of weighted key-
words to compute a score, which reflected the influenza 
rate. Paul et  al. [11] assumed that each health-related 
tweet reflected an underlying ailment and proposed an 
ailment topic aspect model (ATAM) for syndromic sur-
veillance. The results showed the broad applicability of 
analyzing Twitter data for public health research. The 
authors also pointed out the limitation of using Twit-
ter data due to the age of users (Twitter users tend to be 
teenagers or young adults). Chew et  al. leveraged Twit-
ter data analysis to track the trend of sentiment and 
public attention during the 2009 H1N1 pandemic [12]. 
Besides the text content and the meta-information, such 
as keywords count, [3] introduced a predictive model for 
the classification of healthy and unhealthy populations 
based on Facebook “likes”. This work also showed that 
the significant value of Facebook “likes” in public health 
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prediction and population health-related behaviour anal-
ysis. As mentioned above, these researches were focused 
on population-level health status rather than the study of 
individual users.

Analyzing individual-level health status of social media 
users helps doctors or healthcare professionals detect 
potential patients and provide help. In [13], Twitter 
data was used for dental pain surveillance. Since dental 
pain is non-infectious, the purpose of their research was 
to detect Twitter users with a toothache via data min-
ing. Researchers developed a coding system to analyze 
the content of the collected tweets. Other similar works 
include, Coppersmith et  al. who built a binary classifier 
to detect the post traumatic stress disorder of individual 
Twitter users [14].

Drug abuse detection in social media
Due to the prevalence of social media, research on 
detecting and monitoring drug abuse-related behaviors 
have been carried out in recent years. The methods used 
in these researches can be categorized into traditional 
statistic methods and machine learning approaches. A 
semantic prescription drug abuse surveillance platform 
(PREDOSE) was introduced in [15]. The study scope 
of the semantic data of PREDOSE is web forum posts. 
PREDOSE only dealt with three types of data: entities, 
relationships, and semantic triples. The first stage of PRE-
DOSE was to collect and clean the posts. In the second 
stage, domain knowledge in drug abuse studies was lever-
aged to extract and process the information of interest. 
In the third stage, statistic-based qualitative and quanti-
tative analysis was used to detect the drug user attitudes 
and behaviors; while temporal analysis was applied to 
detect the trend of drug abuse.

Sarker et al. proposed a hybrid classification model for 
automatically monitoring prescription medication abuse 
from Twitter data [2]. The hybrid classification model 
was a combination of four traditional supervised learn-
ing algorithms, namely: Naïve Bayes, support vector 
machine, maximum entropy, and a decision tree-based 
classifier. Since the distribution of abuse and non-abuse 
tweets was highly unbalanced, the resulting model had a 
high accuracy yet a poor F1 score.

In [4], the researchers collected tweets with E-cigarette 
related keywords and manually annotated a small set of 
data for analysis. The annotated data had five categories, 
representing the type of corresponding user: individu-
als, vaper enthusiasts, informed agencies, marketers, and 
spammers. The classifier used in this work was gradi-
ent boosting regression trees. They further studied the 
importance of each feature regarding the user types. 
There are some limitations within this work, such as 

manual feature engineering and relatively small training 
dataset.

Social media data contains a great deal of metadata, 
such as a user’s basic information and their interper-
sonal relationship network. As such, analyzing the high 
dimensional patterns within this could help enhance 
the user classification accuracy. In [16], Kursuncu et  al. 
leveraged three levels of features (person-level, content-
level, and network-level) in Twitter data for represent-
ing a user, where each level of features was called a view. 
Compositional multi-view embedding (CME) was used 
for embedding the three levels of features. Experimen-
tal results showed that the classification accuracy was 
improved by using CME.

Hu et al. proposed a deep learning-based Twitter posts 
drug abuse risk behavior detection system [17]. In their 
approach, a small number of labeled tweets was used 
for training the CNN classifier. They further used the 
CNN to label some of the unlabeled tweets to augment 
the training dataset. By repeating the above-mentioned 
steps, the classification accuracy was improved. The 
problem was that the approach might reinforce the ability 
of the CNN classifier to detect the patterns of the original 
manually labeled data, yet miss other patterns which are 
not in the original labeled data.

Social media text analysis with deep learning
Social media data is worthwhile to mine, as people 
nowadays tend to express their thoughts through social 
network platforms [18]. Du et  al. [6] proposed a deep 
learning approach to extract psychiatric stressors for 
suicide from Twitter data. Keyword-based querying and 
filtering was used to screen the possible suicide-related 
tweets from the collected Twitter stream. Following 
this, a small subset of the candidate tweets was manually 
labeled (positive/negative) and trained on a CNN. The 
model was utilized to further select some suicide-related 
tweets from the candidates. Finally, training with a RNN 
was completed to perform the stressor recognition task.

Sawhney et al. [19] proposed a long short-term mem-
ory recurrent neural network (RNN) to classify suicidal 
ideation-related social media sentences. They used a two-
level embedding approach to prepare the input data for 
the RNN. The first level of embedding was a 300-dimen-
sional word2vec embedding, while the second level was a 
sentence level embedding; where a single-layer CNN was 
used to generate feature maps. They concatenated the 
pooled feature maps relative to the order of words in the 
input sentence and used an RNN to do the final classifi-
cation. The sentence level CNN embedder and the RNN 
were optimized during training. Severyn and Moschitti 
used a CNN in Twitter sentiment analysis [20]. As the 
parameters in a CNN are randomly initialized before 



Page 4 of 15Tassone et al. BMC Med Inform Decis Mak 2020, 20(Suppl 11):304

training and a proper initialization of parameter values 
is crucial to train a good model; they used a pre-training 
method as an initialization approach. This was done prior 
to training the model on their target training dataset. 
Their pre-training dataset was a set of ten million tweets 
containing positive words. The main drawback of their 
approach was that the pre-training process took a signifi-
cant amount of time (a few days).

Methods
Data source
We created a Twitter developer account which allowed 
us to employ Twitter’s data infrastructure tools and uti-
lize the collected information for research. All the tech-
niques and data mentioned conforms to the Developer’s 
Agreement and Policy enforced by the organization [21]. 
The data consists of extracted social media information, 
obtained through Twitter’s official public API. Specifi-
cally, it is a collection of tweets that were pulled based 
on 157 keywords; all of which were related to either spe-
cific drugs or drug-uses. Drug-use keywords included: 
“snorted”, “snorting”, “snort”, “pills”, “blotter paper”, “blot-
ting paper”, “tabs”, “patches”, “injecting”, “injected”, “inject”, 

“ingesting”, “ingested”, “ingest”, “smoked”, “smoking”, 
“smoke”, “chewed”, “chewing”, “chew”, “vaporized”, “vapor-
izing”, “vaporize”, “vaped”, “vaping”, “vape”, “bong”, “pipe”, 
“joint”, “needle”, “shoot up”, “hookah”, “grinder”, “one hit-
ter”, “sinker”, “popper”, “inhaling”, “inhaled”, and “inhale” 
[22]. The remaining drug-only keywords can be viewed in 
Table 1. These keywords were chosen based on an intelli-
gence report published by the Drug Enforcement Agency 
(DEA), categorizing drugs by slang and street terms [23]. 

Twitter data collection ran from October 22 to Novem-
ber 30, 2018. The time period may appear shorter than 
other research projects [24]. This duration corresponds 
with the legalization of marijuana in Canada. There-
fore, a higher number of relevant tweets could be col-
lected during a period which was advantageous to our 
research. The data set collected during this time period 
combined with synthetic data provided a substantial set. 
Only tweets containing the valid keywords were selected, 
and misspellings were handled on a case-by-case basis 
by the Twitter API. The initial set was cleaned with the 
following filters: removed newlines, contracted extra 
spaces, removed hashtags, removed emojis, removed 
reserved words, removed smiley, removed URLs, 

Table 1  Drug related keywords

Drug category Keyword

Amphetamine Amy, bennies, benz, dexies, diet pills, get ups, pep pills, wake-ups, amphetamine

Cocaine Blow, coke, crack, nose candy, cocaine

DMT Dimitri, dmt

General Drugs, drug

GHB Georgia home boy, grievous bodily harm, ghb, liquid ecstasy, liquid e, liquid x

Heroin Black tar, brown sugar, china white, heroin, mexican brown, skag, white horse

Hydrocodone 357s, dro, fluff, norco, vics, vikes, watsons, hydrocodone

Ketamine Cat valium, special k, vitamin k, ketamine

Klonopin k-pin, super valium, klonopin

LSD Acid, blotter acid, blotter, electric kool aid, lucy in the sky with diamonds, microdot, tabs, lsd

Marijuana 420, blunt, bud, dagga, dope, ganja, grass, green, hashish, hash, hemp, herb, mary jane, pot, weed, marijuana

MDMA e, ecstasy, happy pill, love drug, molly, vitamin e, xtc, mdma

Mescaline Blue caps, media luna, mescal, mezcakuba, topi, mescaline

Methamphetamine Crank, crystal, meth, shards, speed, tweak, uppers, methamphetamine

Mushrooms Boomers, baps, mushies, shrooms, tweezes, mushrooms

Nitrous_Oxide Buzz bomb, laughing gas, nitrous, nox, whippets, nitrous oxide

Opioid Abstral, acetaminophen, actiq, china girl, codeine, dance fever, dilaudid, duragesic, exalgo, fentanyl, hydromorphone, lorcet, 
lortab, methadone, morphine, murder 8, onsolis, oxy, oxycodone, oxyContin, oxymorphone, percocet, vicodin, opioid

PCP Angel dust, love boat, peace pill, superweed, pcp

Peyote Black button, green button, hikuli, hyatari, peyote

Ritalin Ritalin

Steroids Gym candy, pumpers, roids, steroids

Synthetic_Cathinones Bath salts, bloom, cloud 9, cloud nine, cosmic blast, flakka, ivory wave, lunar wave, vanilla sky, white lightning, synthetic 
cathinones

Xanax Benzos, xanies, z bars, zanbars, xanax
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removed mentions, removed all punctuation, remove all 
numbers, converted the text to lowercase, removed stop 
words, fixed known misspellings, and contracted words. 
This cleaned dataset consisted of 51 attributes, with 
26,184,358 tuples of data (see “Additional files”) and is 
available for research purposes upon request.

Data pre‑processing
The organization of this data demanded a large amount 
of pre-processing. The tweets that were received were not 
tagged according to drug-use; therefore, this needed to 
be determined prior to analysis. In addition, by the sheer 
volume of the tweets alone, tagging by hand was not a 
realistic option. As a result, a CNN was trained with a 
subset of the data to perform the remainder of the task. 
Many of the tweets also proved to be irrelevant for the 
purposes of training the neural network; therefore, were 
removed. The following filters were utilized in generating 
the dataset following initial collection (see Fig. 1):

•	 Removed rows with null or empty tweets.
•	 Removed non-English rows.
•	 Removed rows with tweets having no keywords.

For the purposes of data analysis, only English tweets 
were considered, as other languages would have added a 
level of complexity and required translation. There was 
the possibility after the initial cleaning that there would 
either blank tweets or those without keywords. An exam-
ple of this would be if a keyword was held in a hashtag 
or a URL. After these filters were considered, the result-
ing set consisted of 3,696,150 rows. This may seem like a 
heavy reduction; however, the filtering procedure is strict 
in order to ensure data quality. At this stage, a row in the 
dataset consisted of each collected tweet and the associ-
ated metadata attributes attached to it.

The previously mentioned pre-processing tasks stand-
ardized the dataset, and initially an attempt at simplify-
ing the information by reducing the number of keywords. 
The method of delivery for a drug was replaced by the 
literal word “BETA”, while the specific drug was replaced 
by “ALPHA”. As an example, a phrase like “Smoke weed 
everyday” would become “BETA ALPHA everyday”. It 
was theorized that the neural network did not need to 
interpret the drug that the user was referring to, and the 
name of the substance could be replaced with a pseudo-
nym. While it was thought this would reduce the burden 
of training the model, it resulted in a loss of descriptive 
intent and decreased the model’s accuracy. We therefore 
decided not to pursue this methodology.

The data was initially extracted using 290 keywords 
and following the guidelines by the DEA [22], the authors 
of the paper agreed to reduce the list to 157 keywords. 

All keywords were determined based on the most com-
mon drugs referenced through a guide released by the 
DEA [22]. The reasoning behind the reduction was that 
uncommon slang words like “friend” (for fentanyl) signif-
icantly impacted the training performed on the network. 
Essentially these words were too common in normal 
speech or in the case of a word like “amp” (ampheta-
mine), was detected as the ASCII characterization of 
“&”. This resulted in a massive number of drug-negative 
tweets, risking a skewing in the final metrics. Although it 
would appear a significant amount of data was removed, 
these words were uncommon slang terms and the most 
prevalent keywords still remained.

During the pre-processing task, additional attributes 
were generated (example: “number of keywords used”) 
from the text string for possible variable selection and 
final analysis. Some of these were in addition to the meta-
data attributes that were collected along with the tweet by 
the Twitter API. The attributes following pre-processing 
(either sums or identifiers) included: “id_str”, “text”, “user_
followers_count”, “possibly_sensitive”, “timestamp_ms”, 
“lang”, “original_text”, “user_friends_count”, “alpha”, “beta”, 
“snort”, “blotter”, “inject”, “ingest”, “smoke”, “chew”, “vapor-
ize”, “vape”, “inhale”, “hitter”, “shoot”, “tabs”, “patches”, 
“pills”, “bong”, “pipe”, “joint”, “needle”, “hookah”, “grinder”, 
“sinker”, “popper”, “Amphetamine”, “Cocaine”, “DMT”, 
“General”, “GHB”, “Heroin”, “Hydrocodone”, “Ketamine”, 
“Klonopin”, “LSD”, “Marijuana”, “MDMA”, “Mescaline”, 
“Methamphetamine”, “Mushrooms”, “Nitrous_Oxide”, 
“Opioid”, “PCP”, “Peyote”, “Ritalin”, “Steroids”, “Synthetic_
Cathinones”, “Xanax”, “both”, and “classification”. These 
attributes together made up each row of the dataset.

The “classification” attribute required the CNN to be 
trained, meaning testing and training sets needed to be 
extracted from the pre-processed dataset. Three tempo-
rary sets were generated, based either on patterns or a 
random selection of data:

•	 Set 1: Tweets containing both drug and use-key-
words.

•	 Set 2: Tweets containing multiple occurrences of key-
words (example: “weed” is mentioned twice).

•	 Set 3: Tweets randomly selected from the cleaned 
3,696,150 rows.

These sets were completely unique, with no overlap-
ping data between them. Following this, 2661 rows 
were randomly selected from the set for manual labe-
ling by the Lakehead University DaTaLab students 
(Mannila Sandhu and Tanvi Barot). Each tweet was 
assigned either a 1 (drug-positive) or 0 (drug-nega-
tive), depending on the semantic meaning of the text. 
A text such as “smoke weed every day” would register 
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as drug-positive, while a tweet like “all drugs should be 
illegal” would register as drug-negative. Passive refer-
ences such as those related to news or simple drug dis-
cussion would also register as drug-negative. Likewise, 
news related tweets or those referring to the observa-
tion of drug use would be considered drug-negative. 

Essentially, the tweet had to be referring to the active 
usage of drugs with an implied or directly supportive 
connotation in order to garner a positive label. The 
labelled tweets were then verified by social work stu-
dent Caleb Pears (specializing in addictions research) 
to ensure all the classifications were consistent.

Generate
Training

Data

Generate
Clean

Dataset

Collect drug-related
tweets based on

keywords

26,184,358 Rows

25,632,497 Rows

17,397,190 Rows

Remove null/empty
tweets

Remove non-English
rows

Remove non-keyword
rows

3,696,150 Rows

Tweets with multiple
keyword occurrences

Tweets having both drug
and use keywords

Randomly select tweets

82,696 Rows

20,655 Rows

55,081 Rows

Select random tweets
and manually label the

class

2,661 Rows

Generate synthetic data
by keyword replacement

with another random
keyword

Cleaned Dataset

13,183 Rows

12,142 Training Rows
      - 10,522 Synthetic
      - 1,620 Original

1,041 Testing Rows

Fig. 1  Pre-processing steps for each stage of the collected data. Circles represent filters placed on the data, while rectangles represent the updated 
set size
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This dataset was limited, as the small size meant 
there was less coverage among the keywords. Train-
ing the CNN with this type of data could have allowed 
a higher probability of misclassification. To ensure 
proper inclusion and maintain the semantic meaning 
of the text, synthetic data was generated to compen-
sate. The full process is described through Algorithm 1 
and Fig. 2, with a specific example in Table 2. This was 
done to minimize the sampling bias that could have 
been present in the neural network. The algorithm sim-
ply functioned by looping through the set of tweets, 
and another loop went through each respective tweet, 
searching for keywords and replacing them with a ran-
dom of the corresponding type. Keywords within the 
“text” attribute of the 2661 rows were replaced respec-
tively by either a random drug (from the 157 mentioned 
in Table 1) or drug-use keyword. 13,183 rows were con-
tained in this set, among which 12,142 were allotted for 
training and 1041 for testing. Both training and testing 
datasets are balanced to help obtain the best results in 
the case where the proportion of positive and negative 
tweets in future applications is unknown [25]. As per 
the “Additional files” section (can be found after refer-
ence section), these datasets are available for research 
purposes upon request. A summary of this methodol-
ogy, as well as the initial steps, can be seen in Fig. 1.

Data quality
The original dataset consisted of 2661 tweets, each 
labelled as positive or negative. For verification of quality 
of labelling, a kappa test [26] was performed to measure 
reliability. The original labelling was split evenly among 
two graduate students. Another three graduate students 
(Punardeep Sikka, Zainab Kazi, and Mohiuddin Qudar) 
were asked to label the dataset. A kappa statistic was cal-
culated against the original labelling and the three label-
lers to determine the consistency that the raters agreed 
on the label. As there were multiple raters a Fleiss’ kappa 
[27] was performed and resulted in 0.6333, indicating 
substantial agreement across all raters. It should be noted 
that this was executed to verify the quality of the original 
labelling, which had a field expert perform an assessment. 
The lower result can be attributed to a lack of knowledge 
of certain less common slang terms among the raters.

The resulting dataset may be considered small; how-
ever, falls in line with other similarly published works 
[28]. The set; however, did have an imbalance with 372 
positive and 2289 negative tweets. As such, synthetic 
generation proved necessary to combat this imbalance. 
Following the synthetic generation process mentioned in 
the previous section, the newly formed training dataset 
contained 6790 drug-negative and 5352 drug-positive 
tweets. “Results” section further verifies the usefulness 
of explicitly labelled data from synthetic generation in 
improving the network’s classification capability. Addi-
tionally, of the original 372 drug-positive tweets, only 
150 were labelled as “possibly_sensitive” by the Twitter 
API. This initial result adds weight to the assumption that 
there is an inaccuracy in utilizing the tag for specifically 
detecting and classifying drug-related through the Twit-
ter API.

Fig. 2  Synthetic data generation process

Table 2  Example of  synthetic data generated 
from an original tweet

Tweet Use-keyword Drug-keyword Type

Smoke weed everyday Smoke Weed Original

Snort cocaine everday Snort Cocaine Synthetic

Inject heroin everday Inject Heroin Synthetic

Chew mushrooms eve-
ryday

Chew Mushrooms Synthetic

Ingest drugs everyday Ingest Drugs Synthetic

Inhale nitrous everday Inhale Nitrous Synthetic
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Support vector machine and XGBoost
Support vector machines (SVM) are widely used in clas-
sification problems. However, when the dimension of the 
input data is large, SVM’s are inefficient and take a great 
deal of time to train. To leverage this tool in our prob-
lem, we first used principal component analysis (PCA) to 
reduce the dimension of our word2vec model. Then we 
used the same data pre-processing method used for our 
CNN models to generate training data. We then trained 
the SVM on the training data with different word vec-
tor dimensions. Since the difference of performance is 
not apparent for different word vector dimension set-
tings, we chose 100 as the word vector dimension. We 
ran a grid search to select the optimal hyper-parameters 
for the SVM model. The gamma value is scaled based 
on: 1/(number_of_features× variance_of_data) . We 
mainly searched on different kernel methods and the 
regularization parameter C. The search results are shown 
in Fig.  3. We finalized the kernel method to be “RBF” 
kernel, and C = 10 . The results are summarized in the 
confusion matrix shown in Table  3. Extreme gradient 
boosting (XGBoost) is a scalable tree boosting machine 
learning algorithm which supports parallel computing 
[29]. We used the same data for the SVM in XGBoost. 
We searched the optimal hyper-parameters on follow-
ing parameter space: learning rate {0.01, 0.03, 0.05, 0.07} ; 
maximum depth {3, 4, 5, 6, 7} . We chose the optimal 
learning rate 0.05 and the optimal maximum depth 5 for 

our final XGBoost model. The confusion matrix shown in 
Table 4 summarizes the results.

CNN‑based classifier
Input embedding
The individual inputs to the CNN were a fixed-size 
2-dimensional embedded tweet text ( 50× 400 ) and each 
row in the input was a word2vec embedding. The order 
of rows in the input was correspondent to the order of 
words in the original tweet text. Unlike many formal 
English texts, tweets contain many misspellings. If a 
word2vec model trained on a structured corpus, such 
as Wikipedia or Google News, was used to embed the 
words from the Twitter texts, then there would have 
been a serious out-of-vocabulary (OOV) issue. In this 
scenario, if a word does not exist in said corpus then it 
cannot be embedded to the semantic-related vectors. 
Therefore, a word2vec model (referred to in this case as 
a Twitter word2vec model) pre-trained on a Twitter cor-
pus [30] was utilized to embed the tweets. The dimension 
of embedding used in this paper was K = 400 , meaning 
each word in the word2vec vocabulary had a correspond-
ent 400-dimensional unique vector. Based on the limita-
tion of characters in each tweet (280 characters), the set 
length (number of words) of each input text was L = 50 
[31]. If the number of words in a tweet text was less than 
50, then randomized vectors were applied (obeyed uni-
form distribution, the range was from −  0.5 to 0.5) to 
extend the length of embedded text to 50. For a tweet 
text that had a length greater than 50, a sliding window 
of length 50 was employed to get the parts of the text. If 
any part of the text was labeled as positive (drug-related) 
by the CNN, a positive label was assigned to the whole 
text. Figure  4 is a visualized 2-dimensional embedded 
text example.

CNN architecture
In this paper, a similar CNN architecture proposed by 
Kim [8] was applied. This CNN architecture had one con-
volution layer, and the shape of each convolution filter 
is rectangular. The length of each convolution filter was 
400 (same as the dimension of the word2vec embedding 
we use). The filters were; however, grouped by differ-
ent heights. There were five groups of filters, where the 
respective size (height) of each within the groups were 3, 

Fig. 3  Grid search result of SVM. Values are average cross-validation 
accuracy

Table 3  SVM confusion matrix

Positive label Negative label

Predicted positive 117 8 125

Predicted negative 416 500 916

533 508

Table 4  XGBoost confusion matrix

Positive label Negative label

Predicted positive 78 15 93

Predicted negative 455 493 498

533 508
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4, 5, 6, and 7. In other words, the shape of filters could 
be 3× 400, 4 × 400, 5× 400, 6× 400, or 7× 400 . Each 
group had 64 filters, so there were 320 in total. A one-
max pooling approach was used to get the maximum val-
ues of each feature map and then concatenate them into 
an array of 320 values. The output layer, which as fully 
connected to the pooling layer, had two output neurons. 
Figure  5 is a simplified version of the mentioned CNN 
architecture.

Training
The training batch size was 64 in the experiment. The 
Adam optimizer[32] was used to minimize the loss value 
during training and the learning rate was set to 10−3 . 
Since the number of positive labeled tweets in the train-
ing dataset was initially less than the number of negative 
labeled tweets, a weighted cross-entropy function was 
used as the loss function (see Eq. 1, where Y represented 

the target labels; Ŷ  represented the predicted scores; and 
ω was the positive weight).

The pseudo-code of the training algorithm is shown in 
Algorithm 2. Tbatch is used to represent the set of tweets 
in a training batch (there is no overlap between any pair 
of batches and the union of all the training batches is the 
training tweet dataset T); Ybatch is the set of labels of the 
corresponding training batch (Y is the set of labels of T). 
Ebatch represents the word2vec embedded Tbatch . W2V 
represents the word2vec embedding dictionary. θ repre-
sents the parameters in the neural network model. γ is 
the learning rate. The value of γ and batch size were cho-
sen via a grid search on our dataset. Due to the lack of 
training data, a tenfold cross-validation is used to ensure 
the model converges and avoids over-fitting.

In the experiment, the CNN model was trained sepa-
rately on two datasets. One training dataset was the 
original with 2661 manually labeled samples (372 
labeled positively), while the other training dataset was 
the original+synthetic dataset with 12,142 samples 

(1)
loss(Y , Ŷ ) = Y [−log(Ŷ )]ω + (1− Y )[− log(1− Ŷ )]

Fig. 4  Visualization of the word2vec embedded text “i think all drugs 
should be illegal”. The first sub-illustration is the original word2vec 
embedded text ( 50× 400 ), the second and the third sub-illustrations 
are zoomed parts of the original embedding

Fig. 5  The CNN architecture. L is the length limitation of each 
sentence; K is the dimension of each Word2Vec embedding. Only two 
filters (orange and blue rectangles surrounded by dashed lines) are 
shown in this figure; therefore, only two feature maps shown in the 
convolution layer
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(5352 positive labeled samples). Since the neural net-
work parameters were randomly initialized (through the 
Xavier Glorot method [33]), we trained and tested our 
models twenty times to compute the standard devia-
tion of testing accuracy: CNN model-A is 0.0098, CNN 
model-B is 0.0125. The best model selected was trained 
on two datasets, referring to them respectively as CNN 
model-A (trained on the original+synthetic dataset) and 
CNN model-B (trained on the original dataset). The test-
ing accuracy of CNN model-A was 82.31% and CNN 
model-B was 76.35%, making the synthetic model an 
improvement over the original. The source code is pub-
lished on Github.1

Results
Evaluation metrics
The following metrics were used to evaluate each model: 
accuracy, precision, specificity and recall (sensitivity), 
F1 score, receiver operating characteristic (ROC), and 
area under the curve (AUC). Although accuracy is the 
primary indicator of classification when the number 
of positive and negative testing samples are balanced, 
it is not comprehensive. A higher precision represents 
less false-positive predictions occurring, while a higher 
recall represents less false-negative predictions occur. 
F1 score is the harmonic mean of precision and recall: 
(2× precision× recall)/(precision+ recall) . We used the 
F1 score to measure the balance between precision and 
recall. AUC is derived regarding the ROC curve, which 
indicates the capability of a model to distinguish between 
classes. A high AUC value shows that corresponding 
model has a good distinguishing capability.

Classification by support vector machine and XGBoost
As mentioned previously, training SVM and XGBoost on 
the original word2vec-embedded tweets does not pro-
duce accurate results. Therefore, we used principal com-
ponent analysis (PCA) to reduce the dimension of the 
word vectors before embedding the tweets. To compare 
the effect of different dimension reduction strength, we 
reduced the dimension of word vectors to different val-
ues (between 10 and 100), see Fig. 6. The results indicate 
that there is no significant correlation between the PCA 
dimension reduction strength and model performance. 
Both SVM and XGBoost achieved relatively high recall, 
but low precision. Although the AUC of SVM appears 
to be satisfactory, the overall accuracy is relatively low. 
Therefore, we cannot consider the SVM and XGBoost as 
good models in this experiment.

Classification by CNN classifier
In terms of AUC and accuracy, the CNN (model-A) out-
performed the previous models. Results utilizing deci-
sion trees and regression based models were not accurate 
enough for classifying this particular dataset. Instead 
the very structure and semantic meaning needed to be 
explored for significant conclusions. The results of all the 
models are summarized in Fig. 7 and Table 5. All classi-
fiers were trained on a similar sized dataset in order to 
be properly compared against the neural network-based 
classifier. 

Two CNNs were developed, and it should be of no 
surprise that the model trained with a larger set had an 
improved accuracy and AUC. However, a fascinating 
conclusion was the improved result originating from the 
synthetic data. While, having a similar AUC, the accu-
racy of the two models differs by a fair amount. This 
indicates that the synthetic data had a positive impact 
on the training of the network. It is possible that this can 
be attributed to expanding the results, considering key-
words that may have been missed in the original training 
set. Although the ROC itself did not shift dramatically, 
diversifying the set further would most likely cause a 
worse classification in CNN model-B. The reasoning is 
simply that the model does not consider enough key-
words, hence why the accuracy is lower. We also trained 
two BERT-based classifiers (pre-trained on Wikipedia 
and BookCorpus) [34], namely BERT model-A and BERT 
model-B. The pre-trained BERT model was implemented 

Fig. 6  The testing precision, recall, F1 score, and accuracy of the 
SVM and XGBoost trained on the data with different word vector 
dimensions

1  https​://githu​b.com/bppva​pp/Twitt​er_NLP.

https://github.com/bppvapp/Twitter_NLP
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through Tensorflow-Hub.2 Similar to the CNN models, 
BERT model-A was trained on the original+synthetic 
dataset, while BERT model-B was trained on the original 
dataset. BERT model-A achieved better overall results 
than BERT model-B, but both BERT models failed to 
outperform the CNN model-A in our task. Moreover, if 
we ignore the network depth, the BERT algorithm has a 
time complexity of O(n2) (n is the length of text, meas-
ured in the number of words), whereas, the CNN-based 
algorithm has a time complexity of O(n). Overall, the 
CNN (model-A) proved to be the best classifier in terms 
of classifying drug-related tweets.

Initial analysis on a subset of all the drug-positive 
tweets classified by the CNN (794,547 of the 3,696,150) 
was performed. As previously mentioned, the drugs 

were broken down into categories (by keyword). Dur-
ing pre-processing, the sums of each of these categories 
was taken based on the specific occurrence of a keyword 
within the tweet. The purpose of this exercise was to best 
determine the drugs referred to most frequently, as well 
as the occurrence of individual drug-uses. The results of 
this analysis can be viewed in Figs. 9 and 10 respectively. 
As seen, the most common reference by a large margin 
was towards marijuana, with cocaine being a much lower 
second. An interesting facet of these numbers is they 
almost correspond with the literal drug activity displayed 
in true society [35]. Figure  8 was taken from a national 
survey, quantifying the most actively used illicit sub-
stances. If this is compared against the results in Fig. 9, 
then it can be seen that many of the common street drugs 
used were also the most commonly mentioned. The same 
idea can be said towards drug-uses, as smoking is the pri-
mary intake medium for marijuana. Though not all drugs 
align perfectly, many drugs such as marijuana, cocaine, 
and methamphetamine are still close.

Currently, Twitter utilizes a tag known as “possi-
bly_sensitive” for declaring data that may be considered 
inappropriate to some readers. However, the tag does not 
specifically state why a tweet is targeted or if it can be uti-
lized in classifying drug-positive tweets. Figures 9 and 10 
show that the tag most likely cannot be used for this task. 
While drug-related tweets appear to be considered more 
sensitive than not, there are still a significant number that 
are missed. Therefore, one can most likely deduce that 
the “possibly_sensitive” tag is not a replacement for the 
classification done by the neural network.

Additional analysis
Keyword strength determination
Following a similar process to that in [36]; after the data 
had been classified with the CNN, association rule min-
ing was performed. The purpose of this process was 
to best determine the important relationships within 
the data. To begin the tags “possibly_sensitive” and 
“drug_negative” were removed from the data. The for-
mer meant that the tweet was deemed by Twitter as a 
possibly sensitive tweet. The latter was classified by the 
CNN as having a negative association to drugs respec-
tively. These tags were pruned as they clouded impor-
tant rules within the data. The “possibly_sensitive” 
tag is present on every tweet that was put through the 
CNN, while the “drug_negative” is the opposite of the 
“drug_positive” tag. The balance between the two being 
78.503% and 21.497% of the 3,696,150 tweets. The 
remaining tags that were considered in the association 
rule mining are “drug_positive” and the parent terms, 
meaning a term such as “weed” would be considered 
as “marijuana” in this example. In Table 6 the statistics 

Table 5  Metrics for the different machine learning models

Models Accuracy (%) Precision Recall F1 score AUC​

CNN model-A 82.31 0.893 0.784 0.835 0.91

CNN model-B 76.35 0.597 0.906 0.719 0.90

BERT model-A 79.27 0.850 0.713 0.775 0.79

BERT model-B 64.25 0.871 0.338 0.669 0.64

Decision tree 63.40 0.925 0.584 0.716 0.68

SVM 59.33 0.220 0.943 0.356 0.87

XGBoost 54.90 0.146 0.847 0.246 0.71

Logistic-1 57.44 0.873 0.546 0.672 0.58

Logistic-2 54.56 0.954 0.525 0.677 0.58

Fig. 7  ROC curves for the different machine learning models

2  https​://tfhub​.dev/googl​e/bert_uncas​ed_L-12_H-768_A-12/1.

https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
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that describe the amount of tags per tweet are shown. 
Frequency of specific tags is shown in Fig. 11.

A maximum of 5 tags was chosen for the mining of 
association rules, as it only excluded sets found in 80 
tweets. Sensitivity analysis was then performed for the 
number of rules generated depending on the minimum 
support and confidence settings. This sensitivity can 
be seen in Fig.  12 from which a minimum support of 
0.0003 and minimum confidence of 0.3 were chosen. 
The top 5 generated rules for the chosen minimum con-
fidence and support can be seen in Table 8, where they 
are sorted by confidence. Full statistics for the 23 rules 
generated can be seen in Table 7. A network represen-
tation of the rules can be seen in Fig.  13. We applied 
the HITS algorithm [37] that is designed for finding 
hubs and authorities in the context of websites to the 
rule set. The non-zero hubs in order of precedence 
were found to be “methamphetamine”, “pipe” and “opi-
oid”. The non-zero authorities in order of precedence 
were “opioid”, “pipe” and “methamphetamine”. This 
shows that there appears to be no relationship between 
the rules that have “drug_positive” in the consequent, 
meaning they independently hold. This is due to the 
fact that the only “loop” present in the portion of the 
network containing the rest of the rules is between 
“marijuana” and “drug_positive”. Examining Table  8, 
we can see that the strongest relationships revolve 
around largely the trio “opioid”, “pipe” and “metham-
phetamine”. Since this is lacking “drug_positive”, we can 
conclude that discussion around the topics of opioids 

Fig. 8  2017 illicit drug use survey results [35]

Fig. 9  Specific drugs referenced by category. The split in the bars 
correspond with classification made by the “possibly_sensitive” tag

Fig. 10  Drug-use references by category. The split in the bars 
correspond with classification made by the “possibly_sensitive” tag

Table 6  Statistics that  describe the  amount of  tags 
per tweet

Statistic Number 
of tags 
in tweet

Min. 1.0

1st Qu. 1.0

Median 1.0

Mean 1.309

3rd Qu. 2.0

Max 11.0

Table 7  Statistics for mined association rules

Statistic Support Confidence Lift Count

Min. 0.0003728 0.3081 1.433 1378

1st Qu. 0.0006541 0.3482 1.591 2418

Median 0.0020700 0.4359 2.063 7651

Mean 0.0116810 0.5090 6.202 43175

3rd Qu. 0.0048150 0.6037 3.096 17797

Max. 0.0762532 0.9945 58.176 281843
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and methamphetamine is likely part public concern 
about the problem. Relations between “marijuana” and 
“cocaine” in regards to “drug_positive”, indicates that 
these are the most frequent drugs that Twitter users 
partake in, and are willing to discuss on the platform. 

An extension to this is that “smoke” is involved in both 
of these relations indicating that it is the preferred vehi-
cle for delivery of these substances.

Discussion
The purpose of this work was to classify drug-related 
tweets and extract feature related information from 
the results. We achieved a high classification rate while 
implementing a novel methodology in adding synthetic 
data to the training process. As it stands, the results have 
shown that simple analysis without the CNN is limited 
and possibly flawed. Regarding the CNN, as there are an 
infinite number of possible misspellings, the OOV prob-
lem cannot be eliminated. However, a character-level 
CNN [38] can be used to match some of the OOV words 
to the most similar words in the word2vec vocabulary, 
thus reducing the amount of OOV words. Furthermore, 
as manually labeling drug-related training data is very 
expensive, the neural network model can be pre-trained 

Table 8  Top 5 mined association rules by confidence

Rule Support Confidence Lift Count

Opioid, pipe → methamphetamine 0.0005367749 0.9944862 14.230069 1984

Cocaine, smoke → drug_positive 0.0041372791 0.8685182 4.040260 15292

Methamphetamine, pipe → opioid 0.0005367749 0.8562797 58.175785 1984

Methamphetamine, opioid → pipe 0.0005367749 0.7342709 25.161546 1984

Marijuana, smoke → drug_positive 0.0089966611 0.6865773 3.193889 33253

Fig. 11  Tag frequency in the CNN classified data

Fig. 12  Association rule generation sensitivity, based on minimum 
support and minimum confidence

Fig. 13  Network representation of generated association rules. 
Arrows from tag to circle is the antecedent of a rule and from circle to 
tag is the consequent
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on some large and easy-to-reach dataset (such as the 
Twitter dataset for negative/positive sentiment classifica-
tion). A smaller learning rate can then be implemented 
to train the neural network model on the current dataset.

It should be noted that this research may possess a lim-
itation due to data adequacy and societal biases. While 
too many regions have legalized certain substances, there 
is still a stigma behind drug usage. As such, social media 
users may be less inclined to discuss this topic, and to 
the contrary, may simply speak about it negatively. This 
is important to specify as our data may be either over or 
under the true number of actual drug-users. While our 
results seem to show a correlation between actual drug 
usage (see Fig.  8), there may be a further verification 
study needed to test the validity of utilizing social media 
for this task. Additionally, our current methodology 
does not consider features such as emojis and hashtags. 
This was an issue with the pre-trained Twitter word2vec 
model, which did not include these special characters. 
Lastly, conventional machine learning algorithms rely on 
feature engineering and simply applying word embed-
dings to these models may limit their performance.

Conclusion
This research aims to use machine learning algorithms 
to identify the mention of drug use on the Twitter plat-
form. We have demonstrated that the CNN model has 
the predictive capabilities if additional synthetic data 
is used. It should be noted there is a limitation with the 
current model, which is due to a lack of diversified data 
and a constraint from physical labelling. The model was 
trained for a particular period when certain drugs were 
more prevalent. As an example, the Canadian govern-
ment had legalized Marijuana, making is highly discussed 
topic. More training data will be needed, and possible 
changes in the way people post may need to be consid-
ered in the future. Regardless, the model was accurate 
given the input set and even matched actual drug use 
trends in society. This may exhibit the possibility of using 
social media more often as a surveying tool, obtaining 
metrics and real behavioral trends over performing sepa-
rate manual measurements.

Subword embedding was not considered for this work 
[39] and will most likely prove useful where the morpho-
logical structures of a particular term hold importance. 
This methodology will be considered in future work to 
improve the model. Though our results are promising it 
may be worth considering other state-of-the-art meth-
ods such as transformers, ELMo, and Bi-LSTM. We will 
also explore training BERT model for word-level and sen-
tence-level embedding on the Twitter corpus. Addition-
ally, due to the exponential growth of social media data, 

real-time data processing is essential in practice [40]. 
Providing solutions to the challenges such as dynamic 
updates in the training dataset and the filtration of spam 
tweets [7] is the next step.
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