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Abstract: Alzheimer’s disease (AD) is the leading cause of age-related dementia, affecting over
5 million people in the United States and incurring a substantial global healthcare cost. Unfortunately,
current treatments are only palliative and do not cure AD. There is an urgent need to develop novel
anti-AD therapies; however, drug discovery is a time-consuming, expensive, and high-risk process.
Drug repositioning, on the other hand, is an attractive approach to identify drugs for AD treatment.
Thus, we developed a novel deep learning method called DOTA (Drug repositioning approach using
Optimal Transport for Alzheimer’s disease) to repurpose effective FDA-approved drugs for AD.
Specifically, DOTA consists of two major autoencoders: (1) a multi-modal autoencoder to integrate
heterogeneous drug information and (2) a Wasserstein variational autoencoder to identify effective
AD drugs. Using our approach, we predict that antipsychotic drugs with circadian effects, such as
quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, olanzapine, and trazadone, will
have efficacious effects in AD patients. These drugs target important brain receptors involved in
memory, learning, and cognition, including serotonin 5-HT2A, dopamine D2, and orexin receptors.
In summary, DOTA repositions promising drugs that target important biological pathways and are
predicted to improve patient cognition, circadian rhythms, and AD pathogenesis.

Keywords: Alzheimer’s disease; drug repositioning; deep learning; multi-modal autoencoder;
optimal transport problem; reactome; diseasome; circadian patterns

1. Introduction

Alzheimer’s disease (AD) is a degenerative disease characterized by memory loss,
cognitive function decline, functional impairment, and other neuropsychological symptoms.
It is the leading cause of age-related dementia, affecting over 35 million people worldwide.
It is one of the costliest chronic diseases, with a global healthcare cost of $305 billion as
estimated by the World Alzheimer’s Association [1,2]. The prevalence and cost of AD
continues to rise as our population ages.

Currently, there are only five FDA-approved drugs for AD treatment. They include
four acetylcholinesterase inhibitors and one N-methyl-D-aspartate receptor antagonist,
memantine [3]. These drugs are prescribed to improve memory, attention, reason, language,
and the ability to perform simple tasks by affecting neurochemicals involved in carrying
messages between brain nerve cells. Unfortunately, these treatments are only palliative
because they do not slow down or halt the disease progression [4–6], and none can cure
AD [7]. Therefore, there is an urgent need to identify novel anti-AD therapies.

Drug discovery is a time-consuming, laborious, expensive, and high-risk process. It
usually takes 10 to 15 years to develop a new drug, with a 2.01% average success rate of
developing a new molecular entity [7–9]. The cost of drug development is increasing every
year. There is a trend of overinterpretation of earlier phase clinical trials and preclinical
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data which led to failed large-scale trials, such as tarenflurbil [10,11], dimebon [12], and
semegestat [13]. Additionally, there is a lack of targeted recruitment for trial participants,
resulting in a vastly heterogeneous cohort of patients with various comorbidities which
confounds the data and leads to unclear efficacies. Drug repositioning, on the other hand,
is an attractive approach for discovering drugs for diseases. The repositioning of existing
approved clinical drugs has accelerated novel drug discoveries for many diseases [14].
Various data-driven computational or analyzing methods were reported for drug repur-
posing, however, these attempts at drug repurposing for AD resulted in failure [15–20].
Previous AD drug repositioning failures may be due to a lack of sufficient target engage-
ment, unrealized toxic effects, and incomplete understanding of the complexity of AD
pathogenesis [21,22]. Comprehensive multi-modal computational approaches are needed
to reposition effective FDA-approved drugs for AD.

Most diseases, including AD, are a result of complex interactions between multi-
ple genetic and/or environmental factors. The increasing availability of bioinformatics
data and high-throughput interaction screening has pioneered a new science called “net-
work medicine”, which focuses on the interrelationships of genes, proteins, and external
environment. Incorporating multiple data sources can boost the accuracies of in silico
drug repositioning; however, it is a challenge to capture complex and non-linear struc-
tures. To address this challenge, we employed multimodal auto-encoders (MAE) in our
approach [23–25]. MAE preserves the non-linear network structures by applying multiple
layers of non-linear functions. It is effective in denoising systems and constructing useful
representation from sparse data. It is also scalable because it can learn low-dimensional
drug features from all networks in a fully unsupervised way, independently of drug-disease
prediction tasks.

Additionally, disturbances of the circadian rhythms have long been associated with
many neurological and psychiatric diseases, including Alzheimer’s disease (AD), Parkin-
son’s disease (PD), and Huntington’s disease (HD) [26]. Roughly 80% of AD patients
over 65 years old suffer from circadian rhythm disorders, such as disturbances in ther-
moregulation and sleep-wake cycles [27,28]. AD patients also exhibit disturbances in the
timing and duration of the sleep cycle, primarily manifested as increased wakefulness at
night and increased sleep during the day, which can progress to a loss of day–night varia-
tion [29]. Sundowning, manifested as agitation or delirium in the evening, is a common
symptom in AD patients, especially in the mid-disease stage [30,31]. In advanced stages,
the severe disruption or reversal of normal sleep cycles constitutes the primary cause for
institutionalization [32]. Other studies have showed that degeneration of circadian activity
patterns and/or sleep fragmentation occur in the early, pre-symptomatic phase during AD
pathogenesis, and displayed predictive values for later development of cognitive deficits,
pathological Aβ deposition, and dementias [33,34]. An epidemiologic study of daily activ-
ity of over 1200 initially cognitively-normal older women demonstrated that diminished
circadian rhythm amplitude, robustness, or phase delay were associated with increased
risk of developing dementia during the 5-year follow-up period [33].

Accumulating evidence supports a possible causal relationship between disruption
of circadian rhythms and AD [26,32,35,36]. Recent experiments demonstrated that sleep
deprivation caused a striking increase in the Aβ plaque burden in mice that express AD-
associated mutant forms of human amyloid precursor protein (APP) and develop Aβ

plaques with age [37,38]. A subsequent study found an increase in cortical Aβ plaque
burden following chronic sleep deprivation in mice that express human APP, PS1, and
human Tau transgenes [39]. New findings in the fruit fly and rodent models indicate that
the deletion of the clock genes Bmal1, Clock, Per1, and Cry1 may cause an accelerated aging
phenotype characterized by an earlier decline in cognitive functions [40–42]. Mouse genetic
and pharmacological studies reveal causal roles of clock manipulation in AD pathology
and neurodegeneration. In mammals, a group of core clock components, including positive
(CLOCK, BMAL1, RORs) and negative (PERs, CRYs, REV-ERBs) factors, formed interlocked
transcription/translation feedback loops [43], and the intact circadian oscillator is required
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for neuronal maintenance and cognitive functions [44]. Thus, FDA-approved drugs with
circadian effects may be efficacious for AD treatment.

Here, we present DOTA: a novel and robust network-based deep learning approach
to reposition drugs for AD treatment. DOTA considers drug targets, side effects, and
associations with other diseases in its predictions, which increases the discovery of mecha-
nistically effective drugs for AD. Through seamless integration of multiple drug networks
and implementation of advanced algorithms, DOTA identifies several promising drug
candidates for AD treatment. A closer analysis found that our drug predictions improved
circadian patterns, agitated behaviors, psychosis, and even delayed cognition-decline in
AD patients. Our tool can also be broadly applied to investigate drug candidates for other
diseases and have a boundless clinical impact.

2. Materials and Methods
2.1. Assembling Drug–Target–Sideeffects–Disease Networks

Heterogeneous networks were assembled from multiple clinically or experimentally
validated drug databases. Drug–drug interactions were collected from DrugBank databases.
There were 1519 unique drugs with 290,836 drug–drug interactions. Drug–gene/protein
interactions were collected from DrugBank [45], the Therapeutic Target Database [46], and
the PharmGKB databases [47]. Only experimentally validated binding affinities (inhibi-
tion potency, dissociation constant, median effective concentration, and median inhibitory
concentration ≤ 10 µM) from ChEMBL [48], BindingDB [49], and IUPHAR/BPS Guide
to PHARMACOLOGY databases [50,51] were included. Proteins that cannot be mapped
to a unique UniProt accession number were excluded. Drug–side-effects and adverse
drug events were collected from clinically reported information from MetaADEDB [52],
CTD [53], SIDER [54], and OFFSIDES [55] databases. There were 382,041 drug–side-effects
associations for the 1519 unique drugs. Drug–AD interactions were extracted from Drug-
Bank [56] and repoDB [57] databases. Drug names (chemical, generic, or commercial) were
standardized by Medical Subject Headings (MeSH) [58] and Unified Medical Language
System (UMLS) [59], and converted to DrugBank ID.

In addition to Drug–Drug, Drug–Gene/Protein, Drug–Side-Effects, and Drug–AD
interactions described above, five additional drug networks were assembled. They in-
clude: (1) similarities in drug chemical structures, (2) similarities in side-effects, (3) sim-
ilarities in protein sequence of drug targets, (4) similarities in biological functions, and
(5) similarities in therapeutic and clinical properties. Similarities in drug chemical structures
and similarities in drug’s side effects of drug pairs were computed using the Tanimoto
coefficient T, which is widely used in drug discovery and development [60]. Molecular
fingerprints (166-bit 2D structures) of the 1519 drugs were computed using Open Babel [61].
If two drugs have a and b fragment bits, with c fragment bits found in both drugs, then
the similarity of these two drugs is defined as T = c/(a + b− c). Likewise, if two drugs
have a and b side effects, with c side effects associated with both drugs, then the similarity
of side-effects of two drugs is calculated by the same equation. The Tanimoto coefficient
ranges from 0 to 1, where 0 represents no similarities and 1 represents high similarities.
Similarities in drug targets (proteins) were calculated by averaging the similarities of all
target protein sequences of a drug pair. Canonical protein sequences of drug targets were
obtained from UniProt database [62]. Protein sequence similarities for drug pairs were
calculated using the Smith–Waterman algorithm [63], which performs local sequence align-
ment by comparing protein segments of all possible lengths. Similarities in biological
functions were computed using a graph-based semantic similarity measure algorithm
called GOSemSim [64,65]. Experimentally validated evidence (semantic annotations) of
biological processes, molecular functions, and cellular components were obtained from
Gene Ontology (GO) [65]. The overall similarities of two drugs, A and B, (in terms of
biological functions of the drugs’ target genes) is calculated by averaging all pairs of drug
target-coding genes a and b with a ∈ A and b ∈ B. Similarities in therapeutic and clinical
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effects of drug pairs were calculated with similarities in Anatomical Therapeutic Chemical
(ATC) classification systems codes [66,67].

2.2. Network Representation and Fusion

Incorporating multiple networks of different data types can offer great insights for
drug repositioning; however, integrating highly heterogeneous and non-linear data is
a challenge. For homogenous networks (i.e., drug–drug interaction network and five
drug-drug similarity networks described in Section 2.1), random walk-based network
representation [68] was applied to mitigate the sparsity of individual network types and to
capture each network’s structural information:

pk = ω× pk−1M + (1−ω)p0 (1)

where M is the transition matrix that captures the transition probabilities between vertices,
ω is the probability that the random walk procedure will continue, and pk is a row vector
after a walk-length k. That is, the vertices of a network are first ordered randomly, and then
the relationship between vertices of a graph is expressed in a linear sequence. Vertices are
uniformly sampled by first selecting one vertex, v1, as the current vertex, then randomly
selecting the new vertex, v2, from all the neighbors of the current vertex, v1. Next, the
newly selected vertex, v2, is set as the current vertex and this vertex sampling process
repeats until the number of vertices within one sequence reaches a pre-set walk-length
k. The random walk procedure will continue with a probability of ω, and will return to
the original vertex and restart the procedure with a probability 1− ω. By repeating the
random walk process of each node in the network and summing the recurrence relation of
each random walk, we obtain a probabilistic co-occurrence matrix C based on the sampled
linear sequences. Then, the co-occurrence matrixes C are factorized, and the associations
are represented as positive pointwise mutual information (PPMI) matrixes, where Nr is the
number of rows and Nc is the number of columns:

PPMI = max

(
log

C(i,j) ×∑Nr
i ∑Nc

i C(i,j)

∑Nr
i C(i,j) ×∑Nc

i C(i,j)
, 0

)
(2)

For heterogeneous networks (i.e., drug–gene/protein, drug–side-effects, and drug–AD
networks), the Jaccard similarity coefficient [60] was calculated first before attaining the
PPMI matrixes. Jaccard similarity is commonly used for characterizing the similarities
between two sets of samples, A and B.

J(A, B) =
|A ∩ B|
|A ∪ B| (3)

The resulting PPMI matrices are then fused together using Multimodal Auto-Encoder
(MAE). MAE is a special type of neural network that is composed of an encoder where input
data is transformed into low-dimensional features, and a decoder where those features
are mapped back to the input data. Here, MAE was used to integrate the different drug
networks into a compact, low-dimensional feature representation common to all networks.
We followed the formulation for MAE as previously described in deepNF: deep network
fusion [69].

2.3. Drug–Disease Predictions with Optimal Trasport

To infer new drug–AD associations, DOTA uses a variational autoencoder (VAE). Drug
features extracted from the embedding layer of MAE and known drug–disease interactions
are encoded and decoded by a generator and discriminator network. The autoencoder may
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have a denoised understanding of the drug features. Since the drug feature is numerical,
the loss function is the mean squared error:

MSE = (D− D̂)2/2 (4)

where D is the original drug features and D̂ represents the reconstructed drug features. We
fine-tuned the variational autoencoder to unravel the latent relation between drugs and
diseases. The input is a row vector representing a specific disease and the columns in the
vector represent the possibility that a drug can treat the disease.

Optimal transport theory derives from the allocation of resources problem. The goal is
to allocate resources from one distribution to another distribution. It represents the relation
between two distributions and can be used to compute loss in machine learning. The
optimal transport problem can be defined as follows:

L = argminγ

x

x,y
γ(x, y)c(x, y)dxdy (5)

∫
x

γ(x, y)dx = P(x) (6)

∫
y

γ(x, y)dy = Q(y) (7)

where P(x) and Q(y) are two distributions, γ(x, y) = γ(x|y)p(x) = γ(y|x)q(y) is the joint
distribution, and c(x, y) is a pre-defined distance. Wasserstein loss is used to measure
the difference between the input and output in this step since the input and output are
considered a distribution:

Wasserstein loss = ∑
i=0,j=0

γ
(
xi, x̂j

)∣∣xi, x̂j
∣∣ (8)

Specifically, γ
(

xi, x̂j
)

is the transition cost in optimal transport theory, and
∣∣xi, x̂j

∣∣ is
the distance between input and output. We use geometry distance to calculate the distance:

Geometry distance = (xi − x̂i)
2 (9)

The final loss function consists of three parts. The first part is the Wasserstein loss,
which calculates the distance (Equation (8)). The second part is a regularization, which is
used to constrain the intermediate results of the VAE. Finally, the third part is the auxiliary,
which is used to help determine potential AD drugs.

regularization = ∑1 + 2 log(σ)− σ2 − µ2 (10)

auxiliary = ∑xi log
(
x̂j
)
+ (1− xi) log

(
1− x̂j

)
(11)

Final loss = Wasserstein loss + α× regularization + 0.1× auxiliary (12)

Our approach preserves the non-linear network structure through the application of
multiple layers of non-linear functions and predicts potential drug–disease associations
using informative, fused drug features and known (clinically reported or FDA-approved)
drug–disease associations.

2.4. Analysis of the Human Reactome

The drug targets (protein targets mapped to their corresponding genes) of the top 20 pre-
dicted drugs were extracted from DrugBank [45], the Therapeutic Target Database [46], and
the PharmGKB databases [47]. Then, their biological functions and signaling pathways
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were analyzed using Reactome [70,71]. Reactome is a collection of known biological pro-
cesses and pathways. The human reactome consists of 10,720 proteins, 13,804 complexes,
13,890 reactions, and 2546 pathways. It is a manually curated and peer-reviewed pathway
database, visualization, and interpretation resource.

2.5. Analysis of the Human Diseasome

The human disease network was obtained from Goh, K. et al. [72]. Briefly, the disea-
some consists of all known genetic disorders and all known disease genes in the human
genomes. Diseases and genes are then connected by a link if mutations in the gene are
implicated in the disease. In the human disease network, each node represents a disease,
and two diseases are connected to each other if they share at least one gene which mutations
are associated with both diseases. The human diseasome is visualized with Gephi v0.9.2, a
network visualization and exploration software [73].

3. Results
3.1. Overview of DOTA

To identify drugs with the potential to be efficacious in treating patients with AD, a
novel computational approach called DOTA was developed. DOTA is a network-based,
deep learning approach that integrates multimodal networks, captures the complex and
highly non-linear networks structures, and systematically infers potential associations
between FDA-approved drugs and AD. The pipeline of DOTA is shown in Figure 1. This
approach consists of network representation step, and two major autoencoders: (1) Multi-
modal Auto-Encoder (MAE) to first fuse multiple drug networks together, and (2) Wasser-
stein Auto-Encoder (WAE) to optimally transport the extracted low-dimensional infor-
mation from the embedding layer of the MAE into reconstructed features and predicted
drug–AD association scores. The goal is to identify and reposition drugs currently used for
other conditions, as well as drugs from failed clinical trials, for AD treatment.
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Figure 1. Overview of DOTA. (A) Drug networks (drug–drug, drug–gene, drug–side-effects, drug–
disease, and five other drug–drug similarities) are first converted into high-quality vector representa-
tion with a random walk-based procedure. (B) Next, the associations of the factorized co-occurrence
matrixes are represented as PPMI matrixes. (C) The PPMI matrixes are then fused together into a
low-dimensional feature representation using an unsupervised multimodal auto-encoder. (D) The
optimal transport problem used in the second autoencoder part of DOTA. A Wasserstein loss function
is used to minimize the optimal transport cost WC(PX , PG) between the input and output. (E) The
drug information from the embedding layer of MAE is extracted and used as drug features to predict
new drug-disease associations. A WVAE is used to encode and decode the drug-associations.
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3.2. Constructing and Integrating Drug Networks

Heterogeneous drug networks were assembled from multiple clinically or experi-
mentally validated drug databases, including drug–drug interactions, drug–gene/protein
interactions, drug–side-effects, and drug–disease interactions. In addition, five more drug
networks were included: (1) similarities in drug chemical structures, (2) similarities in
side-effects, (3) similarities in protein sequence of drug targets, (4) similarities in biological
functions, and (5) similarities in therapeutic and clinical properties.

For homogenous networks (i.e., drug–drug interaction network and five drug–drug
similarity networks), random walk-based network representation was applied to mitigate
the sparsity of individual network types and to capture each network’s structural informa-
tion. For heterogeneous networks (i.e., drug–gene/protein, drug–side-effects, and drug–AD
networks), the Jaccard similarity coefficient was calculated. Next, the co-occurrence ma-
trixes are factorized, and the associations are represented as positive pointwise mutual
information (PPMI) matrixes. The multiple PPMI matrices are then fused together using a
Multimodal Auto-Encoder (MAE). This resulted in a compact, low-dimensional feature
representation common to all networks.

3.3. Drug Predictions and Association Using Optimal Transport

The second autoencoder in DOTA is a variational autoencoder (VAE) that uses the
elegant geometric properties of the optimal transport problem and the Wasserstein distances
to predict drug–disease associations between FDA-approved drugs and AD. This approach
minimizes the Wasserstein distance between the distributions of encoded information from
the embedding layers of the multimodal autoencoder step and the reconstructed output.
The VAE uses drug information from the embedding layer of the MAE to predict new
drug–disease associations.

3.4. Repositionig Results and Validation

To evaluate the accuracy and reliability of our method, DOTA was applied on known
drug–disease interactions for all diseases. In total, there are 1519 drug–disease samples
and they are allocated into training and testing sets in an 80:20 ratio. A five-fold cross
validation was performed. The average area under the receiver operating characteristic
curve (AUROC) for the training and testing datasets are 0.95 and 0.85, respectively. The
receiver operating characteristic curve (ROC) for the training and testing sets are shown
in Figure 2.
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The top ten DOTA-predicted drug candidates for AD include: aripiprazole, quetiapine,
risperidone, suvorexant, brexpiprazole, olanzapine, travoprost, betaxolol, brimonidine, and
ibuprofen. The top repositioned drugs and their association scores are shown in Figure 3.
The association scores for all drugs are provided in Supplementary Table S1. Risperi-
done, aripiprazole, and quetiapine, which are atypical antipsychotics for the treatment of
schizophrenia and bipolar disorder, were predicted to have a potential effect on AD by both
DOTA and another deep learning repositioning tool called deepDR [74]. Unlike deepDR,
which uses a cross-entropy function, DOTA uses a Wasserstein loss function. Additionally,
DOTA included a drop-out layer to avoid overfitting.
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3.5. Reactome Analysis—Functional and Biological Targets of Repositioned Drugs

To evaluate the biological functions and biochemical impact of candidate repositioned
drugs, the drug targets and their corresponding pathways were analyzed. Using the
Reactome database, which is a collection of signaling and metabolic molecules and their
relationships, we identified several important biological pathways and processes that
are affected by the top predicted drugs [70,71]. The drug targets of antipsychotic drugs,
such as quetiapine, aripiprazole, risperidone, suvorexant, brexpiprazole, and trazadone,
were involved in signal transduction pathways, such as serotonin receptor, adrenoceptors,
dopamine receptors, and histamine receptor signaling pathways (Figure 4). In total, the
62 drug targets were involved in 191 signaling pathways. The full list of the pathways is
provided in Supplementary Table S2.
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enriched the top gene targets are.

3.6. Quantifying Anticholinergic Burden and Sedative Load of Repositioned Drugs

The anticholinergic burden and sedative load of the top 20 candidate AD drugs
are examined. Anticholinergic burden is defined as the accumulation of one or more
anticholinergic medication with increased risk of medication-related adverse side effects.
Sedative load is defined as medication-related effects of sleepiness, lethargy, drowsiness,
and reduced psychomotor processing. Using data from the AntiCholinergic and Sedative
Burden Catalog (ACSBC) [75], the anticholinergic burden and sedative load of the top
DOTA-predicted drugs are quantified in older adults. In Table 1, candidate AD drugs are
categorized into high, moderate, low, or no anticholinergic and sedative activity based on
currently available information. Ten of the top 20 candidate drugs have anticholinergic or
sedative effects.

Table 1. Anticholinergic and sedative burden of candidate drugs. Top repositioned drugs with
anticholinergic burden or sedative load are shown. Drugs are categorized as high, moderate, low,
and no anticholinergic burden and sedative load based on the ACSBC cumulative scale. References
of scales and metrics used in the categorization are included.

Drug Name Anticholinergic Burden Sedative Load

Quetiapine Moderate [76] Moderate [77]
Aripiprazole Low [78–80] Moderate [81]
Risperidone Low [76,78–80,82–87] Moderate [77]
Suvorexant No High [77]
Olanzapine Moderate [76,82] Moderate [77]
Travoprost No [79] No
Betaxolol Low [76,79,88] Low [77]
Ibuprofen No [79,80,89] Low [77]

Trifluoperazine High [78,82] High [77]
Trazodone Low [76,78–80,82,84,86,87] Moderate [77]
Doxepin High [78,79,83,89,90] Moderate [81]

3.7. Diseasome Analysis—Relationships between AD and Other Diseases

A diseasome is a network of diseases linked by known disease–gene associations.
Genes associated with similar disorders are more likely to have physical interactions be-



Biomolecules 2022, 12, 196 10 of 16

tween their products and have higher expression profiling similarity for their transcripts.
We evaluated the relationship between AD and other diseases by analyzing the human
diseasome. As suspected, there are connections between AD and dementia, amyloidosis,
and schizophrenia as shown in Figure 5C. There are also relationships between AD and
heart diseases such as myocardial infarction and hypertension. DOTA predicted several
candidate AD drugs that are known to treat schizophrenia, including quetiapine, arip-
iprazole, risperidone, brexpiprazole, olanzapine, and trifluoperazine (Figure 5A). Other
predicted drugs, such as travoprost, betaxolol, brimonidine, levobunolol, dorzolamide, and
brinzolamide, are known to treat ocular hypertension and hypertensive disease (Figure 5B).
This analysis suggests that DOTA’s predicted drugs are efficacious for AD treatment due to
their success in treating related diseases that share similar risk factors and mechanisms.
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Figure 5. Known drug–disease associations. Among the top 20 predicted drugs, eight drugs are
known to treat cognitive diseases, such as schizophrenia and bipolar disorder (A), and six drugs are
known to treat hypertensive disorders (B). (C) The diseasome is shown for AD. Colored nodes are
disorders that share risk factors or mechanisms with AD and faded nodes are other disorders that are
not related to AD. The size of the nodes represents the number of edges connecting to the disorder in
the diseasome.

3.8. Clinical Analysis of Candidate AD Drugs and Their Effects on Circadian Patterns

Clinical analysis revealed that several candidate drugs have a circadian effect. The
top three DOTA-predicted drugs (i.e., Risperidone, Aripiprazole, and Quetiapine) was
also predicted by others to be effective in AD [74]. Risperidone selectively antagonizes
serotonin (5-HT) effects via cortical 5-HT2 receptor, and, to a lesser extent, competes with
dopamine at the limbic dopamine D2 receptor. It is found to be effective for wandering and
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disturbed sleep/wake patterns in AD [91]. Risperidone is also found to reset the circadian
rhythm in mice, which may be extended to clinical studies to adjust the circadian rhythm
in mental disorders [92]. Aripiprazole regulates dopamine activity by reducing it when
it is high and increasing it in areas where it is low, which helps with symptoms such as
hallucination and poor motivation, respectively. A low dose of aripiprazole was found to
correct the circadian rhythm, and reduced nocturnal sleep time in patients with delayed
sleep phase syndrome [93]. One study has also found an improvement of patient’s circadian
rhythm sleep disorders along with the stabilization of the patient’s bipolar disease with
aripiprazole treatment [94]. In addition, this drug activates BMAL1, an important clock
gene, and causes a shortening effect on the period of circadian rhythm [95,96]. Quetiapine
is often used to treat psychosis in elderly patients with AD. It was found to increase sleep
duration and efficiency, delay final wake time, and reduce within-day variability [97]. These
DOTA-predicted drugs have beneficial clinical impact in AD patients and may be effective
therapies for AD treatment.

4. Discussion

There is a tremendous need for the identification of effective therapies for AD treat-
ment. Thus, we developed a novel deep learning approach, called DOTA, to reposition
FDA approved drugs for AD treatment. Unlike any other drug repositioning methods,
DOTA uses optimal transport to calculate the distance between the input and output while
minimizing the cost. Our approach identified promising antipsychotic and hypertensive
drugs for AD treatment, such as quetiapine, aripiprazole, risperidone, betaxolol, and bri-
monidine, to name a few. Several predicted drugs are expected to be beneficial for AD
patients due to their pharmacological mechanisms of action. For example, suvorexant is
a dual antagonist of orexin receptors OX1R and OX2R, and sleep deprivation and sleep-
promoting orexin signaling were found to influence the levels of AD-related proteins, Aβ

and tau, in interstitial fluid or cerebrospinal fluid, respectively, during the sleep/wake
cycle [38,98–101].

Both DOTA and a different drug repositioning approach called deepDR predicted
three overlapping drug candidates for AD treatment [74]. They include three atypical
antipsychotics: risperidone, aripiprazole, and quetiapine. These drug candidates are
commonly used in the treatment of schizophrenia and bipolar disorder, which are disorders
that are closely related to AD and share gene mutations and risk factors. Surprisingly,
all three drugs were also found to have circadian effects in patients. Since disruption
in circadian rhythm is common among AD patients and there is evidence supporting a
causal relationship [26,32,35,36], treating AD patients with drugs that also have an effect
on circadian rhythmicity may improve cognition, sleep, and AD pathogenesis.

Interestingly, one drug candidate that was identified with DOTA, but not with deepDR,
is trazadone. This drug is often used to treat depression and insomnia, and it functions
as a serotonin receptor antagonist. In a recent clinical study, AD patients showed stabi-
lization of circadian rhythms and exhibited a significant improvement in relative rhythm
amplitude after two weeks of trazadone treatment [102]. Trazadone was also found to
have a positive effect on dementia and delayed cognitive decline in 25 AD patients [103].
This may be due to its effect on augmenting slow-wave sleep and its target on serotonin
and norepinephrine, which are both known to be dysfunctional in AD [104,105]. Another
analysis revealed that there may be a dose-independent dual effect of trazadone on human
cognition, with acute utilization leading to impaired cognition while long-term use pre-
venting cognition deterioration [106]. Drugs with anticholinergic or sedative properties are
commonly prescribed to patients with polypharmacy [75,107]. While these medications are
needed to treat co-occurring chronic diseases, some studies have noted that long-term ex-
posure to anticholinergic and sedative medication may contribute to cognitive and physical
decline [108,109]. These experimental and clinical results support the accuracy of DOTA
in predicting potentially effective drugs for AD treatment; however additional studies are
needed to evaluate the safety and long-term effects of these drugs on human cognition.
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Despite our vigilant efforts, there are several limitations to our work. First, it is
difficult to evaluate the performance of our model because our purpose is to identify novel
drug–disease associations. In other words, negative pairs, i.e., drug–disease pairs with
no known associations, may have unrealized associations and should not be treated as
negative samples in our model performance evaluations. Secondly, drug networks, such as
drug targets and drug side effects, may be incomplete due to the ever-growing discoveries
made experimentally and in clinical trials. Currently, there is a still a lack of preclinical
information for several predicted drugs in appropriate models. As more information
become available, our model can be re-trained to offer more accurate and appropriate drug
predictions for AD. Third, the likelihood of success is still dependent on several factors
such as real-world heterogeneity of clinical conditions and patient backgrounds, including
other underlying conditions and medication.

In summary, DOTA identified FDA-approved drugs that are predicted to be effective
for AD treatment. These drugs target several important signaling pathways related to AD,
including serotonin and dopamine signaling pathways. Our discoveries would not be pos-
sible without the development of a robust and powerful deep learning approach that uses
optimal transport in the prediction of new drug–disease associations from comprehensive
drug features and known drug–disease associations.

5. Conclusions

The emergence of high-throughput molecular technologies, combined with exponen-
tial growth in the amount of biomedical data, has created unprecedented opportunities
to expand our understanding of drug functions and drug–target interactions, leading to
the development of a novel deep learning Drug repositioning approach using Optimal
Transport for Alzheimer’s disease called DOTA and the subsequent identification of several
drug repositioning candidates for AD treatment.
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