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Exosomes are extracellular microvesicles (30-150 nm) released from cells that contain
proteins, lipids, RNA and DNA. They can deliver bioactive molecules and serve as carriers
facilitating cell-cell communication, such as antigen presentation, inflammatory activation,
autoimmune diseases (AIDs) and tumor metastasis. Recently, much attention has been
attracted to the biology and functions of exosomes in immune regulation and AIDs,
including autoimmune thyroid diseases (AITDs). Some studies have shown that exosomes
are involved in the occurrence and development of AITDs, but they are still in the
preliminary stage of exploration. This review mainly introduces the association of
exosomes with immune regulation and emphasizes the potential role of exosomes in
AITDs, aiming to provide new research strategies and directions for the pathogenesis and
early diagnosis of AITDs.

Keywords: exosomes, immune regulation, Hashimoto’s thyroiditis, Graves’ disease, autoimmune thyroid
diseases (AITD)
INTRODUCTION

Autoimmune thyroid diseases(AITDs) are thyroid diseases caused by autoimmune disorders,
mainly including Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) (1). This disease is
mainly manifested by infiltration of lymphocytes and the production of autoantibodies, among
which autoantibodies interfere with thyroid function, leading to hypothyroidism or
hyperthyroidism (2). AITDs are usually accompanied by the production of thyroid peroxidase
antibodies (TPOAb), thyroglobulin antibodies (TGAb), thyrotropin receptor antibodies (TRAb)
and other autoantibodies (3). The pathogenesis of this disease is very complicated and is mainly
classified into genetic predisposition, environmental implications, and immunological factors which
are particularly important (4). T lymphocytes and their secreted cytokines play an indispensable
role in the regulation of immune response (5). Dysfunction of these T cells or abnormal expression
of these cytokines can lead to the destruction of immune tolerance and abnormal immune responses
during the development of AITDs. In recent years, the incidence of AITDs has been on the rise,
causing adverse effects on people’s quality of life, and increasing the risk of some non-thyroid
diseases, such as other AIDs (type 1 diabetes, systemic lupus erythematosus, etc.), cardiovascular
org November 2021 | Volume 12 | Article 7576741
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diseases, thyroid cancer, etc. (6). Therefore, it is of great
importance to search for early diagnostic markers and effective
therapeutic targets of ATIDs.

Recently, the finding that exosomes are involved in AIDs has
been a major breakthrough in the field, unveiling their capacity
to modulate immune responses. Exosomes are nanoscale
extracellular vesicles secreted by various cells that carry specific
substances such as proteins, lipids and nucleic acids to conduct
cell-to-cell signal transduction, participate in the occurrence of a
variety of diseases and may become new biomarkers (7). In AIDs,
antigen-presenting cells (APCs) presenting autoantigens can
spread MHC (major histocompatibility complex)/polypeptide
complexes to secondary lymph nodes by releasing exosomes,
indirectly activating more antigen-specific T cells and
aggravating the occurrence and development of AIDs (8). As
one of the most prevalent autoimmune diseases, AITDs are
caused by an abnormal autoantigen clearance system and an
imbalance in immunoregulation and inflammatory mechanism
(9). Autoimmune intolerance is one of the leading theories
proposed for thyrocyte destruction in AITDs via the imbalance
of regulatory T cells (Tregs) and T helper 17 (Th17) cells in
adaptive immunity (10). Exosomes derived under pathological
conditions can influence Treg and Th17 cell balance in the
disease microenvironment, which may contribute to the
disruption of autoimmune tolerance in AITDs. In this regard,
it has been reported that (11) plasma microvesicles can regulate
the differentiation of Tregs and Thl7 cells in AITDs, which is
related to their cargos such as miRNAs. Therefore, exosomes and
their cargos might play a role in immunoregulation and AITD
pathogenesis. In this review, we will highlight the current
understanding of exosomes in immunoregulation and AITDs and
discuss how exosomes may contribute to AITD pathogenesis.
THE BIOGENESIS AND FUNCTIONS
OF EXOSOMES

Exosomes are extracellular vesicles synthesized and secreted by
eukaryotic cells and were originally discovered in the supernatant of
sheep red blood cells (12). Under a transmission electron
microscope, exosomes are 30-150 nanometers in diameter (13),
surrounded by bilayer phospholipid molecules (14), in the shape of
plates or cups (15), and usually exist in the sucrose density layer of
1.13-1.19 g/ml (16). The biogenesis of exosomes starts within the
endosomal system and occurs via intracellular cytoplasmic
transport pathways involved in multivesicular cell fusion (17).
Mathivanan et al. (18) reported the mechanism of exosome
formation whereby exosomes originate from early endosomes.
First, after endocytosing exogenous substances, cells combine with
cytoplasmic proteins, nucleic acids and lipids to form early
endosomes, which further mature into multivesicular bodies
(MVBs) by a series of intracellular interactions. This is followed
by fusion with the cell membrane and the release of intraluminal
vesicles (ILVs) out of cells as exosomes (19, 20). Exosomes contain
multifarious cargos such as proteins, lipids, DNA, messenger RNA
(mRNA), and noncoding RNA and other biomolecules (21).
Frontiers in Immunology | www.frontiersin.org 2
Although exosomes may have similar surface proteins, such as
membrane transport proteins, integrins, heat shock proteins
(HSP60, HSP70, HSP90) and transmembrane four-protein
superfamily (CD9, CD63, CD81, CD82), there is currently no
widely accepted specific marker to distinguish exosomes from
different cell populations (22). Due to the lipid bilayer structure,
exosomes can stably exist in a variety of biological liquids without
being degraded and can transfer biologically active substances into
recipient cells to mediate the information exchange between cells,
playing a key role in multiple diseases (23, 24).

Most cell types can actively secrete exosomes (25), such as
tumor cells, endothelial cells, immune cells, stem cells, and nerve
cells. Moreover, exosomes exist in different body fluids (26),
including blood, cerebrospinal fluid, urine, lymph, ascites, bile,
saliva, tears, amniotic fluid and breast milk. Exosomes have a
wide range of sources and various functions, which are closely
related to the cellular origin of exosomes. To date, overwhelming
evidence indicates that exosomes from different cells have
different biological characteristics and will evoke totally
different responses in recipient cells under the influence of
their contents, tissue microenvironment, receptor cells and
other factors. For example, tumor cell-derived exosomes can
participate in tumor metastasis, promote or inhibit tumor
progression, and promote angiogenesis (27). Exosomes derived
from bone cells have the functions of bone remodeling, bone
metabolism, osteoblast and osteoclast differentiation (28).
Exosomes derived from mesenchymal stem cells (MSCs) are
able to facilitate immune regulation, angiogenesis promotion,
information transmission, tissue repair and cell proliferation
(29). Exosomes, serving as circulating biomarkers, play pivotal
roles in intercellular communication under physiological and
pathological conditions, such as immune signal transduction,
inflammation, angiogenesis, and tissue repair (30–32). Due to
their inherent properties, such as stability, biocompatibility, and
invisibility, exosomes have also emerged as promising
therapeutic delivery tools. Several studies have investigated the
therapeutic potential of exosomes in immunoregulation,
revealing that exosomes containing anti-inflammatory
molecules can be used as immunomodulators for the treatment
of inflammation, hypersensitivity and autoimmune diseases (33).
Hence, we believe there is tremendous future potential for the use
of exosomes in therapeutic and diagnostic area of diseases and
many other applications.
THE ROLES OF EXOSOMES IN THE
IMMUNE SYSTEM

Exosomes are rich in many bioactive molecules (chemokines,
inflammatory factors, signal transduction factors, HSPs, cell
specific antigens, various RNAs, etc.) or they carry proteins
with special functions (adhesion molecules, costimulatory
molecules, ligands, receptors, etc.) on their surface. Notably,
exosomes contain specific noncoding RNAs, such as
microRNAs (miRNAs) and circular RNAs (circRNAs) that can
be functionally transferred to target cells, consequently leading to
November 2021 | Volume 12 | Article 757674

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zou et al. Exosomes in Immunoregulation and AITDs
immune activation and suppression (34). Similarly, Okoye et al.
(35) found that Treg-derived exosomes can transport miRNAs
(such as Let-7d) to Th1 cells, leading to immunosuppression and
the prevention of systemic disease. Exosomes modulate the
immune response mainly through two mechanisms: exosomes
directly act on target cells to activate downstream signals and
exosomes regulate immunoreactions through exosomal miRNA
mediation (36). The former act in three main ways: the direct
action of surface signaling molecules, intracellular regulation of
signaling molecules during membrane fusion, and extracellular
release of bioactive components (37). Current studies have
shown that exosomes secreted from tumor cells, stem cells and
some exogenously stimulated immune cells can stimulate
immune cells and regulate the function of the immune
system (Table 1).

At the same time, different immune cells also coordinate the
immune process through exosomes (52). Exosomes from various
immune cells transfer important information between immune
cells and immune cells, as well as between immune cells and
target proteins, and regulate innate and adaptive immunity by
participating in antigen presentation or transporting substances
such as killer proteins and inflammatory factors (53). Cells
involved in innate immunity, such as macrophages, DCs, NK
cells, and granulocytes, can recognize antigens through a class of
pattern recognition receptors (PRRs), thus generating immune
responses. Exosomes can affect the polarization of macrophages
(54), the regulation and expression of DCs (55), and the killing
effect of NK cells (56, 57). Adaptive immunity refers to the
immune process in which T and B cells are activated, proliferate
and differentiate into effector cells after receiving antigen
stimulation, resulting in a series of biological effects. In
adaptive immune responses, exosomes can disseminate
antigens or MHC peptide complexes to increase the number of
Frontiers in Immunology | www.frontiersin.org 3
dendritic cells presenting them, or to directly interact with
memory T cells (58).

The immunoregulatoryeffectsofexosomesmainly includeaffecting
antigen presentation, T cell activation, immunosuppression, the
inflammatory response and intercellular communication (59). Tan
et al. (60) summarized the antigen-presenting function of exosomes
derived from APCs and the immunomodulatory functions of T cell-
derived exosomes. Exosomes secreted by professional APCs, such as B
lymphocytes and DCs, contain MHC I and MHC II complexes and
costimulatory molecules. These exosomes have antigenic peptides on
the surface, which can play a considerable role in immune regulation
(61, 62). Recent studies have demonstrated that exosomes are involved
in proinflammatory responses and can promote immune responses.
Exosomes derived from bacteria- infected macrophages have been
shown tohave immunomodulatory effects and stimulatemacrophages
and neutrophils to secrete proinflammatory mediators, including
TNF-a and RANTES (upregulating iNOS expression) (63, 64).
Moreover, exosomes derived from activated CD8+ T cells have been
demonstrated to express bioactive FasL, Fas and APO2 (apoptin 2)
ligands to promote activation-induced cell death that may be required
for immune responses (65).

To date, the role of MSC-derived exosomes (MSC-Exos) in
immunomodulation is a popular research topic. MSC-Exos have
been shown to influence the activities of B cells and T cells,
stimulate angiogenesis and regulate cell apoptosis and
inflammation processes by carrying various immune regulatory
factors (cytokines, chemokines and growth factors) (66). For
example, studies have shown that MSC-Exos can induce T cell
apoptosis through FasL or activate the PD-L1 pathway to inhibit
T cell activation, leading to immune tolerance and inducing the
differentiation of Th1 cells into Th2 cells, which then reduces the
levels of proinflammatory cytokines, such as IL-1b, IL-6, IL-12,
and TNF-a, and increases the levels of anti-inflammatory
TABLE 1 | Exosomes derived from various cells and their immune roles.

Source of exosomes Exosome cargo Functions References

B cells MHC, CD86, CD54 Present antigens and activate CD4+T cells (38)
C3 Promote T cells proliferation (39)

LCL MHC II, FasL Promotes CD4+T cells apoptosis (40)
T cells DNA Induce DCs (41)
Activated T cells FasL, TRAIL Eliminate the activation of T cells (42)
Tregs Let-7i Block IGF1R and TGF-bR1 pathways (43)

miR-548a-3p Interfere with TLR4/NF-kB pathways (44)
miRNAs Inhibit Th1 cells proliferation (45)

DCs HLA-II Present antigens (46)
IL-1, NKG2D Induce NK cells activation (46)

Mature DCs MHC, CD86, CD40 Promotes T cells activation and proliferation (47)
Immature DCs CD95L Reduce T cells immune response (48)
Macrophages LPS Induce DCs maturation (49)

miRNAs Enhance inflammatory response (50, 51)
NK cells Fas, CD56, NKG2D Activate immune effector cells and cytotoxicity (21)
MSCs PDL1, TGF-b Inhibit T cells immune response (52)

IL-10, TNF-a, IFN-g Inhibit B cells proliferation (53)
miR-146a Reduce inflammatory response (54)

MDSCs Inhibit T cell proliferation and promote Tregs amplification (55)
November 2021 | Volume 12 | A
LCL, lymphoblastoid cell line; FasL, human apoptosis-related factor ligand; DCs, dendritic cells; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; IGF1R, insulin-like growth
factor 1 receptor; TGF-b1R, transforming growth factor -beta 1 receptor; TLR4, Toll-like receptor 4; NF-kB, nuclear factor kB; HLA, human leukocyte antigen; NK cells, natural killer cells;
NKG2D, natural killer Group 2 member D; LPS, lipopolysaccharide; PDL1, programmed death ligand 1; IL-10, interleukin-10; TNF-a, tumor necrosis factor alpha; IFN-g, interferon gamma;
MDSCs, myeloid-derived suppressor cells.
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cytokines, such as IL-10 and TGF-b (67–69). In addition, MSC-
Exos can also act on macrophages, promoting the polarization of
M2 macrophages and the secretion of anti-inflammatory
cytokines by macrophages, which helps maintain local immune
and metabolic homeostasis (70).

In addition, exosomes contribute significantly to the
immunoregulation of Treg cells and Th17 cells. Human umbilical
cord MSC-derived exosomes increase the proportion of
CD4+CD25+Foxp3+ Treg cells and reduce the proportion of
CD4+IL17A+ T cells (Th17 cells) (71). Moreover, it has been
reported that (45) exosome like granules of thymocytes can
induce the differentiation of CD4+CD25- T cells into
CD4+CD25+Foxp3+ Treg cells, which contributes to maintaining
the immune tolerance of peripheral tissues. In summary, exosomes
can affect the differentiation and function of Th cells (T helper cells)
and Treg cells, and serve as intercellular mediators that regulate
several types of immune responses (Figure 1).
EXOSOMES AND AITDS

Exosomes and HT
HT, also known as chronic lymphocytic thyroiditis, is the most
commonautoimmune thyroiddisease, accounting for approximately
22.5% of thyroid diseases (72). It is characterized by infiltration of
Frontiers in Immunology | www.frontiersin.org 4
thyroid-specific T lymphocytes and other immune cells, goiter
enlargement and fibrosis, destruction of thyroid cells, and
eventually hypothyroidism (73). A few HT patients have no goiter,
andapproximately50%ofpatientshaveclinicalhypothyroidism.The
characteristic autoantibodies of HT mainly include TPOAb and
TGAb (74), which have the function of fixing complement, causing
cytotoxicity and damaging thyrocytes. In addition, HT patients may
also have thyroid stimulating blocking antibodies (TSBAbs) (74),
which can promote thyroid atrophy and hypofunction. In HT
patients, Th1 cells are the dominant infiltrating lymphocytes,
which release cytokines (IFN-g, IL-2, and TNF-a) under the
stimulation of thyroid autoantigen, and the latter stimulates the
expression of Fas on the surface of the thyroid cells, thereby
accelerating the apoptosis of the thyroid cells (75). Exosomes from
human B cell-derived lymphoblastoid cell lines highly express MHC
II and FasL, which can induce the apoptosis of CD4+ T cells through
the interaction of FasL and Fas (40, 76, 77). Therefore, exosomes
could be associated with cell apoptosis and participate in several
pathological processes related to HT.

Exosomal surface protein markers such as HSP60 and HSP70
canmediate immunomodulatory effects and immune responses (78,
79). HSP60 can bind a variety of receptors present on the surface of
immune cells, such as TLRs, CD40, and CD9, leading to antigen
cross-presentation, T cell cross-priming, and immune response (78,
80). Cui et al. (81) detected serum exosomes of 40 HT patients and
FIGURE 1 | The role of exosomes in two types of immunity. In innate immunity, exosomes can promote the polarization of macrophages to M1 or M2 types,
respectively leading to the promotion or inhibition of inflammatory response. The MHC complex and antigens carried by exosomes can present the antigen complex
to DCs, thereby promoting the proliferation and activation of DCs. Exosomes can also activate NK cells or inhibit the cytotoxic activity of NK cells. The role of
exosomes in adaptive immunity is to influence the activation, proliferation and apoptosis of T cells and B cells. For example, MSCs-derived exosomes can promote
the differentiation of CD4+T cells into Treg cells and CD8+T apoptosis.
November 2021 | Volume 12 | Article 757674
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40 healthy controls, and concluded that exosomes fromHT patients
(HT-Exos) highly expressed the inflammatory factor HSP60, which
was positively correlated with serum TPOAb and TgAb. After
coculture with healthy human DCs, HT-Exos derived HSP60 was
spatially closely arranged and more fully bound to TLR2 on DCs
compared with intracellular HSP60. Similarly, another study found
that the level of HSP60 in thyroid follicular cell-derived exosomes
stimulated by IFN-g was significantly higher than that in normal
thyrocyte-derived exosomes. Interestingly, the structure of HSP60 is
highly homologous with the structures of TPO and TG, and
mediates the disruption of thyrocytes through antigen-antibody
reactions in HT (82). Therefore, there is a hypothesis that exosomal
HSP60may serve as an antigen tomediate immunological functions
in HT pathogenesis. However, further studies are required to
identify the mechanisms of exosomal HSP60-mediated regulation
of HT pathogenesis.

Current studies have demonstrated that Th1/Treg, Th2/Treg
and Th17/Treg cells in HT patients are out of balance at the
transcription factor level, manifesting as the upregulation of Th1,
Th2 and Th17 cells, and the downregulation of Treg cells (83–
85). In this regard, exosomes from HT patients cocultured with
peripheral blood mononuclear cells (PBMCs) of healthy humans
increased the percentage of CD4+ IFN-g+ Th1 cells and CD4+IL-
17A+ Th17A cells in PBMCs, and decreased the percentage of
CD4+CD25+Foxp3+ Treg cells in PBMCs (81). Furthermore, this
study also found that exosomes from HT patients cocultured
with DCs bind to TLR2/3 of DCs, and activate DCs through the
TLR2/myeloid differentiation factor 88 (MyD88)/NF-kB and
TLR3/TRIF/NF-kB pathways, thus leading to an imbalance in
the differentiation of CD4+ T lymphocytes. In conclusion, these
findings support a possible role for exosomes in HT
pathogenesis: the levels and composition of circulating
exosomes in HT patients could induce T cell imbalance.

As the most powerful professional APCs and CD4+ T
lymphocytes, DCs are the main cells involved in the
inflammatory response, and they participate in the
pathogenesis of HT (86). Research has revealed that APC-
derived exosomes play a role in antigen presentation and T
lymphocyte activation. For example, mature DC-derived
exosomes have been shown to induce the proliferation of
CD4+ T cells in an antigen-specific manner (87), but the role
of exosomes derived from nonprofessional APCs (such as
thyroid follicular cells) in these processes is rarely described.
Another study by Cui et al. (88) found that thyroid follicular cell-
derived exosomes stimulated by IFN-g (IFN-g-Exos) cocultured
with DCs increased the expression of costimulators CD40 and
CD80 and the mature marker CD83 on DCs, and increased the
gene expression levels of inflammatory cytokines such as IL-6
and TNF. Furthermore, after culturing DCs, IFN-g-Exos
cocultured with CD4+ T lymphocytes from healthy humans
significantly increased the mRNA expression levels of IFN- g,
IL-17A, IL-22, IL-4, IL-10 and TGF-b1 in CD4+ T cells. All of the
evidence suggests that exosomes could activate DCs to further
cause an imbalance in cytokine expression and the secretion of
CD4+ T cells, which may lead to the formation of thyroid tissue
and a systemic inflammatory environment. These inflammatory
Frontiers in Immunology | www.frontiersin.org 5
microenvironments can further promote the release of
“abnormal exosomes” from thyrocytes in vivo, forming a
positive feedback loop involved in HT pathogenesis.
Additionally, another study observed that the exosome
inhibitor GW4869 blocked the activation of DCs by thyroid
follicular cells after inhibiting IFN-g-Exos, suggesting that
exosomes play a key role in antigen presentation and the
inflammatory response. GW4869 is a neutral sphingomyelinase
inhibitor with cell permeability and selectivity, and it is basically
recognized as an exosome inhibitor. It can inhibit the secretion of
exosomes in vivo or in vitro, which has been reported in tumors,
inflammation and infection (89–92). These studies indicate that
intervention in exosome secretion may have a therapeutic effect
on inflammation and autoimmune diseases. Together, these
results suggest a potential role of thyroid follicular cell-derived
exosomes in regulating T cell differentiation imbalance in the
occurrence and development of HT, but the specific mechanism
remains to be further clarified.

Exosomes and GD
GD, namely, diffuse toxic goiter, is an organ-specific
autoimmune disease with abnormal thyroid hormone
synthesis, accounting for more than 85% of patients with
hyperthyroidism, with a high incidence in women aged 40-60
years old (93). GD mainly manifests as thyrotoxicosis, diffuse
goiters and Graves’ ophthalmopathy (GO) (94). Abnormal
infiltration of T lymphocytes and production of the
autoantibody TRAb are the pathophysiological basis of GD
(95). The imbalance of Th1/Th2 cells has become a research
focus of GD in recent years. It is generally believed that the
inflammatory response mediated by Th1 cells is dominant in
the active phase of GD, while Th2 cells mainly play a role in the
inactive phase of GD (96). In GD, the recruitment of Th1
lymphocytes leads to increased production of IFN-g and TNF-
a, which stimulates thyroid cells to secrete Th1 chemokines,
promoting the autoimmune process. A study (97) investigated
the role of IL-21 in the regulation of Th17/Treg cells in 28 newly
diagnosed GD patients, 27 remission GD (EGD) patients and 24
healthy subjects and found that IL-21 could stimulate the
differentiation of CD4+ T cells into Th17 cells, reduce the
differentiation of Treg cells, and contribute to the activation of
the downstream immune response and the pathogenesis of GD.

A number of studies have implicated that IGF-1R and TSHR
(thyrotropin receptor) are involved in GD pathogenesis and have
a direct interaction in thyroid related eye diseases. Reports from
Huang et al. (98) demonstrated that IGF-1R, TPO, TSHR and
HSP60 existed in serum exosomes from GD patients and healthy
controls. In particular, the levels of IGF-1R and TPO in the
serum exosomes of GD patients and active GO patients without
hormone shock therapy were significantly higher than those in
healthy controls. Further correlation analysis showed that IGF-
1R was significantly positively correlated with TRAb levels,
suggesting that exosomes may present antigens and carry
autoantigens (IGF-1R) in GD pathogenesis. However, further
study is required to identify why circulating exosomes are
specifically recognized as autoantigens in GD.
November 2021 | Volume 12 | Article 757674
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Additionally, Rossi and his colleagues observed that the
formation and transfer of exosomes from thyroid follicular
cells induced by dichlorodiphenyltrichloroethane (DDT)
contained thyrotropin-releasing hormone, which could directly
stimulate TSHR to binding to autoantibodies, leading to GD
development (99). Interestingly, Edo et al. (100) provided
evidence that TSHR is detected in exosomes secreted by
normal thyroid follicular cell lines and cancerous thyroid cell
lines. To examine the function of TSHR exosomes in GD, HEK
(human embryonic kidney)/TSHR cells were generated as a
model for thyroid follicular epithelial cells in GD where TSHR
is upregulated. This study demonstrated that TSHR exosomes
isolated from HEK/TSHR cells may exert a decoy effect by
binding to and sequestering autoantibodies, thereby
ameliorating autoantibody-mediated activation of thyroid
function in a GD model. These results seem to contradict each
other; therefore, it is necessary to further study the function of
TSHR in exosomes in GD.

Circulating exosomes from GD patients were observed to be
immunologically active and were capable of inducing the
production of inflammatory cytokines from healthy PBMCs.
Hiratsuka et al. (101) isolated serum exosomes from patients
with refractory GD, and these exosomes stimulated the mRNA
expression of inflammatory cytokines such as IL-1, IL-6 and
TNF-a in PBMCs, thereby activating the immune response over
that found in GD patients in remission or healthy controls.
Similarly, Huang et al. (98) uncovered that coculture of serum
exosomes from GD patients and healthy human PBMCs
promoted the increased expression of CD11c+TLR2+ DCs and
CD11c+TLR3+ DCs in PBMCs as well as an increase of IL-6 and
IL-1b in the supernatant. These results suggest that exosomes
from GD patients are able to promote the inflammatory
response, favoring the pathogenesis and development of GD.
To further investigate the specific mechanism of exosomes in
promoting the inflammatory response, Cui et al. (102)recently
analyzed serum exosomes from 26 healthy controls (HC-Exos),
26 GD patients (GD-Exos) and 7 Graves ophthalmopathy
patients (GO-Exos). In this study, after coculture of healthy
human PBMCs with GD-Exos or HC-Exos for 24 hours, GD-
Exos could bind to TLR2/3 and increase the percentage of
CD11c+TLR2+ DCs and CD11c+TLR3+ DCs in PBMCs;
therefore, GD-Exos may mediate their role by acting on TLRs.
Furthermore, GD-Exos also significantly increased the protein
expression of MyD88, TRIF and p-P65 in PBMCs, as well as the
levels of IL-6 and IL-1b in the medium. It is therefore possible
that GD-Exos might participate in GD pathogenesis by binding
to TLR2/3 to activate the NF-kB signaling pathway and induce
an inflammatory response. While the mechanisms have not been
fully revealed, these observations provide clues that exosomes
can promote the inflammatory response in GD.

In addition to synergies between immune factors and
environmental stimulation, epigenetics also plays an important
role in the pathogenesis of GD, including DNA demethylation,
histone modification and noncoding RNAs(ncRNAs)
interference (103, 104). Intriguingly, the role of noncoding
RNAs (including miRNAs, long noncoding RNAs, and
Frontiers in Immunology | www.frontiersin.org 6
circRNAs) in the etiopathogenesis of GD is increasingly
attracting attention (105, 106). It has been revealed that nucleic
acids contained within exosomes retain their function after
exosomal vesicles direct transfer their contents into a recipient
cell (107). Research has discovered differences in exosomal
noncoding RNAs between healthy populations and GD
patients at different stages. Hiratsuka et al. (101) indicated that
plasma exosomes from GD patients carry upregulated or
downregulated miRNA levels and are associated with disease
progression. In this study, compared with intractable GD
patients, the levels of miR-23b-5p and miR-92a-3p in serum
exosomes of GD patients in remission were significantly
increased, while the levels of let-7g-3p and miR-339-5p were
significantly decreased. However, the molecular mechanisms of
these miRNAs related to GD have not yet been fully elucidated.
Other studies have discovered that miRNAs in serum exosomes
of intractable GD patients can stimulate mRNA expression of IL-
1b and TNF-a, which may be closely related to the pathogenesis
and disease progression of GD. Additionally, Sun et al. (108)
showed that plasma exosome circRNAs from GD patients were
more than twice as upregulated or downregulated compared
with healthy controls, with 15 circRNAs significantly
differentially expressed, including the upregulation of 6
circRNAs and the downregulation of 9 circRNAs. This study
further verified the significantly increased expression level of
has-circRNA-000102 in the plasma exosomes of GD patients and
revealed the potential pathways related to GD pathogenesis,
namely, herpes simplex virus infection, influenza A signaling
and IFN-b signaling. These observations imply the potential
roles of exosome-derived noncoding RNAs as significant
regulators and biomarkers for diagnosing GD. However, more
studies are required to investigate exosomal RNAs and their
significance in the pathophysiology and diagnosis of GD.

Thyroid ophthalmopathy (TED) is the most common
extrathyroid manifestation of AITD. It includes GO, which in
severe cases can result in visual field loss due to corneal rupture
or compression optic neuropathy (109). Han et al. (110) isolated
tear exosomes from GD patients with TED, and found that the
tear exosomes of TED patients were 2.3 times higher than those
of healthy controls, and highly expressed vitamin D binding
protein (VDBP), C-reactive protein (CRP), chitinase 3-like 1
(CH3L1), matrix metalloproteinase-9 (MMP-9) and vascular
adhesion molecule-1 (VCAM-1).

Matrix metalloproteinases play a key role in tissue remodeling
in the process offibrosis and inflammation. They are expressed at
very low levels in normal tissues, but can be increased by the
influence of inflammatory cytokines, intercellular interactions,
hormones, and growth factors (111). Tear derived exosomes can
trigger orbital fibroblasts to release the inflammatory cytokines,
IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP1) in
vitro. These findings suggest that an increased abundance of
specific proteins in exosomes can also activate inflammatory
responses through orbital fibroblasts (the target cells in TED). In
general, increased levels of MMP-9 in tear exosomes could
promote orbital tissue remodeling and fibrosis, which
contributes to the occurrence and development of TED.
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CONCLUSIONS

As a newly discovered biological carrier, exosomes contain various
proteins, nucleic acids, lipids and other biological information that
can regulate the docking and membrane fusion between exosomes
and target cells, thus affecting the occurrence and progression of
many diseases (112). Recent studies have highlighted the ability of
exosomes to regulate immune responses and their great potential
as biomarkers for detecting autoimmune diseases. As the most
common organ-specific autoimmune disease, AITDs are caused
by a complex interaction of genetic and environmental factors.
Autoimmune intolerance and T lymphocyte imbalance are
important factors in the pathogenesis of AITDs. It is now
known that exosomes can affect the balance of Treg and Th17
cell differentiation and induce inflammatory responses, leading to
the breakdown of autoimmune tolerance in AITDs. In addition,
exosomes and their cargos from AITD patients are reported to be
upregulated and participate in numerous biological processes as
well as in AITD pathogenesis. Based on the current findings, the
potential application of exosomes as diagnostic biomarkers and
Frontiers in Immunology | www.frontiersin.org 7
therapeutics for AITDs is a future opportunity. However, the basic
and applied research on exosomes is still in its early stage, and the
potential mechanism in AITDs has not been fully clarified.
Consequently, continued research is required to elucidate the
exact mechanism of exosomes in AITDs, thus contributing to a
deeper understanding of disease diagnosis and prognosis.
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