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Abstract. Resveratrol (RESV) improves histopathological and 
behavioral outcomes in diseases of the central nervous system. 
However, to the best of our knowledge, there have been no 
studies investigating its neuroprotective effects on secondary 
brain injury following intracerebral hemorrhage (ICH). The 
aim of the present study was to evaluate the neuroprotective 
function of resveratrol following ICH. Male Sprague‑Dawley 
rats were randomly divided into 3 groups: Sham, ICH and 
ICH+RESV groups. Rats underwent ICH and received an 
intraperitoneal injection of RESV daily. Rotarod and open 
field tests were performed to evaluate improvements in 
motor disturbance pre‑ and post‑surgery. Rats were sacrificed 
following the final behavioral test; subsequently, neuron injury 
and cell death in the hippocampus and microglia activation in 
the cortex were determined using Nissl staining and ionized 
calcium binding adaptor molecule 1 immunofluorescence 

staining, respectively. Compared with the ICH group, rats 
treated with resveratrol for 2 weeks performed significantly 
better in behavioral tests. Furthermore, less neural damage 
in the hippocampus and decreased activation of microglia 
was observed in the ICH+RESV group. The results of the 
present study therefore indicate that resveratrol may alleviate 
secondary brain injury following ICH.

Introduction

Spontaneous intracerebral hemorrhage (ICH) is a particularly 
devastating cerebral vascular disease with a high mortality 
rate. Complications, including enlarged hematoma volumes, 
edema exacerbation and secondary brain injury, often develop 
following ICH. Craniotomy to clear blood clots, antioxidants, 
antithrombin, neutrophil infiltration inhibitors and heme 
oxygenase inhibitors are used to treat ICH (1‑5). However, 
there are still few effective methods able to prevent secondary 
brain injury following ICH.

Resveratrol (RESV) is a natural, non‑flavonoid, polyphenol 
compound found in grapes and other berries that can induce 
pleiotropic effects in vertebrates (6‑9). It has been demonstrated 
that resveratrol exhibits a neuroprotective function, as it amelio-
rates kainate‑induced excitotoxicity (10). Previous studies have 
revealed that RESV improves neurological functions in various 
diseases of the central nervous system, including cerebral isch-
emia/reperfusion (11), acute and secondary spinal injury (12), 
neurodegenerative diseases (13) and depression (14). It has been 
suggested that the protective effects of RESV may be mediated 
through the sirtuin 1, adenosine 5'‑phosphate‑activated kinase 
and nuclear factor erythroid 2‑related factor pathways (15‑17).

The autologous blood perfusion model is used in physiolog-
ical, pathomorphological and therapeutic research into ICH, 
as it mimics hypertensive cerebral hemorrhage (18). Therefore 
the present study investigated the neuroprotective function of 
RESV using autologous blood perfusion in a rat model of ICH. 
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Rat motor disturbance and neural damage/inflammation were 
assessed using behavioral tests and immunohistochemistry, 
respectively.

Materials and methods

Animals. A total of 30 male Sprague‑Dawley rats, weighing 
300‑350  g and aged 55  days, were purchased from the 
Guangdong Medical Laboratory Animal Center (Guangzhou, 
China). Rats were cared for in accordance with the Guideline 
for the Care and Use of Laboratory Animals published by 
the National Institutes of Health (NIH Publications no. 8023, 
revised 1978) (19). Rats were housed conventionally (room 
temperature, 20±2˚C; humidity, 55%; 15 air changes per h and 
a 12‑h light‑dark cycle) in polycarbonate cages on hardwood 
bedding and acclimatized for at least 7 days prior to study 
initiation. Rats were provided with tap water and rodent chow 
ad libitum. All experimental procedures were approved by 
the Animal Care and Use Committee of Peking University 
Shenzhen Graduate School (Shenzhen, China).

Establishing a hypertensive cerebral hemorrhage rat model. 
Rats were randomly divided into 3 groups: A sham+dimethyl 
sulphoxide (DMSO) group, an ICH+DMSO group and an 
ICH+RESV group (all n=10). ICH was induced using the 
autologous blood perfusion model. Rats were anesthetized 
with 1% sodium pentobarbital (60 mg/kg, intraperitoneally; 
Shanghai Longsheng Chemical Co., Ltd., Shanghai, China) 
and were immobilized in a stereotactic apparatus frame (RWD 
Life Science Co., Ltd., Shenzhen, China). A 1‑mm bur hole 
was punctured into rat skulls (1 mm anterior and 3 mm lateral 
to bregma). Fresh blood (100 µl) was drawn from rat caudal 
arteries using a microsyringe and was injected into the caudate 
putamen (5.5 mm deep to bregma; Fig. 1A). Autologous blood 
was infused over 10 min using a microinfusion pump (RWD 
Life Science Co., Ltd.). The needle was slowly withdrawn 
40 min following injection to prevent the backflow of infused 
blood and to allow for hematoma formation. The burr hole was 
then sealed with bone wax and the wound was sutured. The 
needle of an empty syringe was inserted into rats in the sham 
group. Rat body temperature was maintained at 36±0.5˚C 
using a feedback‑controlled heating pad. Following the cessa-
tion of anesthesia, rats in the ICH+RESV group were treated 
with 100 mg/kg RESV in 5% DMSO (15 mg/ml), administered 
intraperitoneally once per day. Sham and ICH groups were 
administered with the same volume of 5% DMSO once per 
day for 14 days. All rats were sacrificed for histopathological 
staining following competition of all neurological behavior 
tests. Brains were subsequently removed from the skull and 
fixed in 10% neutral formalin buffer (Sigma‑Aldrich; Merck 
KGaA, Darmstadt, Germany) at room temperature for 24 h. 
Brain damage following surgery to induce ICH was confirmed 
using 2‑3 mm‑thick horizontal sections (Fig. 1B and C).

Rotarod test. Rats underwent a rotarod test on the ZB‑200 
(Chengdu Techman Software Co., Ltd., Chengdu, China) at a 
velocity of 5 rpm, which was subsequently increased to 60 rpm 
over 55 sec. All rats were trained 20 times with a 20 sec interval. 
The mean duration of the 20 trials was recorded to assess the 
daily performance of rats. Rats were trained for 8 days prior 

to ICH surgery. The performance of rats on the final 3 days 
was recorded and the mean duration was used as a baseline 
value. The recovery of motor impairment was examined 3, 7 
and 14 days following ICH surgery.

Open field test. Rats were exposed to a circular arena 
(100x40 cm) constructed from black plywood and the floor 
was divided into 25 sections. Rats were individually placed in 
the center of the apparatus and their behavior was recorded for 
10 min using a digital camera situated above their head. Tests 
were performed 1, 7 and 14 days following surgery. The total 
distance travelled, average speed, number of total rotations 
and line crossings were analyzed using ANY Maze software 
(version 4.84; Stoelting Co., Wood Dale, IL, USA).

Tissue processing. Rats were euthanized 14 days following 
surgery with an intraperitoneal injection of 120‑150 mg/kg 
sodium pentobarbital and then were perfused intracardially 
with 4% paraformaldehyde in PBS. Brains were removed and 
fixed in 10% neutral formalin buffer at room temperature for 
24 h. Following dehydration with graded ethanol and xylene, 
brains were embedded in paraffin wax. A rotary mictrotome 
(RM2255; Leica Microsystems GmbH, Wetzlar, Germany) 
was utilized to cut 5‑µm tissue sections, which were subse-
quently stored at 4˚C.

Nissl staining. To quantify brain injuries induced via ICH, 
Nissl staining was performed following the manufacturer's 
protocol (Beyotime Institute of Biotechnology, Shanghai, 
China). Paraffin‑embedded sections were dewaxed, rehydrated 
and stained with Cresyl violet (C0117; Beyotime Institute of 
Biotechnology). Images were captured using an Olympus 
fluorescence microscope (CKX41; Olympus Corporation, 
Tokyo, Japan) at a magnification of x400 or x100 and a cooled 
charge‑coupled camera (QICAM 12‑bit), and were processed 
using the QCapture Pro 6.0 program (both QI imaging, Surrey, 
Canada). To assess whether the number of living neurons 
differed significantly between the groups, cells in three inde-
pendent microscopic fields were examined. The mean ratio of 
normal neurons was calculated from three independent counts 
and plotted with error bars representing standard deviation. 
Neurons with round and pale staining nuclei were regarded 
as surviving, while shrunken neurons with condensed nuclei 
were regarded as damaged (20).

Immunostaining. To determine the anti‑inflammatory effects of 
RESV, immunofluorescence with anti‑ionized calcium binding 
adaptor molecule 1 (Iba‑1) antibodies was utilized to assess 
microglial activation in the cortex as previously described (21). 
Slides were deparaffinized, rehydrated (100, 90, 80, 70 and 50% 
ethanol, and ddH2O) and immersed in 3% H2O2/methanol for 
10 min at room temperature to inactivate endogenous peroxi-
dase. Antigens were heat‑retrieved in sodium citrate buffer 
(10 mM sodium citrate; 0.05% Tween‑20; pH 6.0) at 100˚C 
for 8 min. Following blocking in 3% bovine serum albumin 
(Sigma‑Aldrich; Merck KGaA) for 20 min at room temperature, 
tissues were incubated with rabbit anti‑Iba‑1 antibodies (cat. 
no. 019‑19741; 1:500; Wako Pure Chemical Industries, Ltd., 
Osaka, Japan) overnight at 4˚C. Sections were washed in PBS 
and incubated with a fluorescein isothiocyanate‑conjugated 
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secondary goat anti‑rabbit Immunoglobulin G antibody (cat. 
no. 111‑095‑003; 1:50; Jackson ImmunoResearch Europe, Ltd., 
Newmarket, UK) at room temperature for 1 h. Subsequently, 
sections were mounted in mowiol mounting medium containing 
1 µg/ml DAPI for DNA staining. Images were captured using 
a fluorescence microscope at a magnification of x400 or x100 
and a cooled charge‑coupled camera, and processed using the 
QCapture Pro 6.0 software. The images were analyzed using 
ImageJ 1.42q software (32‑bit; National Institutes of Health, 
Bethesda, MD, USA). To quantify neuroinflammation, cortex 
Iba‑1 positive cells were counted and compared between 
different groups.

Statistical analysis. The results are presented as the 
mean ± standard deviation and all experimental data were 
analyzed using Prism 5.0 Software (GraphPad Software, Inc., 

La Jolla, CA, USA). Statistical differences among sham, ICH 
and ICH+RESV groups were assessed using one‑way analysis 
of variance followed by the Tukey's test for the comparison of 
multiple groups. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

RESV improves motor ability following ICH. To investigate the 
neuroprotective effects of RESV following ICH, the recovery 
of rat motor abilities were assessed following ICH (Fig. 2A).

Rotarod tests. The time spent on the rod during the rotarod test 
was markedly decreased 1 day post‑surgery in the ICH and 
ICH+RESV groups, compared with their performance prior to 
surgery (Fig. 2B). No significant differences in performance 

Figure 1. Tissue damage Following ICH surgery. (A) Rat brain tissue presenting the location of the ICH injection. Horizontal brain sections presenting the damage 
induced by ICH. (B) The brain section of the sham group only exhibits damage at the injection site. (C) The ICH/ICH+RESV group section exhibits a mass of 
hematoma with serious injury to the basal ganglia. All regions of interested as indicated by yellow arrows. ICH, intracerebral hemorrhage; RESV, resveratrol.

Figure 2. RESV improves the motor abilities of rats in behavioral tests following ICH. (A) Experimental design and behavioral test schedule. (B) RESV 
improves the motor abilities of rats following ICH, as demonstrated in the rotarod test. The time rats remained on the rotarod from three groups (sham, ICH and 
ICH+RESV) was recorded as relative duration. (C) Motor recovery was presented as relative duration on the rotarod. ICH rats treated with RESV exhibited a 
significant recovery compared with untreated ICH rats. Data are presented as the mean ± standard deviation. ***P<0.001 vs. sham group, #P<0.05 and ##P<0.01 
vs. ICH group. ICH, intracerebral hemorrhage; RESV, resveratrol; RTT, rotarod test; OFT, open field test; S, surgery; PS, days post‑surgery.
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were identified between the ICH and ICH+RESV groups on 
day 1. A recovery was observed 7 and 14 days post‑surgery in 
the ICH+RESV and ICH groups (Fig. 2B). Sham rats exhib-
ited a small increase in relative duration 1 day post‑surgery 
but subsequently remained steady between 3 and 14 days 
post‑surgery. Although the ICH and ICH+RESV groups 
exhibited a significant recovery 14 days post‑surgery, the 
ICH+RESV group exhibited a significant increase in relative 
duration compared with the ICH group (P<0.05; Fig. 2C). 
The results indicate that RESV accelerates the recovery of rat 
motor abilities following ICH.

Open field test. Parameters, including the total distance trav-
eled (Fig. 3A), average speed (Fig. 3B), number of lines crossed 
(Fig. 3C) and total body rotations (Fig. 3D) were evaluated in 
an open field test 1, 7 and 14 days following ICH and RESV 
treatment. Compared with the sham group, the distance trav-
eled, average speed and total body rotations were significantly 
decreased 1 day post‑surgery in the ICH and ICH+RESV 
groups (all P<0.05; Fig. 3A, B and D). Rats in the ICH group 
travelled shorter distances and moved at slower speeds than 
the sham group 1‑7 days post‑surgery (P<0.05; Fig 3A and B). 
No significant differences between the ICH and ICH+RESV 
groups were identified in any of the tests conducted 1 day 
post‑surgery. In addition, no significant differences in the 
total number of lines crossed were identified among any of the 
groups (Fig. 1C). These data indicate that the motor ability of 
rats is significantly decreased following ICH.

Following RESV administration for 7 days post‑surgery, 
the total distance travelled and average speed of rats in the 

ICH+RESV group were significantly increased compared 
with ICH rats (P<0.05; Fig. 3A and B). However, no signifi-
cant differences between these groups were identified in the 
number of lines crossed and total body rotations. These results 
indicated that the motor abilities of rats had partially recovered 
following RESV treatment. However, no significant differences 
were identified in any groups 14 days post‑surgery. This may 
have been due to the habituation of rats to the experimental 
environment following test repetition. These data demonstrate 
that RESV treatment may improve the motor abilities of rats 
following ICH.

RESV alleviates damage to neurons in the hippocampus. 
Nissl staining was performed to evaluate the morphological 
changes of neurons in the hippocampus following ICH. 
Integrated bluish‑violet neuronal cells with an articulate struc-
ture of mottled nuclei and cytoplasm were observed in the 
sham group, while condensed and irregular cytons of injured 
neurons, combined with few normal neurons, were identified 
in the ICH groups (Fig. 4A). The number of normal neurons 
significantly decreased following ICH surgery compared with 
the sham group (P<0.001; Fig. 4B). Following RESV treat-
ment, the number of normal neurons significantly increased 
(P<0.001; Fig. 4B). These results suggest that RESV treatment 
alleviates the neuronal damage induced by ICH.

Neuroinflammatory responses are ameliorated by RESV 
following ICH. Microglia are the resident macrophages of 
the central nervous system and are the primary form of 
active immune defense available (22). Following activation 

Figure 3. RESV treatment improves rat motor abilities following ICH as demonstrated in open field tests. Four parameters including (A) total distance trav-
eled, (B) average speed, (C) number of lines crossed and (D) total body rotations were evaluated in open field tests 1, 7 and 14 days following ICH and RESV 
administration. Data are presented as the mean ± standard deviation. *P<0.05 and **P<0.01 vs. sham group, #P<0.05 vs. ICH group. RESV, resveratrol; ICH, 
intracerebral hemorrhage; PS, days post‑surgery.
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by neuroinflammation, the overall size and soma of microglia 
increase and the thickness of axons increases. Iba‑1, a biomarker 
of microglia, stains microglia green color and revealed 
that the neurons comprise of a soma and several axons (23). 
Furthermore, Iba‑1 identifies the disperse axons involved in 
nerve conduction (24). The morphological and proliferative 
changes of microglia following ICH were determined using 
Iba‑1 to assess whether the neuroprotective effects of RESV 
were mediated by the anti‑inflammatory response of glial cells. 
Iba‑1‑stained microglia were activated by the formation of an 
intracerebral hematoma following ICH (Fig. 5A). The number 

of microglia and length of microglial axons were significantly 
increased following ICH (P<0.01; Fig.  5B). However, the 
administration of RESV post‑surgery significantly reversed 
the upregulation of ICH induced Iba‑1 (P<0.05; Fig. 5B). These 
data indicate that the neuroinflammatory response induced by 
ICH is ameliorated following RESV treatment.

Discussion

Previous studies have demonstrated that secondary brain 
injury, rather than primary mechanical injury, contributes to 

Figure 4. RESV alleviated damage to neurons in the hippocampus region. (A) Neurons in the hippocampus were stained with Nissl 14 days following ICH and 
microscopic images were captured; magnification, x400. The image in the black square of lower panel is in the same region as the images in the upper three 
panels; magnification, x100. The image in the lower panel is an example image of the area. Blue neuronal cells with an articulate structure, exhibiting mottled 
nuclei and cytoplasm, were detected in the control group (black arrow), while injured neurons with condensed and irregular cytons, alongside surviving 
neurons were identified in the ICH group (black arrowhead). (B) Quantitative analysis of neuronal cells. The number of neurons was decreased in the ICH 
group, compared with the sham group. The survival rate of neurons in the ICH+RESV group was greater compared with the ICH group. Scale bar, 50 µm. 
Data are presented as the mean ± standard deviation. ***P<0.001 vs. sham group, ###P<0.001 vs. ICH group. RESV, resveratrol; ICH, intracerebral hemorrhage.

Figure 5. Microglial activation, induced by ICH, was attenuated by RESV. (A) Immunofluorescence staining of Iba‑1 in the cortex 14 days post‑ICH (magnifi-
cation, x100). White squares on merged images were magnified (magnification, x400) and presented in the right panel. DNA and Iba‑1 were stained blue and 
green, respectively. (B) Quantification of Iba‑1 positive cells. Scale bar, 50 µm. Data are presented as the mean ± standard deviation. **P<0.01 vs. sham group, 
#P<0.05 vs. ICH group. ICH, intracerebral hemorrhage; RESV, resveratrol; Iba‑1, ionized calcium binding adaptor molecule 1.
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the serious complications that occur following ICH (25,26). 
Excessive bleeding of blood vessels within the brain activates 
the coagulation cascade leading to the production of thrombin, 
which may induce the release of pro‑inflammatory cytokines, 
including interleukin‑1β (IL‑1β) and tumor necrosis factor α 
(TNF‑α). This may, in turn, lead to the activation of microglia 
and other pro‑inflammatory molecules (27). The inflamma-
tory response may therefore exacerbate neuronal impairment 
within the brain. Thus, novel therapeutic strategies to treat the 
secondary brain injury that occurs following ICH are required 
to improve the mortality and disability rates of patients with 
ICH (28).

It has been demonstrated that RESV may attenuate 
neurological deficits in certain diseases that results in brain 
injury  (29‑32). However, to the best of our knowledge, no 
studies have assessed the effects of RESV on brain injury 
induced by ICH. Thus, the present study examined the neuro-
protective function of RESV on ICH in rats.

The rotarod test used in the present study indicated that 
100 mg/kg RESV administered intraperitoneally for 2 weeks 
stimulated the recovery of motor abilities following ICH. 
The recovery time with RESV administration was decreased 
when compared with a previous study (33). This unexpected 
result may have been due to higher doses of RESV being used 
in the present study. In the open field test, ICH rats treated 
with RESV were more active than those in the ICH group. 
Furthermore, rats in the ICH+RESV group travelled a greater 
distance and at a higher speed than rats in the ICH group 
7 days post‑surgery. This indicates that RESV treatment 
exhibits a positive effect on the recovery of rat motor abilities 
following ICH. However, a decrease in the total distance trav-
eled and average speed was observed 14 days post‑surgery 
among all groups, which may have been due to the habitu-
ation of rats to the experimental environment over repeated 
exposure to the open field test, which was also documented in 
a previous study (34). Thus, future studies may require more 
behavioral tests, including the water maze, balance beam and 
contralateral hindlimb retraction tests to assess motor func-
tions, to limit the likelihood of habituation.

In addition, the present study demonstrated that the 
number of Nissl‑stained neurons in the hippocampus was 
significantly increased following 2  weeks RESV treat-
ment. This was consistent with the results of previous 
studies, which demonstrated that RESV reduces cell loss, 
inhibits blood brain barrier disruption and decreases edema 
following brain injury (29,35). The behavioral performances 

of rats were also improved following an increase in neural 
cell survival rate. This may help to explain the results of the 
present study. In addition, the number of activated microglia 
decreased following RESV treatment post‑ICH, which was 
in accordance with the anti‑inflammatory function of RESV 
identified in previous studies (36,37). The RESV‑induced 
downregulation of brain immune cell activation via the 
inhibition of transcriptional factors, including peroxisome 
proliferator‑activated receptor α (38) and nuclear factor‑κB 
have also been identified (39). However, it remains unclear 
whether the expression of certain downstream inflammatory 
factors, including matrix metalloproteinase 9, IL‑1β and 
TNF‑α, are regulated by RESV. The expression of astrocytes 
should also be examined in order to compare the function 
of these immune cells during neuroinflammation. Further 
studies are therefore required to elucidate the exact molecular 
mechanism of RESV.

Clinical trials have demonstrated that RESV is safe to 
use (40), however, side effects associated with high doses of 
RESV remains a challenge. For this reason, RESV has not 
yet been approved by the food and drug association for use in 
the treatment of ICH. Therefore, the toxicological properties 
of RESV should be investigated in future studies. However, 
clinical trials have demonstrated that RESV has a greater 
effect than cattle encephalon glycoside and ignotin (41), mono-
sialotetrahexosyl ganglioside (41) and human neural stem cells 
expressing brain‑derived neurotrophic factor (42) in the treat-
ment of ICH (Table I). Thus, RSEV may be an appropriate 
candidate to treat patients with ICH.

In conclusion, the present study demonstrated that RESV 
improves rat motor abilities and deactivates the neuroinflam-
matory response following ICH. These results indicate that 
treatment with 100 mg/kg RESV attenuates the neurological 
deficit caused by ICH and may be used as a novel therapeutic 
agent to treat ICH.
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