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ABSTRACT: Iodination of the silicon-fluorescein core revealed a
new class of highly cytotoxic, red-shifted and water-soluble
photosensitizer (SF-I) which is also fairly emissive to serve as a
theranostic agent. Singlet oxygen generation capacity of SF-I was
evaluated chemically, and up to 45% singlet oxygen quantum yield
was reported in aqueous solutions. SF-I was further tested in triple
negative breast (MDA MB-231) and colon (HCT-116) cancer cell
lines, which are known to have limited chemotherapy options as
well as very poor prognosis. SF-I induced efficient singlet oxygen
generation and consequent photocytotoxicity in both cell lines
upon light irradiation with a negligible dark toxicity while allowing
cell imaging at the same time. SF-I marks the first ever example of a silicon xanthene-based photosensitizer and holds a lot of promise
as a small-molecule-based theranostic scaffold.
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Photodynamic therapy (PDT), which involves the gen-
eration of cytotoxic reactive oxygen species (ROS)

through interaction of a photosensitizer (PS), light, and
molecular oxygen (3O2), is a developing treatment method-
ology for a wide variety of cancer types.1,2 PDT has remarkable
advantages over conventional therapies such as activation of
the immune system, minimal invasiveness, opportunities for
repeated application without initiating drug resistance, and a
fast healing process with little or no scar formation.1−3

Additionally, the technique offers localized treatment as singlet
oxygen (1O2) has a short lifetime in aqueous medium and the
excitation light can be precisely delivered to the tumor region,
leaving most of the healthy cells unaffected.1,3,4 However, there
is a major obstacle that PDT agents have to overcome to
receive widespread acceptance in clinical studies, which is the
limited penetration depth of irradiation light through tissues.3,5

It is a known fact that red/near-IR excitation light has the
ability to penetrate more deeply into the target tissue while
being less harmful to cells.6−8 This basically extends the scope
of PDT by enabling the treatment of deep tumors. In this
direction, a large amount of effort has been devoted to design
red-shifted PSs.9−20 Nevertheless, most of the current
examples are either based on the first-generation hydrophobic
PSs, which require significant synthetic efforts to implement
water solubility, or some other hydrophilic PSs having dark
toxicity and photostability issues.2,21,22

Another emerging trend in the design of new generation
PDT agents is to combine therapeutic action and fluorescent

imaging. These so-called theranostic agents have attracted
great interest in recent years as they allow monitoring both
location of tumors and drugs as well as the efficacy of the
treatment.23,24 Undoubtedly, red-shifted agents are also highly
attractive for theranostic applications. A majority of the PDT
theranostics employ NIR-activated inorganic nanoparticle-
based approaches,25 which tend to exhibit long-term toxicity,
long retention time, challenges in large-scale synthesis, and lack
of biodegradability. On the other side, small-molecule-based
designs are substantially limited to few cores that possess the
aforementioned limitations.21 Thus, development of new PS
skeletons that are intrinsically red-shifted and water-soluble are
still highly required in the scope PDT theranostics.
Fluorescein derivatives are among the most known and

widely used fluorophores due to their unique properties such
as water solubility and high extinction coefficients as well as
high fluorescence quantum yields.26−28 Brominated (ex., eosin
yellow) or iodinated (ex., rose bengal, erythrosin B)29

fluorescein derivatives have also been utilized as important
PDT agents because they show high singlet oxygen quantum
yields as in the case of other heavy atom incorporated
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fluorophores.10,30−32 Although fluorescein-based PSs are long
known and recognized as reference PSs, these agents absorb
light in the visible region of the spectrum (around 500 nm),
which is simply out of the therapeutic window.29 In 2011,
Nagano and coworkers introduced a red-shifted analogue of
fluorescein by replacing the endocyclic oxygen atom in the
xanthene moiety with a silicon.33 Change of oxygen to
dimethylsilyl group accounts for approximately 100 nm red
shift in both absorption and emission maxima. Silicon
substituted fluorescein (silicon-fluorescein, SF) derivatives
retain all unique properties of fluoresceins while exhibiting
highly beneficial red-shifted absorption and emission signals.
Under these circumstances, it is no surprise to see that silicon-
fluoresceins have been employed in many different bioimaging
studies during the past decade (Figure 1).34,35 Silicon-

fluoresceins also hold all critical features that one would
expect from a PS; however, they have not yet been utilized in
PDT applications. Herein, we report for the first time the
conversion of silicon-fluorescein core to a highly cytotoxic PS
(SF-I) (Figure 1) with significant fluorescence, which can serve
as a water-soluble and red-shifted theranostic core.
SF-I, an analogue of erythrosin B, bears four iodine atoms on

the silicon xanthene core (SF) to facilitate effective heavy atom
mediated ISC upon excitation. An elegant and fast approach to
synthesis of the SF core has been recently reported by Lavis et
al.36 The same methodology was followed to synthesize the SF
core in four steps (Figure S1). While introduction of halogens
to xanthene-based cores can be quite difficult when they are
fully conjugated, for example in resorufin,37 the lactone form of
silicon-fluorescein was found to be easily modified with iodine
(Figure 2). In fact, introduction of just one iodine was proven

difficult, and mixtures of higher iodinated derivatives were
attained. Hence, the reaction conditions were modified to push
the reaction toward tetra-iodination. The approach proved to
be fruitful, and tetra-iodinated product was obtained in
moderate yield.
After completing the synthesis, we first measured the

absorption and fluorescence characteristics of SF-I in aqueous
solutions under different pH values (Figure 3, Table 1). The
parent SF core has the capability of forming intramolecular

spirolactone in a pH-dependent manner due to the presence of
the carboxylic acid group on the benzene ring. SF is known to
be predominantly in its neutral closed lactone form at
physiological medium (pH 7.4), which results in a colorless
and nonemissive agent owing to broken π-system on the
xanthene moiety.39 It was previously shown that modifying the
xanthene core of SF with electron withdrawing halogens such
as chlorine (SF-Cl) and fluorine (SF-F) decreases the pKa
values and yields a colorful and highly emissive agent as SF
tends to stay in its open and deprotonated dianion form.39 In
our case, SF-I exhibited similar pH dependency to SF-Cl and
SF-F. No absorption and emission peaks were detected below
pH 6, whereas a very sharp increase in both signals was
observed between pH 6 and 7 (Figure 3). Thus, at acidic pH
values, SF-I forms intramolecular spirolactone as expected and
becomes colorless as well as nonemissive. At pH 7.4, SF-I
showed characteristic dianion (open-form) absorption and
emission peaks centered at 614 and 630 nm, respectively
(Table 1), which are slightly red-shifted compared to dianions
of SF, SF-Cl, and SF-F.39 This is quite promising as it infers
that SF-I can serve as a PDT agent at physiological conditions.
As expected, the fluorescence quantum yield of SF-I (11%) at
pH 7.4 is lower than that of other SF derivatives due to the
effective ISC (Table 1), which is known to compete with
fluorescence relaxation pathway. However, it is still fairly
emissive for bioimaging applications.2

Next, we wanted to demonstrate that SF-I can induce singlet
oxygen generation, a primary cytotoxic agent of PDT action,

Figure 1. Literature examples of silicon-fluoresceins and highlights of
this work.

Figure 2. Iodination of silicon-fluorescein.

Figure 3. pH dependent absorption (a) and emission (c) spectra of
SF-I (5 μM) in PBS (pH 7.4, 0.5% DMSO). Corresponding pH plots
of absorbance at 614 nm (b) and fluorescence at 630 nm (d).

Table 1. Photophysical Properties and 1O2 Quantum Yields
of SF-I and SF

PS λabs (nm) ε (M−1cm−1) λems (nm) φF (%) φΔ (%)c

SF-I 614a 76 500a 630a 11a,b 45 ± 0.08a,d;
30 ± 0.01a,e

SF 580f 110 000f 598f 38f n.d.
aMeasured in PBS buffer (pH 7.4, 0.5% DMSO). bCalculated via
spectrophotometer with an integrated sphere detector. cMethylene
blue was used as a reference in PBS buffer (ΦΔ = 0.52).38 dUpon
irradiation with a 595 nm LED. eUpon irradiation with a 630 nm
LED. fRef 39, n.d.: not determined.
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upon light irradiation. To do so, a water-soluble trap molecule
2,2′-(anthracene-9,10-diyl)bis(methylene)dimalonic acid
(ADMDA) and SF-I (5 μM) were mixed in an oxygen
saturated aqueous solution (0.5% DMSO, PBS pH 7.4), and
the mixture was irradiated initially with a 595 nm LED light
(9.83 mW/cm2). A gradual decrease in the ADMDA
absorption at 380 nm was observed after each light irradiation
as a result of [4 + 2] cycloaddition of generated 1O2 to the
anthracene core (Figure 4a). We further confirmed 1O2

generation by using singlet oxygen sensor green (SOSG),
which emits green emission at 530 nm upon reacting with 1O2
selectively. After irradiating aqueous solutions of SF-I (5 μM)
in the presence of SOSG with an LED light (595 nm, 9.83
mW/cm2), emission intensity of SOSG increased gradually
(Figure 4b), which clearly indicates the presence of photo-
sensitized singlet oxygen. 1O2 quantum yield of SF-I was
determined by using methylene blue (ΦΔ = 52% in PBS
buffer)38 as a reference PS and calculated as 45%. The same
trap experiments with ADMDA and SOSG were also repeated
with a more red-shifted LED light (630 nm, 24.3 mW/cm2)
because SF-I has a broad absorption band ranging between 550
and 650 nm in aqueous solutions. In a similar way, decrease in
the ADMDA absorption as well as the increase in the SOSG
emission proved that 630 nm irradiation can also trigger 1O2
formation (Figures S2, S4, and S5). Although the light dosage
employed under 630 nm illumination is higher than that of 595
nm, 1O2 quantum yield of SF-I (30%) was found to be lower
compared to 595 nm excitation as its absorption signal is
stronger at 595 nm. When the ADMDA trap experiment was
repeated with SF upon 595 nm light irradiation, no 1O2
generation was detected (Table 1, Figure S3). Photostability
of SF-I was tested by monitoring the absorption and emission
signals at 614 and 630 nm, respectively, under continuous LED
(595 and 630 nm) irradiation for 2 h in PBS (pH 7.4, 0.5%
DMSO). Only a very small decrease was observed in
absorption signals, whereas no change in fluorescence peaks
was detected, clearly suggesting high photostability (Figure
S6).
After showing the 1O2 generation chemically, photo-

cytotoxicity of SF-I was examined by conventional MTT
assay in triple negative breast (TNBC, MDA MB-231) and
colorectal (HCT-116) cancers due to their complex prognosis
and limited chemotherapeutic options.40,41 Cells were initially
incubated with SF-I at concentrations ranging from 0 to 20 μM
and then irradiated either 1 or 2 h with two different LED
sources (595 and 630 nm, 9.83 and 24.3 mW/cm2). Cell
viabilities decreased gradually in a dose-dependent manner in
both cancer cells upon both 595 and 630 nm irradiation with

lower IC50 values in the case of 2 h irradiation, as expected
(Figure 5, Table S1). Among two different LED sources, 595

nm irradiation was shown to be more effective in inducing cell
death, which is in good correlation with 1O2 quantum yields
(Figure 5, Table S1). However, considering the better
penetration ability of 630 nm light, it is notable to observe
cell death in both cell lines with reasonable IC50 values upon
630 nm irradiation. No dark toxicity was detected in both cells
as evidenced from the high cell viabilities when there is no light
illumination. Thus, SF-I exhibited a comparable 1O2 generation
yield to standard PS methylene blue in aqueous solutions upon
595 nm excitation without showing inherent dark toxicity.42

Additionally, we confirmed that light sources did not cause any
cytotoxicity during the course of irradiation (Figure 5). SF-I
induced intracellular ROS generation was monitored in MDA
MB-231 and HCT-116 cancer cells under confocal microscopy
by employing a cell permeable ROS sensor, 2′,7′-dichloro-
fluorescein diacetate (DCFH2-DA), which emits strong green
emission after oxidation by a reactive oxygen species.
Irradiation of sensor and SF-I incubated cells with a 595 nm
LED source resulted in a green emission, clearly suggesting
effective ROS generation (Figure 6). When the cells were
treated with NaN3, a singlet oxygen quencher,43 the green
emission disappeared, which indicates that SF-I generates
singlet oxygen as a primary cytotoxic agent during the PDT
action (Figure 6). On the other side, the ROS sensor showed
no detectable emission in the case of vehicle control and under
dark conditions (Figure 6). Finally, cells were pretreated with
H2O2 to check that the sensor works properly in the presence
of ROS. In this positive control experiment, a green emission
was retained in both cell lines unsurprisingly (Figure 6).
Cell death mechanism during the PDT action was also

investigated by using green emitting annexin V-FITC (AV,
detects early apoptotic cells) and red emitting propidium
iodide (PI, detects late apoptotic and necrotic cells) stains. In
this direction, MDA MB-231 and HCT-116 cells were
incubated with SF-I (5 μM). In each cell type, a group of
cells was irradiated for 2 h with a 595 nm LED light and
treated with AV and PI stains 30 min after PDT, while another
group was kept under dark conditions. Both green and red

Figure 4. (a) Decrease in the absorption signal of ADMDA in PBS
(pH 7.4, 0.5% DMSO) (during first 40 s, the samples were kept in the
dark) and (b) increase in the emission signal of SOSG upon
irradiation of SF-I (5 μM) with 595 nm LED light (9.83 mW/cm2).

Figure 5. Cell viabilities of HCT-116 (a) and MDA MB-231 (b)
cancer cells treated with the increasing concentrations (0.5−20 μM)
of SF-I either under dark conditions (24 h) or upon irradiation with
LED light (595 or 630 nm) for 1 or 2 h, followed by 23 and 22 h dark,
respectively. Ctrl (v): vehicle control. Data are presented as mean ±
SD (n = 4).
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emission were observed only in the irradiated cells, which
supports the lack of dark toxicity and indicates that some cells
undergo early apoptosis, but there is also another group of cells
that initiates late apoptosis/necrosis at 30 min post-PDT
(Figure 7). However, PI positive cells (with disrupted nuclei)

were relatively much higher than AV positive cells, which
means that the cells tended to undergo necrosis rather than
apoptosis. Treating cells with NaN3 dramatically suppressed
the cell death even after 2 h of PDT action (Figure 7). This is
additional evidence clearly showing that 1O2 is the major
cytotoxic agent.
Given that SF-I has a strong emission signal in aqueous

solutions, we finally wanted to determine whether SF-I can be
used to image cells. MDA MB-231 and HCT-116 cells were

incubated with SF-I (5 μM) for 2 h and washed prior to
confocal imaging. Both cells displayed mostly cytosolic and
rarely nuclear red emission, illustrating that SF-I permeates
into the cells and gives a strong intracellular fluorescence signal
despite it carrying four iodine atoms (Figure 8).

To close, we have developed here for the first time an
iodinated silicon-fluorescein (SF-I) that can serve as an
effective red-shifted theranostic agent at physiological con-
ditions. SF-I showed high 1O2 quantum yields under both 595
and 630 nm irradiations, and its cytotoxicity was tested in two
cancer cells with limited chemotherapy options. In vitro cell
culture results clearly demonstrated that SF-I can induce cell
death as a result of successful PDT action and at the same time
can still act as a fluorophore. SF-I introduces a new class of
easily accessible photosensitizers which hold promise toward
the realization of image-guided PDT applications. SF-I
addresses most of the chronic problems of the current PSs
and displays properties desirable in a theranostic agent; it has
high water solubility, high 1O2 quantum yield in aqueous
solutions, red-shifted absorption/emission signals, high photo-
stability, and negligible dark toxicity. In addition, the SF-I core
can be modified with different cage groups or targeting
moieties as well as organelle directing units to design highly
efficient cancer cell selective agents. Finally, π-extension on the
SF-I core or use of different heteroatoms on the xanthene
scaffold may reveal even more red-shifted PSs, which can be
excited by more penetrating light and has the potential to be
used in in vivo PDT applications. Our work along these lines is
in progress.
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Figure 6. Intracellular ROS levels detected by DCFH2-DA staining in
HCT-116 (a−e) and MDA MB-231 (f−j) cells treated with DMSO
(0.5%) (a, f) or SF-I (5 μM) in the dark (b, g). SF-I treated cells were
irradiated with LED light (595 nm) in the absence (c, h) or presence
(d, i) of NaN3 for 2 h. H2O2 (500 μM, 2 h) treated cells were used as
a positive control (e, j). Scale bar: 50 μm.

Figure 7. Confocal microscopy images of apoptosis and necrosis of
HCT-116 (a−d) and MDA MB-231 (e−h) cells treated with DMSO
(0.5%) (a, e) or SF-I (5 μM) under dark conditions (b, f). SF-I
treated cells were irradiated with LED light (595 nm) in the absence
(c, g) or presence (d, h) of NaN3 for 2 h. After treatments, cells were
stained with Annexin V-FITC (green) and PI (red) to monitor
apoptotic or necrotic cells, respectively. Scale bar: 50 μm.

Figure 8. Confocal images of SF-I (5 μM) in HCT-116 (a) and MDA
MB-231 (b) cancer cells after 2 h incubation. Blue, Hoechst 33342;
red, SF-I. Scale bar: 20 μm.
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