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Abstract

Neuronal signal integration and information processing in cortical networks critically depend on the organization of
synaptic connectivity. During development, neurons can form synaptic connections when their axonal and dendritic
arborizations come within close proximity of each other. Although many signaling cues are thought to be involved in
guiding neuronal extensions, the extent to which accidental appositions between axons and dendrites can already account
for synaptic connectivity remains unclear. To investigate this, we generated a local network of cortical L2/3 neurons that
grew out independently of each other and that were not guided by any extracellular cues. Synapses were formed when
axonal and dendritic branches came by chance within a threshold distance of each other. Despite the absence of guidance
cues, we found that the emerging synaptic connectivity showed a good agreement with available experimental data on
spatial locations of synapses on dendrites and axons, number of synapses by which neurons are connected, connection
probability between neurons, distance between connected neurons, and pattern of synaptic connectivity. The connectivity
pattern had a small-world topology but was not scale free. Together, our results suggest that baseline synaptic connectivity
in local cortical circuits may largely result from accidentally overlapping axonal and dendritic branches of independently
outgrowing neurons.
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Introduction

Electrical activity dynamics underlying cognitive function

strongly depends on the organization of synaptic connectivity.

The connectivity structure in cortical circuits determines how

information is transmitted and what spatiotemporal patterns of

network activity can arise [1–4]. At the neuron level, the spatial

distribution of synapses on dendrites critically influences input

integration and neuronal signal processing [5,6]. Altered patterns

of synaptic connectivity have been implicated in brain disorders

such as autism [7], schizophrenia [8–10] and Alzheimer’s disease

[11].

During development, neurons can establish synaptic connec-

tions when their axonal and dendritic branches come into close

proximity of each other [12]. A large variety of signaling

mechanisms, such as extracellular chemical attraction and

repulsion, has been shown to play a role in guiding and positioning

axonal branches, shaping dendritic morphology and creating

specific patterns of synaptic connectivity [13–17].

In addition to these chemospecific mechanisms, which enable

neurons to interact with each other and selectively steer their

neuronal arbors prior to synapse formation, the geometry of

neuronal arborizations by itself is also expected to be an important

determinant of synaptic connectivity [18]. Synapse formation

requires close spatial apposition of axonal and dendritic branches,

and the locations where this occurs depend on the metrical and

topological properties of the axonal and dendritic branching

patterns. However, the extent to which accidental appositions

resulting from overlapping axonal and dendritic morphologies of

independently outgrowing neurons can account for synapse

distributions and connectivity patterns remains unclear [18,19].

Previous studies examining the relationship between neuronal

morphology and synaptic connectivity in local cortical circuits

focused only on particular aspects of connectivity [19–22] or

employed highly abstract neuronal morphologies [23].

To explore what synaptic connectivity patterns can arise from

neuronal morphology alone, we generated a local 3D network of

independently outgrowing and morphologically realistic rat

cortical L2/3 neurons among which synapses were formed solely

on the basis of proximity between axonal and dendritic branches.

We subsequently analyzed a wide range of features of the

emerging patterns of synaptic connectivity and spatial distributions

of synapses. To generate neurons, we used our simulation

framework NETMORPH, introduced in [24]. Here, we applied

NETMORPH for the first time in a full study, analyzing many
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features of synaptic connectivity. Our model results show that

realistic neuronal morphologies, simple geometry-based synapse

formation rules and independently developing neurons are

capable of producing networks with realistic synapse distributions,

connectivity patterns and small-world topology.

Methods

To build a neuronal network, we first collected rat cortical L2/3

pyramidal neurons from the NeuroMorpho.org database (http://

neuromorpho.org) [25] and analyzed their morphological shape

characteristics. The choice of L2/3 pyramidal neurons was

motivated by the availability of experimental data on morpholog-

ical reconstructions and synaptic connectivity. The morphological

shape characteristics were then used to obtain parameter values

for the neurite growth model in NETMORPH in order to

generate model neurons that were as similar as possible to the

empirical neurons. Next, we generated a network of independently

outgrowing neurons in NETMORPH using these optimized

growth parameter values. We subsequently positioned synapses

on locations where axonal and dendritic branches came within a

threshold distance of each other, and analyzed the emerging

synapse distributions and connectivity patterns. Thus, importantly,

the parameter values of the neurite outgrowth model were

optimized only for generating realistic neuronal morphologies

and not for producing particular connectivity patterns. From a

functional point of view, the synapses formed in the model

network should be viewed as candidate or potential synapses, but

for simplicity we will refer to them as synapses.

In the following sections, we briefly describe neuronal morpho-

genesis and synapse formation in NETMORPH, the shape

characteristics used to quantify the morphology of empirical and

model-generated neurons, the optimization procedure for finding

parameter values for the neurite outgrowth model, the set of

measures used to quantify the synapse distributions and connec-

tivity patterns in the network, and an overview of the workflow of

our study.

NETMORPH program
NETMORPH is a modular simulation tool for generating

networks with realistic neuron morphologies [24]. NETMORPH

simulates the development of neuron morphology by using

stochastic growth rules for the behavior of individual growth

cones (the structures at the tip of outgrowing neurites that mediate

neurite elongation and branching). Neurons are positioned in 3D

space and grow out independently of each other. Synapses

between neurons are formed when crossing axonal and dendritic

segments come sufficiently close to each other [26]. NETMORPH

is available from http://www.neurodynamics.nl.

The neurite outgrowth model implemented in NETMORPH is

based on the stochastic rules for neurite branching and elongation

that have been formulated by Van Pelt et al. [27,28] and that have

been shown to generate realistic neuronal morphologies [29,30].

The model is a phenomenological model based on a stochastic

description of growth actions, meaning that it implicitly incorpo-

rates both intrinsic mechanisms and external factors that affect the

development of neuronal morphology. In brief, each growth cone

has at each time step a probability to elongate the trailing neurite,

to branch and produce two daughter growth cones, and to turn

and change the direction of neurite outgrowth [31,32]. Branching

and elongation are modelled as independent processes, so they can

be validated separately. The neurite outgrowth model was used for

generating both dendritic and axonal arborizations, but with

different parameter values.

Neurite branching
Each terminal segment j (see Fig. 1 for terminology) branches in

a discrete time step (ti{Dt,ti) with probability pi,j~n{E
i B?e{ti=t

(eDt=t{1)2{Scj=Cni
(for the derivation of this equation, see [24]).

The term n{E
i makes the branching probability dependent on the

momentary number ni of terminal segments in the tree, with

parameter E (called competition parameter) modulating the

strength of this dependency. The term 2{Scj makes the branching

probability dependent on the centrifugal order c of the terminal

segment, with parameter S modulating the strength of this

dependency. The coefficient Cni
~1=ni

Pni

j~1 2{Scj normalizes at

each time point the order dependency of all tips. The term

B?e{ti=t(eDt=t{1) is the time-dependent baseline branching rate,

representing all factors that influence branching but that are not

covered by the dependence on the total number of terminal

segments in the tree, where t is a time constant and B?is the

asymptotic expected number of branching events at a tip for E = 0.

The 3D outgrowth directions of the daughter branches after a

branching event were determined as described in [24]. The values

of the parameters B‘, t, S and E were optimized so as to obtain an

optimal match with the morphology of empirical L2/3 pyramidal

neurons (see Methods, Parameter optimization).

Neurite elongation
Given that the rate of neurite elongation can vary considerably

[33], also on the time scale of the chosen time step Dt of 200 s, the

new daughter growth cones that are produced by a branching

event are assigned individual growth rates, which they maintain

until they themselves experience a branching event. The

elongation rates are obtained by random sampling from a

Gaussian distribution, with mean and standard deviation eri-mn

and eri-sd, respectively (NETMORPH parameters; eri stands for

elongation rate initialization). During elongation, neurites can also

change their direction (neurite turning), as described in [24]. The

values of eri-mn and eri-sd (Table 1) were optimized to obtain an

optimal match with the morphology of L2/3 pyramidal neurons

(see Methods, Parameter optimization).

Synapse formation
Synapse locations are defined as those places in the 3D

meshwork of axonal and dendritic arborizations at which axons

Figure 1. Schematic neuritic trees illustrating tree terminology.
a, The different segments and nodes that can be distinguished and the
labeling of segments based on centrifugal order. The centrifugal order
of a segment is the number of branch points along the path from the
root to the terminal tip of the segment. Terminal tip is equivalent to
growth cone. b, Labeling of segments based on degree. The degree of
a segment is the number of terminal tips in the (sub) tree carried by the
segment.
doi:10.1371/journal.pone.0085858.g001
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and dendrites come within a threshold distance of each other.

Because the model-generated neurons are represented by piece-

wise-linear elements (lines or cylinders, with a length of a few

microns, as determined by the NETMORPH parameters for

neurite turning [24]), the proximity test needs to be performed on

all pairs of axonal and dendritic line pieces. To be regarded as a

synapse location, the current version of NETMORPH requires

that the axonal and dendritic line pieces cross and that the

orthogonal distance between them (taken from the centre lines of

the axonal and dendritic cylinders) is smaller than a threshold

value (Fig. 2A). Considering that in biological neurons the

diameter of neurites is around 2 mm and the length of filopodia

(providing an extended range for sensing other neurites) around

1 mm [34], we chose a threshold value of 4 mm by default.

NETMORPH searches for synapse locations at the end of the

growth process, when all neurons are completely formed.

Alternatively, the search can be performed during outgrowth,

but this yields exactly the same results because there are no

interactions between the cells. At each synapse location found, a

single synapse between axon and dendrite is established. The

algorithm for finding synapses in the current version of

NETMORPH was developed in [26].

Morphological shape characteristics
Both topological and metrical measures (see Fig. 1) were used to

characterize and quantify the neuritic tree morphology (from a

model-generated or an empirical neuron).

The degree of a neuritic tree is equal to the number of its terminal

tips. Since each segment in a tree can be regarded as the root

segment of a subtree, each segment can be labeled by the degree of

the subtree it carries. The segments can also be labeled by their

(topological) distance from the root. The centrifugal order of a

segment is the number of branch points along the path from the

root to the distal end of the segment. The mean centrifugal order of a

tree is the average centrifugal order of all the terminal and

intermediate segments.

The total length of a tree is the sum of the lengths of all the

segments in the tree. The mean intermediate segment length is the

average length of all the intermediate segments, and the mean

terminal segment length is the average length of all the terminal

segments. The path length of a terminal tip is the total length of all

the segments on the path from the root to the terminal tip. The

mean path length is the average of all the path lengths from the root

to the terminal tips.

Parameter optimization
The morphological characteristics of the NETMORPH-gener-

ated neurons depend on six parameters (E, S, B‘, t, eri-mn and

eri-sd) parameterizing the neurite outgrowth model (see Methods,

Neurite branching and Neurite elongation). We used a genetic

algorithm to find parameter values producing morphological

characteristics of the generated neurons that were as similar as

possible to those of the L2/3 neurons obtained from the

NeuroMorpho.org database [25]. The generated neurons were

compared with empirical neurons with respect to six shape

characteristics: two topological measures (degree and centrifugal

order) and four metrical measures (total tree length, intermediate

segment length, terminal segment length and mean path length).

The optimization was done with regard to both the means and the

standard deviations of the distributions of these six shape

characteristics (thus in total 12 measures were considered).

The genetic algorithm initially created sets of outgrowth

parameters with random values, subsequently simulated neuronal

morphologies for each of these sets, and then iteratively improved

the parameter sets. The optimization of axonal and dendritic trees

was done separately. In addition, a distinction was made between

basal and apical dendritic trees, with the apical dendrite further

divided into main stem, oblique dendrites and apical tuft. A

parameter set had a fitness value, indicating how well the shape

characteristics of the trees generated by the parameter values

matched the characteristics of the empirical trees. This fitness was

defined as f ~1
.P12

i~1 ti{við Þ=tið Þ2, where i refers to a shape

characteristic (mean or standard deviation), ti is the value of this

characteristic in the empirical trees, and ni is the corresponding

value of that characteristic in the model-generated trees.

Parameter sets were randomly selected according to their fitness

value and then combined, subject to crossover and mutation, to

form a new generation of parameter sets.

General connectivity measures
A broad set of connectivity measures was used to characterize

the emergent synapse distributions and network connectivity in the

generated network.

Table 1. Optimized values of the neurite outgrowth parameters in NETMORPH.

Apical dendrite

Growth parameter Axon Basal dendrites Main stem Tuft Obliques

B‘ 13.2 2.52 0.1 25 1.5

E 0.319 0.73 0 0.3 0.3

S 20.205 0.5 0 1 1

t (s) 1681541 259680 400000 400000 500000

eri-mn (mm/s) 0.000214 0.0000914 0.00102 0.000225 0.00004

eri-sd (mm/s) 0.000398 0.0000366 0.000026 0.000004 0.000001

Dt (s) 200 200 200 200 200

days 18 18 18 18 18

trunk length-mn (mm) 80

trunk length-sd (mm) 2

doi:10.1371/journal.pone.0085858.t001
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Two neurons have a connection when they share at least one

synaptic contact. The connection strength is the number of synapses

from a presynaptic neuron onto the dendrites of a postsynaptic

neuron. The connection length is the Euclidean distance between the

somata of two connected neurons. The connection probability between

two neurons is the probability that two randomly selected neurons

in a network are connected, i.e., have at least one synaptic contact

from the axon of one of the neurons onto the dendrite of the other

neuron. The connection probability versus Euclidean distance is the

probability that two randomly selected neurons in a network with

their somata at a given Euclidean distance from each other are

connected.

Synaptic distance to post- or presynaptic soma. The

position of a synapse can be given as its distance to the

postsynaptic soma or to the presynaptic soma (Fig. 2B). Both

quantities can be expressed either in path distance or in Euclidean

distance. Thus, there are four measures in total: the path distance

of a synapse along the dendrite to the postsynaptic soma, the

Euclidian distance of a synapse to the postsynaptic soma, the path

distance of a synapse along the axon to the presynaptic soma, and

the Euclidean distance of a synapse to the presynaptic soma.

Graph theoretical measures
To characterize and quantify the emergent connectivity in the

NETMORPH-generated network, we also used several measures

from graph theory. In graph terminology, neurons are nodes and

connections are edges. A distinction can be made between directed

graphs, in which edges carry the direction of the axon-to-dendrite

signal flow, and undirected graphs, in which edges do not carry

such information.

In- and out-degree and degree. In a directed graph, the in-

degree of a node is the number of nodes from which it receives an

incoming connection (in our case, with at least one synapse),

whereas the out-degree of a node is the number of nodes to which

it projects an outgoing connection (in our case, with at least one

synapse). The degree of a node (not to be confused with the degree

of a tree; see Methods, Morphological shape characteristics) is the

total number of nodes to which it is connected by incoming and

outgoing connections. Highly connected nodes are known as hubs

and are considered important for information processing [35].

Mean shortest path length. The shortest path from a node

to another node is the path with the fewest edges. The mean

shortest path length of a node (not to be confused with the mean

path length of a tree; see Methods, Morphological shape

characteristics) is the average of the node’s shortest path lengths

to all nodes in the network. The mean shortest path length of a

graph is the average of all shortest path lengths between all node

pairs [36] (Fig. 2C). Calculation of the mean shortest path length is

straightforward in connected, undirected graphs. However, in

directed or unconnected graphs, non-existing paths may occur.

One approach to dealing with non-existing paths is to average only

over existing paths in the calculation of the mean shortest path

length [37]. Another approach is to analyze the unconnected sub-

graphs separately. In the NETMORPH-generated network, we

found that all neurons were connected, so our results were not

affected by non-existing paths. The network was analyzed as an

undirected graph.
Clustering coefficient. This describes to what extent a

node’s neighbors are interconnected. The clustering coefficient

of a node in an undirected graph is calculated as Ci~
2ni= ki(ki{1)ð Þ, where ni is the number of edges among the

neighbors of node i (i.e., the nodes connected to node i) and ki is

the number of neighbors of node i [36]. The clustering coefficient

of the entire network is the average of the clustering coefficients of

all the nodes (Fig. 2C).
Small-world topology. In small-world networks, most nodes

can reach each other in only a few steps (small mean shortest path

length) and the neighbors of a node have a high degree of

interconnectivity (high clustering coefficient). Small-world net-

works are situated between random networks (small mean shortest

path length, low clustering coefficient) and regular networks (large

mean shortest path length, high clustering coefficient) [36]. Small-

world topology supports both information segregation and rapid

Figure 2. Synapse formation and illustration of measures characterizing synapse location and connectivity. A, Synapse formation in
NETMORPH. The shortest distance between an axonal (A) and a dendritic (D) branch is defined as the orthogonal distance between a pair of crossing
axonal and dendritic line pieces. If this shortest distance is smaller than a given threshold value, the orthogonal line (purple) marks the location of a
synapse. B, Different ways to express synapse location. a, Two connected cells showing axons (green), dendrites (red), somata (purple) and synapses
(yellow circles). b, Postsynaptic path distance (blue line). c, Postsynaptic Euclidean distance. d, Presynaptic path distance. e, Presynaptic Euclidean
distance. C, Determining the mean shortest path length and clustering coefficient of an undirected graph consisting of four nodes and four edges.
The numbers are the path lengths between the nodes. The mean shortest path length of the graph is the average of these numbers, 1.3333. The
clustering coefficients of nodes A, B, C and D are 0, 2/6, 2/2, and 2/2, respectively. The clustering coefficient of the graph is the average of these
numbers, 0.5833.
doi:10.1371/journal.pone.0085858.g002
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information transfer [38–41] and may improve memory recall

[42]. The small-worldness of a network is calculated by

determining the ratio c/l, where c = Coriginal/Crandom and

l = Loriginal/Lrandom, with C denoting the clustering coefficient, L

denoting the mean shortest path length, and ‘random’ denoting a

randomized version (with the same number of nodes and edges) of

the original network. In small-world networks, l will be

approximately one, c greater than one, and c/l therefore also

greater than one [36]. A randomized network is created by

randomly redistributing the edges among the nodes [43].

Randomization may lead to non-existing paths and unconnected

sub-graphs, which influence the calculation of the mean shortest

path length. We therefore checked whether in the randomized

versions of the NETMORPH-generated network all the nodes

were still reachable. In all randomizations, it turned out that all

nodes remained connected.

Workflow
The workflow of our study consisted of the following

consecutive steps:

Collecting experimental data and analyzing

morphological shape characteristics. Experimental recon-

structions of rat cortical L2/3 pyramidal neurons were obtained

from the NeuroMorpho.org database [25], particularly from the

data of Shepherd and Svoboda [44]. These reconstructions were

subsequently analyzed for their morphological shape characteris-

tics (see Methods, Morphological shape characteristics). Ten

neurons from the database were used for analyzing dendritic trees

(ten apical dendritic trees and 42 basal dendritic trees; note that a

pyramidal neuron has several basal dendritic trees). For analyzing

axons, four neurons from the database had sufficiently complete

axonal trees (see also Discussion).

Optimizing neurite outgrowth parameters. The shape

characteristics of these L2/3 pyramidal neurons were then used to

optimize the neurite outgrowth parameters in NETMORPH by

means of a genetic algorithm, separately for basal dendrites, apical

dendrites and axons. The apical dendrite was further decomposed

into its main stem, apical tuft and oblique dendrites, which were all

treated separately in the parameter optimization. The axon was

not further divided into subparts. Importantly, the parameter

values of the neurite outgrowth model were optimized only for

generating realistic neuronal morphologies, not for producing

particular connectivity patterns.

Generating a network of model neurons. The optimized

growth parameter values were then used to generate a network of

model neurons in NETMORPH. The network represented a

single cortical layer with 250 pyramidal neurons. (Simulations with

more neurons were not feasible because of the heavy load on

computer resources.) The neuronal cell bodies were randomly

placed, with a minimum distance between the somata of 20 mm, in

a 3D disc-shaped area with a height of 360 mm (the typical cortical

thickness of L2/3 [45]) and a radius of 93 mm. This procedure

yielded a density of about 25000 neurons per mm3, which is of the

same order of magnitude as that reported for the rat visual cortex

[20]. Soma diameters were drawn from a given normal

distribution. The initial segment of an axon was oriented

downwards, opposite to the direction of the initial segment of

the apical dendrite. For each pyramidal cell, the number of basal

dendrites was randomly drawn from a uniform distribution

between 4 and 8. The total simulation time corresponded to a

developmental period of about 18 days, the time in which L2/3

pyramidal cells reach their mature size in rat cortex [46]. The time

step Dt of the neurite outgrowth model was 200 s.

Locating synapses in the generated network. Synapses

were positioned on the basis of the proximity between crossing

axonal and dendritic segments [26], with a default distance

criterion of 4 mm (see Methods, Synapse formation).

Analyzing synapse locations and network connectivity in

the generated network. Finally, the synapse distributions and

network connectivity in the generated network were analyzed, and

compared with experimental data, with respect to the following

features: distance from synapse to pre- and postsynaptic soma

along axon and dendrite, respectively; Euclidean distance from

synapse to pre- and postsynaptic soma; number of synapses by

which neurons are connected; connection probability as a function

of distance between somata; distance between somata of connect-

ed neurons; in- and out-degree of neurons; and small-world

topology of synaptic connectivity.

Results

To investigate whether the accidental overlap between axonal

and dendritic branches can account for synapse distributions and

connectivity patterns, we created a 3D network of independently

outgrowing rat cortical L2/3 neurons using our simulation

framework NETMORPH [24]. First, we show that NETMORPH

produced realistic neuronal morphologies of L2/3 pyramidal

neurons. Secondly, we describe the emerging synapse distributions

and connectivity patterns in the NETMORPH-generated network

and compare these to the available experimental data on synaptic

connectivity.

Neuronal morphology
Table 1 shows the parameter values that were found by the

parameter optimization (see Methods, Parameter optimization)

and that were used in the neurite outgrowth model of

NETMORPH to generate the dendritic and axonal arborizations

of the neurons in the network. The parameters were optimized on

the morphological shape characteristics of rat cortical L2/3

pyramidal neurons. Although all neurons in NETMORPH were

generated with the same parameter values, all neurons were

different from each other because of the stochastic nature of the

neurite outgrowth rules in the model.

Figure 3 shows two instances of model-generated neurons. To

demonstrate the similarity between the model-generated and

empirical neurons, we compared the statistics of their morpho-

logical shape characteristics. Figure 4 shows the distributions, with

means and standard deviations, of the various shape characteristics

of the basal dendritic trees and apical tufts of the NETMORPH-

generated neurons and empirical L2/3 pyramidal neurons. For

each morphological shape characteristic, the basal dendrites and

apical tufts of the model-generated trees have a good correspon-

dence to those of the L2/3 neurons, with respect to both the

overall form of the distribution and the mean and standard

deviation of the distribution. Table 2 shows the means and

standard deviations of the shape characteristics of the axonal trees

of the NETMORPH-generated neurons. Again, these values

compare quite well to those from the L2/3 pyramidal neurons. In

conclusion, the parameter optimization procedure was successful

in finding parameter values for creating L2/3-like pyramidal

neurons in NETMORPH.

In the NETMORPH-generated network, synapses were formed

where crossing axonal and dendritic line pieces came sufficiently

close to each other (see Methods, Synapse formation). We

subsequently characterized the emerging synapse distributions

and network connectivity with a wide range of measures.

Neuron Morphology Produces Realistic Connectivity
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Path distance of synapses to their post- and presynaptic
somata

For each synapse in the generated network, we determined the

path distance to its postsynaptic soma (distance along the

postsynaptic dendritic tree) and to its presynaptic soma (distance

along the presynaptic axonal tree). Figures 5A, B show the

distributions of postsynaptic and presynaptic distances. Both types

of distributions are clearly skewed, with an initial peak frequency

followed by a tail of lower frequencies.

The distribution of postsynaptic distances (Fig. 5A) comprised

synapses on both basal and apical dendrites. Synapses in the very

tail of the distribution were mainly synapses on apical dendrites,

which were longer than basal dendrites. The skewed shape of the

distribution is partly determined by the amount of ‘dendritic mass’

around the soma and the distribution of synapses over the

dendrites. As the path distance to the soma increases, the dendritic

mass first rises, because of the increase in number of branches, and

then falls off at longer distances, because of the termination of

branches. The opportunities for synapse formation increase with

increasing dendritic mass. Like our model findings, the experi-

mental data of Le Bé et al. [47] also showed a skewed distribution

of postsynaptic path distances on L2/3 pyramidal neurons.

Although the synapses in the experimental study originated from

layer 5 corticocallosal projecting neurons, their spatial positions on

the dendrites (mn = 130 mm, sd = 133 mm, n = 55) compare quite

well to our model outcomes (mn = 103.5 mm, sd = 59.5 mm,

n = 48743).

The distribution of presynaptic distances (Fig. 5B) had a larger

range than the distribution of postsynaptic distances. Axons were

longer than dendrites, and synapses could therefore also have

larger path lengths. Also here the amount of ‘axonal mass’ vs. path

distance to the soma, which is determined by the axonal branching

pattern, can partly explain the shape of the distribution.

Compared with our model outcomes, the experimental data of

Hill et al. [22] on synaptic connectivity between L5 pyramidal cells

showed a similarly skewed distribution of presynaptic path

distances, with exactly the same range of path distances and also

a peak frequency around 200 mm.

Euclidean distance of synapses to their post- and
presynaptic somata

For each synapse in the generated network, we also determined

the Euclidean distance to its post- and presynaptic somata. Both

postsynaptic and presynaptic Euclidean distances were markedly

shorter than the postsynaptic and presynaptic path distances,

respectively (Fig. 5). Euclidean and path distances differed because

of the turtuosity and changing orientation angles of the neurites in

the axonal and dendritic arborizations. Like the distributions of

path distances, the distributions of Euclidean distances were

skewed, with an initial peak frequency followed by a tail of lower

frequencies (Figs. 5C, D).

Synapses in the very tail of the distribution of postsynaptic

Euclidean distances (Fig. 5C) were mainly synapses on apical

dendrites. If synapses are uniformly spread over the dendritic

membrane, the distribution indicates the amount of ‘dendritic

mass’ as a function of Euclidean distance to soma. The shape of

the distribution is influenced by the metrical and topological

properties of the dendritic branching pattern, as well as the

orientations and branching angles of the dendritic segments in 3D

space. Compared with our model outcomes, the experimental data

of Feldmeyer et al. [48] revealed a similarly skewed distribution of

Euclidean postsynaptic distances on L2/3 pyramidal neurons.

Although the synapses in this experimental study originated from

L4 spiny neurons, their spatial positions on the dendrites

(mn = 67.2 mm, sd = 33.6 mm, n = 59) compare quite well to our

model outcomes (mn = 76.9 mm, sd = 51.1 mm, n = 48743).

The distribution of presynaptic Euclidean distances (Fig. 5D)

shows that the range of distances was larger to the presynaptic

soma than to the postsynaptic soma. Also here the amount of

‘axonal mass’ as a function of Euclidean distance to the

presynaptic soma partly accounts for the shape of the distribution.

Experimental data was not available for comparison.

Taken together, our results show that independently outgrowing

neurons and simple proximity-based synapse formation rules yield

pre- and postsynaptic distributions of synapse locations that are

comparable to the available experimental data.

Number of synapses per connection (connection
strength)

Synapse locations in the generated network were determined on

the basis of proximity between crossing axonal and dendritic line

pieces (see Methods, Synapse formation). The larger the distance

criterion, the more synapses will be created, and the larger the

number of synapses per connection (connection strength). Figure 6

shows the frequency distributions of the number of synapses per

connection in the generated network for distance criteria of 4, 6, 8

and 10 mm, which produced mean number of synapses per

connection of 2.53 (sd = 2.14), 3.28 (sd = 3.1), 4.43 (sd = 4.6) and

5.57 (sd = 5.7), respectively. The experimental results of Feldmeyer

et al. [48] on L2/3 pyramidal neurons showed a mean connection

strength of 4.5 (sd = 0.5, n = 13), which falls within the range of our

model outcomes. Figure 6 further shows that the frequency

decreases with increasing connection strength, since the probabil-

ity of having n synapses in a connection decreases with n.

Figure 3. Examples of NETMORPH-generated L2/3 pyramidal neurons. Axons are shown in green, and dendrites are depicted in red. The
neurons were grown with outgrowth parameters (Table 1) optimized on the dataset of L2/3 pyramidal cells from NeuroMorpho.org.
doi:10.1371/journal.pone.0085858.g003
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We also compared our model outcomes with the semi-

experimental results from Hellwig [20]. This author used 3D

reconstructed rat visual cortex L2/3 pyramidal neurons that were

placed at various distances from each other to determine synaptic

connectivity as a function of cell distance. A synapse was

considered possible when an axonal and dendritic branch shared

a voxel with 1 mm side length. From the data in [20], we

calculated that the mean numbers �yy of synapses for a maximal

cell separation of 93 mm (the radius of the 3D disc-shaped area

in which the NETMORPH neurons resided) were �yy(L2?L2)
~2:10, �yy(L2?L3)~2:26, �yy(L3?L2)~0:95 and �yy(L3?L3)~
2:09. This gives an overall average of 1.85 synapses per connection

among L2/3 cells. Assuming that a voxel overlap criterion of 1 mm

corresponds to a 2 mm distance criterion (not shown in Fig. 6) for

synapse formation in NETMORPH, we found a very similar value

of 1.8 synapses per connection.

Figure 4. Distributions of dendritic shape characteristics of NETMORPH-generated and empirical L2/3 pyramidal cells. A, Basal
dendrites. B, Apical tuft. The NETMORPH-generated neurons are shown by solid lines, and the L2/3 pyramidal neurons from the NeuroMorpho.org
database are shown by grey bars. For the basal dendrites, the n-values of degree and total tree length refer to the total number of dendritic trees. For
the apical tufts, the n-values of degree and total tree length refer to the total number of apical dendrites (equal to the number of neurons used). For
both the basal dendrites and the apical tufts, the n-values of centrifugal order refer to the total number of segments (intermediate and terminal), the
n-values of intermediate segment length refer to the total number of intermediate segments, and the n-values of terminal segment length and path
length refer to the total number of terminal segments.
doi:10.1371/journal.pone.0085858.g004
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Taken together, our results show that the geometrical overlap

between axonal and dendritic arborizations yields synapse

numbers between neurons that are of the same order as the

available experimental data.

Connection probability vs. Euclidean distance between
somata

The connection probability between a pair of neurons at a given

intersoma distance was estimated by dividing the number of

Table 2. Axonal shape characteristics of NETMORPH-generated neurons and L2/3 pyramidal neurons from the NeuroMorpho.org
database.

NeuroMorpho.org NETMORPH

Shape characteristic Mean Sd n Mean Sd n

Degree 47.5 15.3 4 46.8 29.5 250

Centrifugal order 7.42 3.62 376 7.24 3.21 23150

Total tree length (mm) 10870 4093 4 10496 7661 250

Path length (mm) 658 359 190 618 198 11700

Intermediate segment length (mm) 97.7 115 186 88.2 112 11450

Terminal segment length (mm) 133 119 190 138 163 11700

The n-values of degree and total tree length refer to the total number of axons (equal to the number of neurons used). The n-values of centrifugal order refer to the
total number of segments (intermediate and terminal), the n-values of intermediate segment length refer to the total number of intermediate segments, and the n-
values of terminal segment length and path length refer to the total number of terminal segments.
doi:10.1371/journal.pone.0085858.t002

Figure 5. Distribution of path and Euclidean distances of synapses to their post- and presynaptic somata. A, Path distance to
postsynaptic soma. B, Path distance to presynaptic soma. C, Euclidean distance to postsynaptic soma. D, Euclidean distance to presynaptic soma.
doi:10.1371/journal.pone.0085858.g005
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connected neuron pairs (with at least one synaptic contact) at that

intersoma distance by the total number of neuron pairs at that

intersoma distance. Figure 7 shows that with increasing intersoma

distance (30–440 mm), the connection probability decreased

almost linearly from about 0.5 down to less than 0.1; the average

connection probability was 0.301. This outcome is in good

agreement with the semi-experimental data on L2/3 pyramidal

neurons in rat visual cortex [20], which showed a gradually

decreasing connection probability down to less than 0.1 at an

intersoma distance of 500 mm.

Experimental data of Song et al. [49] on connectivity among

thick tufted layer 5 pyramidal neurons in rat visual cortex,

obtained with quadruple whole-cell recordings, showed a rather

uniform connectivity probability of 0.116 up to an intersoma

distance of 100 mm. This connection probability is somewhat

lower than the probability in the NETMORPH-generated

network for this distance range.

Using dual recordings, Holmgren et al. [50] estimated the

connectivity among rat visual and somatosensory cortical L2/3

pyramidal neurons. They found that the pyramidal-pyramidal

connection probability decreased from about 0.9 at short distance

to about 0.2 at 140 mm. The latter value is somewhat lower than

both our model outcomes and the Hellwig [20] results. The

connection probability between pyramidal cells and fast-spiking

interneurons was 0.5 for short distances.

To estimate the connectivity among thick-tufted layer 5

pyramidal neurons in rat somatosensory cortical slices, Perin et

al. [51] recorded simultaneously from up to 12 cells, applying

current pulses to each of these neurons and measuring the

response in the other neurons. They found that the connection

probability decreased almost linearly with intersoma distance from

about 0.21 at 15 mm down to about 0.03 at 300 mm. Apart from

an overall scale factor lowering the experimental values in Perin et

al. [51] compared with our model outcomes, the NETMORPH

results showed the same, almost linear, dependence of connection

probability on intersoma distance.

In general, one might expect that in the experimental data the

connection probabilities are somewhat lower than in our model.

The electrophysiological experiments used functional synaptic

connectivity to determine connection probabilities, whereas

NETMORPH did this on the basis of candidate or potential

synapses. In addition, Perin et al. [51] and Song et al. [49]

considered L4 and L5 pyramidal cells, respectively, not L2/3 cells.

Nevertheless, our results show that the geometry of axonal and

dendritic arborizations together with proximity-based synapse

formation already provides a good estimate of the connection

probability between neurons.

Frequency distribution of the Euclidean distance
between connected somata

In analyzing the distances between connected neurons, we

made a distinction between connections via apical dendrites and

connections via basal dendrites. Figure 8 shows the frequency

distribution of intersoma distances between cell pairs in which the

presynaptic cell had an axonal projection on the basal dendrites

(Fig. 8A) or on the apical dendrite (Fig. 8B) of the postsynaptic cell.

For both types of connections, the frequency distribution of

intersoma distances is clearly skewed, with an initial peak at about

100 mm and a tail of gradually decreasing frequencies at larger

distances. Neurons can only become connected when their axonal

and dendritic arborizations invade the same territory, i.e., if their

axonal and dendritic density fields overlap. Apparently, at an

Figure 6. Frequency distributions of number of synapses per connection (connection strength) for different threshold distances for
the formation of synapses. A, 4 mm. B, 6 mm. C, 8 mm. D, 10 mm.
doi:10.1371/journal.pone.0085858.g006

Figure 7. Connection probability between neurons as a
function of Euclidean distance between their somata. Note that
the minimum intersoma distance with which the network was created
was 20 mm.
doi:10.1371/journal.pone.0085858.g007
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intersoma distance of about 100 mm the axonal and dendritic

arborizations had the highest joint densities, while becoming zero

beyond about 500 mm. The mean of intersoma distances for

connections via basal dendrites (mn = 129.8 mm, sd = 78.1 mm,

n = 12267) was shorter than that for connections via apical

dendrites (mn = 156.4 mm, sd = 85.8 mm, n = 5302), which can be

explained by the greater spatial extension of the apical dendrite in

comparison with that of a basal dendritic tree (see Fig. 4).

Experimental data on the synaptic connectivity between L2/3

supragranular pyramidal neurons in rat extrastriate visual cortex

also showed a clearly skewed distribution of connection lengths

[23,52], but the peak frequency was at a higher connection length

than in our results. However, the experimental data set [52] was

incomplete, since only the longest branches of connections were

reported.

In- and out-degree and degree
We analyzed the degree of neurons on the basis of connections

via either basal or apical dendrites. The in-degree of a neuron via

its apical dendrite (basal dendrites) is the number of neurons from

which it receives axonal projections onto its apical dendrite (basal

dendrites). The in-degree distribution is built up from the in-

degrees of all neurons in the network. The out-degree of a neuron

via apical dendrites (basal dendrites) is the number of neurons to

which it sends out axonal projections impinging onto apical

dendrites (basal dendrites). Finally, the degree of a neuron, again

Figure 8. Frequency distribution of intersoma Euclidean distances between connected neurons. A, Connections via basal dendrites. B,
Connections via apical dendrites. Note that the minimum intersoma distance with which the network was created was 20 mm.
doi:10.1371/journal.pone.0085858.g008

Figure 9. Frequency distributions of in-degree, out-degree and degree of neurons. A, In-degree for connections via apical dendrite. B,
In-degree for connections via basal dendrite. C, Out-degree for connections via apical dendrite. D, Out-degree for connections via basal dendrite. E,
Degree for connections via apical dendrite. F, Degree for connections via basal dendrite.
doi:10.1371/journal.pone.0085858.g009
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separate for apical dendrite and basal dendrites, is the total

number of neurons connected to this neuron by both incoming

and outgoing axonal projections.

Figure 9 shows the various degree distributions. The in- and

out-degrees via basal dendrites (Figs. 9B, D) were more than twice

as large as the in- and out-degrees via apical dendrites (Figs. 9A,

C). This can partly be explained by the greater size of the basal

dendritic field in comparison with the apical dendritic tree. The

average total length of individual basal dendritic trees was 649 mm

(Fig. 4). The number of dendritic trees per neuron was on average

6, so the total length of the dendritic field of a neuron was on

average 3894 mm. The mean total length of an apical dendrite was

2456 mm (Fig. 4). Thus, the basal field was 1.6 times as large as the

apical dendrite. Furthermore, the apical dendritic field had its

highest density further away from the soma than the basal

dendritic field, which may also have resulted in a different overlap

between axonal and basal dendritic field compared with that

between axonal and apical dendritic field.

The degree distributions show a low frequency of highly

connected neurons (hubs). For example, in the in-degree

distribution via apical dendrites (Fig. 9A), there are a few neurons

with 60–80 and 120–140 connections. The in- and out-degree

distributions via apical dendrites show a monotonically decreasing

frequency with degree (Figs. 9A, C), whereas the in- and out-

degree distributions via basal dendrites (Figs. 9B, D) have a clear

peak. Interestingly, the overall shape of the in- and out-degree

distributions via apical dendrites (Figs. 9A, C) is different from the

shape of the total degree distribution via apical dendrites (Fig. 9E),

which implies that the set of neurons with a high in-degree was not

the same as the set of neurons with a high out-degree.

A scale-free network requires a monotonically decreasing degree

distribution that can be described by a power-law [53]. Since the

total degree distributions in the model network were clearly

peaked, there are no indications that the network was scale free.

Experimental data on synaptic connectivity among rat somato-

sensory cortex cells [51] and monkey visual cortex cells [54] also

revealed peaked degree distributions and therefore no evidence for

scale-free connectivity.

Small-world topology
Networks with a small-world connectivity structure are charac-

terized by a mean shortest path length that is as small as in random

networks and a clustering coefficient that is higher than in random

networks (see Methods, Graph theoretical measures). We analyzed

whether the connectivity in the NETMORPH-generated network

had a small-world topology. In the NETMORPH-generated

network and its randomized networks, all neurons were connected,

so our analysis was not affected by the presence of sub-networks.

The NETMORPH-generated network had a mean shortest

path length of 1.470 and a clustering coefficient of 0.622.

Randomization yielded a mean shortest path of 1.541, so the

original network had an even lower mean shortest path length

than the randomized network (l = Lorig/Lrand = 0.954). The

clustering coefficient in the original network was higher than that

in the randomized network (Crand = 0.460; c = Corig/Crand = 1.353),

which is characteristic for networks with a small-world connectiv-

ity structure. The single coefficient proposed for measuring small-

worldness, c/l [36], was therefore also higher than one (c/

l = 1.418), indicating a small-world topology of the connectivity

structure in the original network. Repeating the randomization

runs for the small-world calculation led to the same results

(two other runs: Lrand = 1.541, Crand = 0.460, c/l = 1.420;

Lrand = 1.542, Crand = 0.459, c/l = 1.420). Thus, independently

outgrowing neurons and proximity-based synapse formation can

already give rise to small-world connectivity.

Perin et al. [51] found that the connectivity structure among

pyramidal cells in rat somatosensory cortex had a small-world

topology, with a mean shortest path length of less than 2, similar to

what we found in the NETMORPH-generated network. Gerhard

et al. [54] obtained an average small-world coefficient c/l of 1.71

for the connectivity structure among cells in monkey visual cortex,

which is slightly higher than that in our model network. However,

Gerhard et al. [54] derived the small-world coefficient from multi-

electrode recordings of electrical activity, and they showed that,

since any electrophysiological recording constitutes a sub-sample

of the network activity, this overestimated the true strength of the

small-world structure of the network.

Discussion

Local cortical circuits are composed of neurons with highly

branched axons and dendrites that form a complex 3D meshwork

of intertwining axonal and dendritic arbors [55]. In this intricate

web of arbors, neurons can establish synaptic connections when

their axonal and dendritic branches come within close proximity

of each other [12]. Synaptic connectivity thus strongly depends on

how the innervation of 3D space by axons and dendrites gives rise

to locations where axonal and dendritic branches come within a

threshold distance of each other. Whether outgrowing neurons

thereby influence (by secreting chemical guidance cues) each

other’s axonal and dendritic trajectories and thus synapse

locations, or whether chance encounters of independently

outgrowing axons and dendrites can already account for synaptic

connectivity, remains an issue of debate [19,22].

To address this question, we generated, using our simulation

framework NETMORPH [24], a network of independently

outgrowing cortical L2/3 neurons in the absence of any

extracellular guidance cues steering axons and dendrites. We

subsequently explored what synapse distributions and synaptic

connectivity patterns emerged from realistic neuronal morpholo-

gies in combination with synapse formation based solely on the

proximity between axonal and dendritic branches. Synapse

locations were thus fully determined by the 3D geometries of

axonal and dendritic arborizations.

Previous studies examining the relationship between neuronal

morphology and synaptic connectivity focused on particular

aspects of connectivity, such as the extent to which the geometrical

overlap between axons and dendrites can account for the number

of synapses between neurons [18,19], the number of synaptic

connections as a function of intersoma distance [20,21], and the

spatial distribution of synapses on dendrites [22]. Kaiser et al. [23]

investigated other features of connectivity, but used extremely

simplified neuronal morphologies. They modeled axons as single

straight lines and approximated dendritic trees by circles. In our

study, we used realistic axonal and dendritic morphologies and

analyzed many aspects of the emergent spatial synapse distribu-

tions and synaptic connectivity patterns. In the paper that

introduced NETMORPH [24], only a few preliminary pilot

findings were described aimed at showing the potential of

NETMORPH for studying synaptic connectivity. The current

study is the first full study in which NETMORPH is applied.

In our model-generated network of L2/3 pyramidal neurons,

we found (i) skewed distributions of the postsynaptic locations

(position on dendrites) and presynaptic locations (position on axon)

of synapses; (ii) a connection probability between neurons that

monotonically and almost linearly decreased with intersoma

distance; (iii) a skewed distribution of connection lengths (distance
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between connected neurons); (iv) degree distributions (number of

neurons with which a neuron is connected) that revealed hubs but

no scale-free connectivity; and (v) a small-world topology of the

synaptic connectivity structure.

In general, experimental data on synaptic connectivity within

cortical networks are scarce because of the technical challenges

involved in measuring large numbers of neurons. Nonetheless, we

could compare our model outcomes with a number of suitable

data sets from the literature. These data sets were not always the

best imaginable but were the best available to us. The comparisons

showed not only qualitative but in many cases also quantitative

agreement between model outcomes and experimental data.

Both the shapes and the means of the distributions of

postsynaptic locations of synapses agreed well with the experi-

mental data, both in terms of path distance along dendrites to

soma [47] and in terms of Euclidean distance to soma [48].

Likewise, the shape, range and peak value of the distribution of

presynaptic locations of synapses, in terms of path distance along

axon to soma, were comparable to those of experimentally

observed distributions [22]. The number of synapses between

connected neurons (connection strength) also fell well within the

range of experimental values for cortical pyramidal cells [48].

The values of the connection probability between pyramidal

neurons in the model-generated network were in line with the

values reported in the experimental literature [49–51], especially

when taking into account that the latter were mostly derived from

electrophysiological recordings rather than from direct anatomical

observations. In addition, both our model findings and the

experimental data of Perin et al. [51] revealed an almost linear

dependence of connection probability on intersoma distance.

The connection length distributions in the model-generated

network and in the experimental data of Lohmann and Rorig [52]

had a similar skewed shape. In fact, in a wide range of neural

systems the connection lengths distributions have similar shapes,

with an initial large peak and a flat tail representing longer-

distance connections [23].

Like our model outcomes, the experimental data on synaptic

connectivity among cortical cells [51,54] revealed peaked degree

distributions, the presence of hubs in the degree distributions, but

no scale-free connectivity. Also as in the model-generated network,

the connectivity structure among cortical cells exhibited small-

world topology [51,54].

Taken together, our model results indicate that realistic

neuronal morphologies, simple geometry-based synapse formation

rules and independently developing neurons are capable of

producing networks with realistic synapse distributions, connec-

tivity patterns and small-world properties. Given the many factors

involved in the development of connectivity and the limited

number of assumptions in the model, the qualitative and often also

quantitative agreement between model outcomes and experimen-

tal data is surprising and not trivial. In the model, connectivity is

determined on the basis of geometrical considerations and in the

absence of extracellular guidance cues, and thus solely depends on

the morphology of axons and dendrites and the spatial distribution

of the cells. Connectivity is defined in terms of candidate synapses;

whether functional synapses actually develop at locations of

candidate synapses is an issue that is not considered in the model.

The outgrowth of a neuron’s axon and dendrites was not

influenced by the axons and dendrites of the other neurons in the

network. Importantly, the parameter values of the neurite

outgrowth model were optimized only for generating realistic

neuronal morphologies, not for producing particular connectivity

patterns. Synaptic connectivity was thus entirely an emergent

property of the neuronal morphologies and the spatial distribution

of the cells. The neurite outgrowth model in NETMORPH is a

phenomenological model, in which all the growth actions are

described as stochastic events. Such a stochastic description is

appropriate when biological growth results from the concerted

influences of many underlying mechanisms and interactions.

Therefore, the model implicitly incorporates many factors

affecting the development of neuronal morphology, including

possible extracellular cues that may influence the shape of axons

and dendrites. However, the external cues that are in this way

implicitly implemented in the outgrowth model are non-specific, in

the sense that in NETMORPH they have no role in steering axons

and dendrites of any specific cell pair prior to synapse formation

(see also [22]). Thus, the formation of synapses in NETMORPH

was not, explicitly or implicitly, guided by signalling mechanisms

such as extracellular chemical attraction and repulsion. In the

nervous system, guidance cues may play an important role in the

fine-tuning of synaptic connectivity and especially in the estab-

lishment of long-distance connections and the formation of large-

scale connectivity patterns, but these were not considered in the

present study.

Neurons in NETMORPH are generated on the basis of

principles from neural development. The neurite outgrowth model

implemented in NETMORPH uses stochastic phenomenological

rules for growth-cone mediated neurite elongation and branching.

The stochasticity gives rise to characteristic morphological

variability between the generated neurons (Fig. 4). Thus, in our

study, as opposed to other studies [20,22], synaptic connectivity

was not based on a single or limited set of exemplars of neuronal

morphologies. As in real cortical networks, each L2/3 pyramidal

neuron in the NETMORPH-generated network had a different

detailed morphology but obeyed the statistical regularities

characteristic of that neuron type.

The parameters of the neurite outgrowth model were optimized

on the basis of morphological properties of experimentally

reconstructed L2/3 pyramidal neurons made available on the

NeuroMorpho.org database. Most of these reconstructions were

obtained from sliced tissue. This means that parts of the dendritic

and axonal arborizations that were outside the thickness of the

slice were lost. We therefore took care to select only the most

complete reconstructions from the database, i.e., neurons of which

the cell body was in the center of the slice and the apical dendritic

main stem was fully contained within the slice.

Our results suggest that accidentally overlapping branches from

axonal and dendritic morphologies may to a large extent explain

local synaptic connectivity. Dendritic morphology is, however, not

fixed but can undergo significant alterations, for example in

pathological conditions such as chronic stress [56–59], Alzheimer’s

disease [60,61] and disorders associated with mental retardation

[62]. Chronic stress induces extensive regression of pyramidal

apical dendrites [58]. In Alzheimer’s disease, various aberrations

in dendritic morphology have been observed, including a

reduction in total dendritic length [60,61] and changes in the

pattern of dendritic arborization [63]. These anomalies in

dendritic morphology could, via their effect on the organization

of synaptic connectivity and dendritic synapse distributions, affect

cortical information processing and ultimately contribute to

impaired cognition.

Both the NETMORPH results and the experimental data of

Perin et al. [51] show a major linear component in the dependence

of connection probability on intersoma distance (Fig. 7). Appar-

ently, the increasing number of branches in axonal and dendritic

arborizations further away from the soma can compensate for the

reduced connection probability with distance. This finding of an

almost linear dependence on distance is also relevant for models of
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neuronal network activity, in which often faster than linearly

decreasing functions, such as exponential functions, are used to

define neuronal connectivity [64–67].

Although degree distributions are difficult to obtain experimen-

tally, they have a large impact on the dynamics of electrical activity

in neuronal networks [4]. Therefore, in model simulations of

cortical activity, such as liquid state machine simulations of cortical

computation [68], realistic in- and out-degree distributions are

desired, and the degree distributions obtained in NETMORPH

may provide a first approximation.

Small-world topology is mostly studied with regard to the

connectivity structure between different brain areas or different

cortical networks [38,39,69,70]. Only very few studies have

attempted to determine whether small-world topology exists

within cortical networks, at the level of synaptic connections

between neurons [51,54,71,72]. In simulation studies, it has been

demonstrated that small-world topology can evolve from certain

optimality considerations [40], developmental time domains for

network formation [73], and special synapse formation rules [23]

or synaptic plasticity rules [74]. Our results show that no particular

axonal or dendritic outgrowth rules are necessarily required to

create small-world topology and that independently outgrowing

neurons, realistic neuronal morphologies and proximity-

based synapse formation suffice to produce neuronal networks

with small-world synaptic connectivity. The higher connection

probability between nearby neurons (Fig. 7) may give rise to the

high clustering coefficient characteristic of small-world networks,

while the sparse long-range connections between neurons may

yield the shortcuts required for a small mean path length.

Although the values of the small-world coefficient c/l were not

very much higher than one, they were in general agreement with

those based on effective connectivity derived from multi-electrode

recordings in cortical networks [54,71,72]. Functionally, small-

world synaptic connectivity may improve memory recall [42] and

lead to faster and more reliable synchronization [75]. Loss of small

world topology has been observed in schizophrenia [10,76] and

Alzheimer’s disease [11].

In conclusion, our results lend support to the view that the

foundation of synaptic connectivity in local cortical circuits may

largely be formed by accidental appositions between axonal and

dendritic branches of independently outgrowing neurons

[18,19,22]. These general connectivity patterns laid down by

overlapping axons and dendrites may then be further refined by

more specific mechanisms.
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48. Feldmeyer D, Lübke J, Silver RA, Sakmann B (2002) Synaptic connections
between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat

barrel cortex: physiology and anatomy of interlaminar signalling within a
cortical column. J Physiol 538: 803–822.
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