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Abstract

With increasing demand for training in data science, extracurricular or “ad hoc” education

efforts have emerged to help individuals acquire relevant skills and expertise. Although

extracurricular efforts already exist for many computationally intensive disciplines, their sup-

port of data science education has significantly helped in coping with the speed of innovation

in data science practice and formal curricula. While the proliferation of ad hoc efforts is an

indication of their popularity, less has been documented about the needs that they are

designed to meet, the limitations that they face, and practical suggestions for holding suc-

cessful efforts. To holistically understand the role of different ad hoc formats for data sci-

ence, we surveyed organizers of ad hoc data science education efforts to understand how

organizers perceived the events to have gone—including areas of strength and areas

requiring growth. We also gathered recommendations from these past events for future

organizers. Our results suggest that the perceived benefits of ad hoc efforts go beyond

developing technical skills and may provide continued benefit in conjunction with formal cur-

ricula, which warrants further investigation. As increasing numbers of researchers from

computational fields with a history of complex data become involved with ad hoc efforts to

share their skills, the lessons learned that we extract from the surveys will provide concrete

suggestions for the practitioner-leaders interested in creating, improving, and sustaining

future efforts.

Author summary

Large datasets are becoming integral to society broadly and to biological sciences in par-

ticular. As a result, demand for sophisticated data skills and experience has skyrocketed

and left some individuals scrambling to cross-train and acquire more computational skills.

While universities are racing to develop formal curricula to meet this demand, diverse

informal efforts have emerged to fill the immediate demand for skills and experience.

These “ad hoc” efforts have been playing a vital role in data science education, especially

for domain scientists. While some studies have shown specific ad hoc formats to have
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considerable impact, few studies have focused on these efforts holistically. Here, we survey

effort organizers from leading data science institutes and collect lessons learned. We find

that efforts are commonly reported to successfully provide opportunities in difficult areas

where curricula could improve, such as providing approachable introductions to new

skills, increasing diversity of backgrounds, and fostering heterogeneous communities.

However, efforts also report challenges fulfilling diverse needs and offer suggestions. In

total, the lessons that we collect from these efforts are useful to improve future ad hoc

efforts and to inform formal programs, which may be looking for inspiration to design

innovative educational formats.

Introduction

Interest in data science and related fields has surged over the last several years [1]. Typically

seen as applying programming ability and statistical knowledge to answer questions derived

from domain-specific expertise, data scientists have come into high demand as datasets have

grown in size and complexity [2]. While many university curricula are acknowledging the

need for data science training and other computationally minded educational opportunities

[3–12], formal program structures and course offerings that embrace these new data and tech-

niques can be slow to change.

To bridge the immediate gap between current curricula and the new demands of data sci-

ence, a tapestry of extracurricular educational opportunities (i.e., opportunities that do not

offer any course credit and are not required to complete a degree program) has emerged to

provide students with essential data science skills. These ad hoc education efforts can take a

variety of formats—including hours-long workshops, week-long boot camps, and semester-

long research projects—and are intended to complement existing formal educational struc-

tures [13–15] by embracing new tools and pedagogy as they emerge [16, 17]. These efforts are

spearheaded by practitioner-leaders—data scientists across career stages and paths who may

or may not have formal teaching expertise but want to share their knowledge with others.

Researchers from fields with a strong tradition of complex data and computational skills—like

computational biology—have been some of the fastest to jump into these educational opportu-

nities, eager to share their skills with burgeoning data scientists and established researchers

integrating data science into fields in the “long tail” of big data and computational work.

Previous studies have considered the benefit of specific ad hoc formats like hack weeks [13],

summer programs [14], and workshops [8, 15, 18–20]. Some of this work has indicated that—

along with filling educational gaps temporarily created by data science’s rapid growth—ad hoc

efforts may also help address more systemic weaknesses through innovative paradigms devel-

oped across rapid iterations [13]. Other work has addressed the institutional change of data

science education [11] and how to design formal efforts or courses related to computational

skills [10, 21]. Prior work has also considered lessons learned from individual event formats,

such as short courses or workshops [8, 19, 20, 22–24], mentor–mentee relationships [25], and

summer programs [26]. However, to our knowledge, no study has yet looked holistically at the

benefits that different extracurricular formats can provide and has extracted lessons learned

for future efforts and novel formats.

To formally understand the breadth, impacts, and opportunities for growth for ad hoc

efforts broadly, we surveyed organizers from a variety of efforts. These efforts were all orga-

nized at the Moore-Sloan Data Science Environments (MSDSEs), an early initiative to pro-

mote interdisciplinary data science research, education, and communities at New York
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University (NYU), the University of Washington (UW), and the University of California,

Berkeley (UC Berkeley). This survey asked organizers to be constructively self-critical to share

lessons learned for future efforts through a balanced view of the efforts with which they had

been involved. (For survey details, see “Materials and methods” section.) In addition to

describing their efforts, we asked them to outline the goals of their events, to explicitly describe

the ways in which they were successful and unsuccessful in relation to those goals, to list ways

in which they (or others) would change their effort (or similar efforts), and to provide their les-

sons and thoughts about the future of ad hoc education in data science.

Using these data, we then turned to the major contribution for the current paper: providing

concrete guidance to improve future ad hoc education efforts in data science across effort for-

mats. To achieve this, we asked past organizers to reflect on their experiences and provide sug-

gestions for future organizers in a series of structured closed-form and open-form questions.

From the open-ended responses, we used qualitative research methods [27, 28] to extract a

codebook for capturing recurring themes. (For more on how the codebook was developed, see

“Materials and methods”.) This codebook—a secondary contribution of the current work—is

intended to be both a guide to the specific responses for our survey and a tool for future quali-

tative and quantitative explorations. These lessons learned additionally provide us an opportu-

nity to explore implications for the future of ad hoc data science education—especially within

evolving and increasingly rich formal education structures.

Results

Our survey received 24 total responses, but 2 were excluded because the respondent did not

consent to participate in the research. The 22 included responses represented the perspectives

of 18 unique organizers on 19 unique efforts (Table 1). The original 24 survey responses repre-

sented—to the best of our knowledge—a comprehensive list of ad hoc data science education

efforts within the MSDSEs at the time. (There were and are additional ad hoc efforts at each

host university, but we restrict our focus to ad hoc education efforts in data science sponsored

by an MSDSE.) Therefore, the 22 responses included in these analyses represent a nearly com-

prehensive list.

Many of these efforts represented multiple (e.g., annual) iterations of an event or multiple

events in a series, so considerably more events are represented. The data were originally col-

lected as a means to understand how ad hoc efforts in the MSDSE could be improved. Pursu-

ant to UC Berkeley Institutional Review Board (IRB) protocol ID 2017-11-10487, we

subsequently obtained consent from the respondents so that the lessons learned could be

shared more broadly.

Taken together, the organizers in our survey reported approximately 1,194 participants for

the events considered. However, since some organizers noted that the events occurred regu-

larly (e.g., weekly, quarterly), these ad hoc efforts may have included up to 3,554 participants,

using the reported frequency and assuming relatively stable rates of participation. While there

Table 1. Summary of dataset size, which nearly comprehensively represents ad hoc data science efforts held at the

MSDSEs.

Count

Included responses 22

Unique efforts reviewed 19

Organizers reporting 18

Abbreviation: MSDSE, Moore-Sloan Data Science Environment

https://doi.org/10.1371/journal.pcbi.1007695.t001
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may have been overlap in participants between events, these ad hoc efforts touched a large

number of individuals seeking data science training and experience.

Types of efforts held at the MSDSEs

The efforts reported in our survey included a variety of formats (see Table 2 for examples).

Each of the efforts reported in our survey could generally be characterized along 2 orthogonal

axes: high or low investment and long-term or short-term cohesion. Investment captures the

amount of resources (e.g., space, funding) and/or efforts required to create the event. Cohesion

focuses on the persistence of the effort over time. This does not necessarily mean that the spe-

cific individuals involved in the effort will remain the same over time; instead, this captures

the persistence of the effort itself.

High investment, short-term cohesion. The majority of the MSDSE efforts in our survey

were high investment, short-term cohesion (HIST; Table 2), as they required coordination

among multiple leaders to create a unified program spanning several days or a week. HIST

efforts could include well-known types of ad hoc efforts discussed in other works—for exam-

ple, hack weeks (i.e., multiday events that mix tutorials and lectures with dedicated time to

intensively work on a project [13]) and multiple-day workshops (e.g., Software Carpentry

[15]) at all 3 campuses. The majority of the HIST efforts included in our survey were not

driven by faculty members, highlighting the openness of ad hoc education effort leadership.

Low investment, short-term cohesion. Ad hoc education efforts described as low invest-

ment, short-term cohesion (LIST) are often single-day events with much more distributed

investment requirements. Examples of LISTs would include other popular formats, such as

single-day “un-conferences” [29] focusing on cross-disciplinary analyses of a single type of

data or “lightning talks” (i.e., 3- to 10-minute talks) aimed at practically tackling single ques-

tions or topics in data science. By their nature, these efforts afford the opportunity for much

more targeted events that take advantage of existing strengths within the local community and

target specific needs or narrow topics.

High investment, long-term cohesion. High investment, long-term cohesion (HILT)

efforts require multiple investments (e.g., time, resources, cost) to persist over months or

years. To do so, some efforts required hierarchies of training for researcher or software devel-

opment mentors (e.g., “train the trainer” models). Prototypical HILT efforts reported in our

survey included a focus on hands-on research projects or software development through close

mentoring relationships for an extended period of time (e.g., semester, summer). While these

efforts are rewarding, the required resources present a substantial challenge.

Low investment, long-term cohesion. Efforts classified as low investment, long-term

cohesion (LILT) exist on longer scales but require relatively little centralized investment. Such

Table 2. Summary of effort types and examples of effort formats. Count indicates the number of survey responses

that represented efforts that could be classified as a given type.

Type Count Examples

LIST 3 Short-term consulting

HILT 4 Series of mini-workshops; hands-on projects

HIST 11 Focused workshop not on methods or research; hack weeks; concentrated hands-on workshop or

speaker series

LILT 4 Recurring presentations on methods; recurring speaker series; consulting on long-term, hands-on

projects; long-term research projects

Abbreviations: HILT, high investment, long-term cohesion; HIST, high investment, short-term cohesion; LILT, low

investment, long-term cohesion; LIST, low investment, short-term cohesion

https://doi.org/10.1371/journal.pcbi.1007695.t002
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efforts are often championed by a single organizer who can set up the structure over a semester

or year. For example, LILT efforts could include short consulting sessions, ongoing peer-learn-

ing tutorials, and lecture series. The loosely connected structure allows organizers to take

advantage of existing community expertise while deepening community ties and broadening

community knowledge. These events may build on one another, but their relatively informal

structure may impose lower barriers to entry for participants.

Diverse intended audiences for ad hoc efforts

To understand which audiences ad hoc efforts have tried to engage and whether they success-

fully engaged underserved audiences, we asked organizers to name their target populations

using a multiple-answer question on our survey. As seen in Fig 1, each audience listed was tar-

geted by multiple efforts. We tried to be as broad as possible in identifying different kinds of

diversity: In addition to using the word “diverse” in reference both to demographics and disci-

plines, we included a range of other kinds of diversity (including career stage, programming

backgrounds, and career goals).

Every respondent indicated targeting more than one of the identified populations, and

some indicated additional audiences that were not specified by the survey question. By having

various effort structures, as discussed earlier, some ad hoc efforts (especially those with short-

term cohesion) can create a lower barrier to entry than formal curricula and thus provide

Fig 1. Target audiences reported by efforts. Efforts typically reported more than one target audience, and each audience listed was targeted by multiple

efforts. The audiences included in the figure were multiple-choice options for the survey question, except for “Faculty,” which was written into the

“Other” option often, as indicated here.

https://doi.org/10.1371/journal.pcbi.1007695.g001
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initial contact with data science to diverse audiences. These efforts can also be tuned to meet

needs of specific audiences, as they are extracurricular and often relatively brief. By incorporat-

ing more diverse audiences, ad hoc efforts can enrich learning outcomes and make data sci-

ence more accessible.

Common goals of ad hoc efforts

Using multiple-answer responses, every respondent indicated that their effort had in mind at

least one of 4 listed goals that are not always well met by formal curricula (Fig 2). Many efforts

also indicated additional, unlisted goals—with one of the most significant themes being build-

ing community and research collaborations. This theme manifested in a variety of ways, but

the diverse communities formed at ad hoc events and persisting beyond events were often

described as a long-term benefit to research and educational outcomes. By targeting the areas

listed, ad hoc education attempts to supplement curricula with novel structures to address tra-

ditional challenges or shortcomings of curricula.

Lessons learned: Things that worked

While many open-ended responses to our question about effort successes were specific to the

event or the type of ad hoc effort held, we found 5 general characteristics that commonly

Fig 2. Goals reported by efforts. Community building was not included as a possible multiple-answer response, but it was cited in open-ended

responses for approximately a third of all efforts.

https://doi.org/10.1371/journal.pcbi.1007695.g002
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emerged as successes of ad hoc education. Most of these characteristics explicitly emerged

from a grounded approach (further discussed in the “Materials and methods” section) as

codes and can be used to design or plan and evaluate future efforts. Note that the frequency

with which these characteristics were reported is likely underestimated due to the current

research methods: The open-ended survey questions did not explicitly ask about individual

characteristics but instead allowed respondents to volunteer information about whatever stood

out to them as successes.

Increasing diversity across backgrounds, experiences, perspectives, and skills. By pro-

viding approachable introductions on limited time scales, many efforts also reported targeting

diversity (e.g., career stages, demographics, disciplines; Fig 1), and 50% of survey responses

mentioned successfully engaging a diverse audience. Data science often requires individuals to

reach across disciplines. While this diversity sparks exciting research and important discover-

ies, it can also create barriers both to entry and to progress. By offering small modules with

directed foci, ad hoc efforts provide a less daunting environment to data science education

that can empower learners and accelerate individuals’ access to new information and skills.

Fostering technical skills and research. One of the most common successes across ad

hoc efforts seemed to be creating formats that could make a new topic, skill set, and/or techni-

cal method approachable. Ad hoc effort organizers frequently mentioned (68.2% of responses)

having given participants the opportunity for hands-on experience building and practicing

technical skills and research, not just theoretical concepts.

Many of these efforts were specifically designed as introductions to material. University

curricula often leave students choosing between taking a formal course or learning the skill on

their own. Ad hoc education efforts smoothed the spectrum between these options, helping

learners to quickly access new material with expert support. The approachability of tutorial,

“hacker” session, and workshop formats is important not only for individuals new to data sci-

ence broadly but also for those transitioning into new or interdisciplinary areas and awareness

of new methods.

Technical skills require significant practice to refine, and ad hoc efforts supported this

through structured practice (e.g., direct instruction, project-directed learning) and feedback. As

examples, some ad hoc efforts provided supported introductions to new programming libraries

with a tutorial format, while others offered opportunities for more practice through a semester-

long, hands-on, and mentored research project. However, this success requires further investiga-

tion from participants’ perspectives and objective outcomes, as recent work has found null learn-

ing effects [30] and thus contradicts work that found positive effort outcomes [13, 19, 20, 31].

Fostering nontechnical skills. Similarly, many efforts mentioned providing experience in

nontechnical skills (40.9% of responses), such as leading a teaching session at a workshop or

mentoring a group of undergraduates through a research project. While nontechnical skills

like presenting, mentoring, management, and communication are vital to successful careers in

data science, university settings do not always provide supportive environments to build, prac-

tice, and refine these skills. Ad hoc education efforts gave opportunities to build novel skill sets

commonly seen as outside the scope of standard university curricula.

Building enduring communities that improve research. A large proportion of responses

indicated that efforts had significant participation (40.9% of responses). Many of these

described this participation as building communities around common problems, tools, or

experiences and reported that these communities persisted across multiple versions of the

effort or beyond the effort. Because efforts can attract diverse audiences, many efforts reported

that the newly formed communities included members who otherwise would probably not

have connected. In addition to the broad benefits that emerge from being part of a community,

organizers also reported specific productive collaborations that stemmed from certain efforts.
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Lessons learned: Things that didn’t work

While many organizers who took our survey felt that their effort had been somewhat successful,

all but 3 efforts elaborated on room for improvement. The majority of efforts (86.4%) mentioned

specific ways that they could refine logistics for their effort or similar kinds of efforts (e.g., sched-

uling time, organizing materials). However, the organizers’ responses also mentioned more gen-

eral opportunities for improvement. We grouped the general responses into 4 themes.

As with successes, we note that each of these challenges are likely underreported, due to the

open nature of our survey question about effort shortcomings and the lack of participant

reports.

Unclear expectations of participants and organizers. A notable shortcoming was a lack

of sufficiently articulating and communicating mutual expectations a priori. In the survey,

18.2% of responses mentioned some form of struggling to manage participants’ expectations,

but this is likely a low estimate, given that other efforts implied similar issues through the envi-

sioned changes they described for their efforts.

“Participant expectations” included information about what prior knowledge or skills par-

ticipants should have, guidelines about what participants and practitioner-leaders would pro-

vide, and goals for what everyone should gain from participating or leading. Unclear or

insufficient discussions of necessary background, participant roles, and scope of efforts were

reported as leading to frustration and disappointment. For example, organizers reported that

participants without sufficient background information found sessions unapproachable or

intimidating. Similarly, when ad hoc efforts tried to foster mentor–mentee relationships, frus-

tration and disappointment often arose on both sides of the relationship when expectations of

both parties were not clearly discussed at the start of the relationship.

Challenges bridging diverse skill sets and levels. Diversity of attendants was consistently

reported as a goal and positive outcome when achieved. However, with such a breadth of skills,

the most commonly mentioned shortcoming (40.9%) was difficulty in getting everyone on the

same page. Different skill sets and levels made it challenging to present new material at an opti-

mal pace for everyone. Diverse participants also brought diverse expectations for individual

events, which could be hard to satisfy, as has previously been noted by Software Carpentries

[31].

Difficulty cultivating sustained leadership. Despite feeling rewarded by contributing to

educational advancement of participants, 22.7% of responses mentioned that organizers

reported burnout as a serious consideration. Ad hoc efforts are exciting and meaningful con-

tributions to the data science and institutional communities, but they often go unrewarded or

even unacknowledged within traditional academic structures. As a result, organizers struggled

to find additional help or people to continue their efforts, which often drove the future of an

effort into uncertainty.

Difficulty maintaining sustained engagement. Sustaining engagement among partici-

pants was another challenge mentioned in nearly a quarter of responses (22.7%). Eliciting ini-

tial excitement for data science projects and events was easy, but converting that excitement

into regular event attendance, volunteering for presentations, or research output was much

more difficult. Due to the extracurricular nature of ad hoc education efforts, there was often

insufficient incentive to motivate continued engagement for both practitioner-leaders and

participants.

Discussion

Here, we have considered both multiple-choice and open-ended responses from a survey of

organizers of ad hoc education efforts in data science across the MSDSEs. From these, we have
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generated a taxonomy of ad hoc efforts, have created a codebook for extracting themes from

open-ended responses, and have provided a series of lessons learned that emerged from

explicit comments from individual organizers and a broader consideration of the responses as

a whole. Again, the extent to which these lessons have been experienced by efforts is—if any-

thing—underreported because of the open nature of the survey; the pervasiveness of these

(and potentially other) areas of strength and areas for improvement merits further investiga-

tion. In this discussion, we build on these reflections of past work to provide concrete sugges-

tions for future ad hoc efforts. We then turn to consider a number of open questions facing ad

hoc efforts in data science education that arise naturally from our data and articulate some of

the limitations of our work.

Suggestions for ad hoc education efforts

Despite the successes of past ad hoc education efforts, there remain areas for improvement

that can help guide plans for future events. In particular, there is a need for better communica-

tion and more conscious planning. Importantly, although the suggestions listed here are

informed by the survey of MSDSE effort organizers, these suggestions equally apply to all prac-

titioner-leaders, not just those affiliated with the MSDSE initiative, and some have also been

cited as lessons or suggestions in previous work that has looked at individual educational effort

formats. These suggestions may be most valuable to practitioner-leaders from institutions with

lower levels of institutional support and/or smaller existing data science communities, as these

suggestions can help make the most of the available opportunities, time, and resources. Adopt-

ing these suggestions can help improve both the quality of individual ad hoc efforts and the

quality of ad hoc education—and data science practice—more broadly.

Survey participants before and after events. Nearly a third of respondents (31.8%)

reported surveying participants either before or after events and noted the utility of that infor-

mation in shaping their current and future efforts. (Several other respondents noted that they

would like to adopt pre- or postevent surveys in the future, and 13.6% noted regretting that

they did not have success metrics from surveys.)

Surveys prior to events provided leaders and organizers with essential insights for effectively

planning an event. It can help practitioner-leaders set an appropriate pace for tutorials and

projects, help organizers manage prospective expectations, and help organizers decide how

time should be allocated in longer events (e.g., how to partition time between tutorials and

hacking sessions during a hack week) [20]. Participant surveys conducted after an effort are

valuable for gathering feedback for improvement and for gathering metrics of success that

could then be used to evaluate efforts and bolster support for future instances of the effort [8,

13, 20, 24, 30–32].

Communicate goals to manage expectations. Organizers should carefully articulate the

goals of the event to practitioner-leaders before the event to identify the minimum knowledge

or skills that will be required to participate fully in the event. Articulating and communicating

goals and expectations was noted as a challenge in the responses to our survey, consistent with

a number of lessons or suggestions for individual formats identified by previous work [20, 24–

26, 29, 32]. These goals and requirements should then be shared with participants to improve

understanding—and manage expectations—as also noted in related work [32]. If possible, this

information should be prominently shared when soliciting participation so that participants

can take that information into account when deciding whether to join the event, especially for

multiday events like workshops and hackathons.

Communicate necessary prior knowledge. Articulating the effort’s goals and target audi-

ences will help organizers to decide how to manage the tradeoff between required participant
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preparation and the speed and depth of the ad hoc education effort. Additionally, organizers

could identify ways that the participants could prepare for the effort, as suggested by 27.3% of

respondents in our survey. Organizers should include any essential requirements in the

recruitment materials so that participants have a clear understanding of what prior experience

(if any) is needed to benefit from the event and so that participants can arrive prepared for the

effort. It is important to set expected knowledge at an appropriate level, as setting a high bar of

required skills may discourage potential participants with little data science background and

thus decrease diversity.

Engage representatives to foster diversity. Articulation and communication of event

goals are particularly important for efforts that seek to engage diverse audiences. Ad hoc edu-

cation efforts present a fantastic opportunity to creatively reach audiences that are cross-disci-

plinary and underrepresented within data science. However, organizers should actively work

to reach these audiences as leaders and participants, and effective efforts are unlikely to organi-

cally materialize without explicit articulation and dedicated planning. This is reflected by the

challenges faced by some respondents in successfully engaging diverse audiences (18.2%) and

by the near-majority of efforts reporting that they would make changes to address issues of

diversity (45.5%), including one respondent explicitly advocating for diversifying the effort

leadership.

Efforts seeking to reach diverse disciplines or demographics should identify clear steps to

successfully achieve that goal, as related efforts have also reflected [20]. If an effort intends to

target participation by diverse research fields, organizers should reach out to representatives

from those areas early in the planning process, either to include the representatives in the orga-

nizing process or to request feedback on organizational structure. This is especially important

when practitioner-leaders come from more computationally minded fields (e.g., computa-

tional biology) and are reaching out to audiences from less traditionally computational fields

(e.g., social sciences). Partnering with representatives can provide invaluable insights into

engaging and servicing the target audience, including suggestions on material that should be

covered, use-case examples to effectively translate and demonstrate skills, or even help adver-

tising within that community.

Support development of soft skills. Organizers should also consider how practitioner-

leaders will benefit from engaging in the ad hoc effort to help sustain broad engagement of

practitioner-leaders. Many soft skills—such as management, public speaking, presenting, com-

municating, and teaching—are invaluable for any field or career track. Ad hoc education

efforts provide wonderful opportunities for practitioner-leaders to practice these skills, but

additional support for development would benefit the leaders and potentially improve the

incentives for participation. Financial incentives are a possible option, but alternative models

of support may be considered, such as providing constructive presentation feedback from the

audience, suggestions for developing mentor–mentee relationships [25], or organizers to pre-

senters and building camaraderie among mentors. Organizers could even open a dialogue

with potential practitioner-leaders directly to see what might be the most useful benefits to

provide.

Avoid duplication. Conducting duplicate or significantly overlapping efforts at the same

institution is not always the best use of resources. These can generate unnecessary time con-

straints on organizers and individuals who try to participate in too many overlapping efforts.

This may have been of particular concern in our survey, as it targeted the coordinated

MSDSEs, but ad hoc efforts can be cross-institutional, a situation in which this concern could

be exacerbated. It is also relevant to any large institution where, e.g., multiple departments

may rely on ad hoc efforts to teach coding skills. Individuals’ oversubscription to overlapping

efforts can exacerbate problems with follow-through and burnout. The coordination of efforts
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within institutions or cross-institution communities and disciplines remains a difficult but

important concern. It is most acutely felt at institutions with relatively lower levels of institu-

tional support or with relatively smaller data science communities.

Work towards continuity, reproducibility, and scalability. One possible way to help

coordinate education efforts may be by using the tools of scientific reproducibility that have

already become a staple for data science (e.g., open code repositories like GitHub and the

Open Science Framework). By openly sharing these materials, organizers of new efforts can

see what topics have been covered by other efforts and prevent the unnecessary duplication of

efforts by reusing existing materials as appropriate [18, 22, 33]. Efforts that have generated a

stable repository of education materials reported this to be a major achievement and benefit

for future sessions. Some efforts are actively working to address these questions [13], and

future work may seek to document the impact and uptake of shared learning materials.

In addition to providing lasting resources for ad hoc effort participants, adopting open sci-

ence principles may facilitate incorporating particularly relevant and successful ad hoc efforts

into formal curricula components. Using such tools may be most impactful by serving as vehi-

cles to replicate and spread expertise to smaller and less well-funded institutions.

Open questions

The shape of ad hoc efforts will undoubtedly change at the MSDSEs and beyond as data science

matures. As such, many questions remain facing ad hoc education efforts for data science.

Through survey responses and conversations with other data science educators and researchers,

we have identified a few open questions that will likely influence the future of ad hoc efforts at

the MSDSEs and beyond by contributing to conversations at the intersection of ad hoc efforts

and formal data science curricula. The open questions that follow are meant to engage educa-

tion-focused members of the entire data science community as they work together to identify a

range of solutions that can address a variety of institutional, domain, and individual needs.

To what extent will formal educational opportunities that emerge for data science

diminish the need for ad hoc education efforts?. Changes in formal curricula are unlikely

to entirely eliminate the need for any ad hoc efforts. This is evident from the existence of ad

hoc efforts (e.g., informal research projects, summer schools, lecture series) in mature disci-

plines (e.g., biology, physics) and because some strengths of ad hoc efforts have been much

more difficult for formal curricula to achieve (e.g., improving diversity, providing approach-

able introductions). However, the nature and content of ad hoc efforts will undoubtedly

change as formal education efforts in data science grow and as novel formats for curricula are

considered across departments [34]. For example, basic programming skills and model inter-

pretation are being increasingly taught in many departments [5, 6, 8–10], degree programs in

data science are proliferating [12], and some universities are beginning to require introduc-

tions to computer science. Incorporating some of the skills taught in ad hoc efforts into formal

curricula will likely change the balance of ad hoc efforts and curricula, potentially lessening the

need for some ad hoc efforts.

How can we identify the often overlooked institutional infrastructure that already sup-

ports ad hoc efforts?. Although many of the respondents did not explicitly address it, the

institutional infrastructure within and across the MSDSEs has been an essential element in the

successes of ad hoc efforts. As a result, it is important to recognize the invisible infrastructure

that makes this possible at institutions: dedicated co-working spaces that are perfect for these

events, administrative staff that support logistics and communications, a wealth of knowledge

shared freely throughout sibling programs, and funding for scholars across career stages to

work collaboratively. These have been key for the success of the ad hoc efforts run across the
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MSDSEs and are, arguably, the most difficult to reproduce given the financial investment. In

order to expand access to ad hoc data science education, we must identify these invisible con-

tributors to success at high-resource institutions and then attempt to identify solutions that

can accommodate a range of resource availabilities at other institutions.

To what extent should ad hoc efforts facilitate replication at resource-poor institu-

tions?. While ad hoc efforts at individual institutions have provided data science support

for some individuals, it is unclear how to scale efforts not only within institutions but also

between institutions. Generating material and support for implementing efforts outside of

the MSDSEs—especially at institutions with varying resources—is a particularly important

area for consideration. Like the previous open question, addressing these disparities in

resources and outcomes will take a concerted effort across a range of institutions. Ultimately,

creating a variety of different ad hoc data science education effort models may allow lower-

resource institutions greater flexibility in identifying models that can work for them. How-

ever, answering this question will take additional work and must incorporate more diverse

voices: The institutions that we have considered share similar profiles as large research insti-

tutions and therefore may not have lessons that generalize to institutions with different

profiles.

Limitations and future directions

This work is a first step in examining the ad hoc data science education landscape, so it has

various limitations that provide avenues for future work.

First, our survey targeted only efforts held at the MSDSEs, which are coordinated efforts at

institutions of somewhat similar profiles (i.e., large research universities in the United States).

Thus, lessons learned might need adaption for efforts at institutions of different profiles with

different focuses, resources, and communities. Further work is needed to fully generalize to

data science education beyond the MSDSEs. For example, the high level of targeted investment

in data science through the mission of the MSDSEs—along with the general level of resources

available at the host institutions—present a certain set of ad hoc effort opportunities, and there

may be unique pressures, concerns, and opportunities at institutions with different profiles

that cannot be readily seen in our survey. Future work should target a broader range of institu-

tions to compare and contrast their needs and experiences.

Second, our work is grounded in a largely open-ended survey of organizers of these events

and is limited to their subjective perceptions, which may be biased. We were concerned about

potential positive bias in reporting retrospectives, so we designed the survey to try to produce

a holistic and balanced view of each event: Out of the 6 open-ended questions asked, only 1

question explicitly asked organizers to describe their successes, while 3 questions were

designed to get organizers to think about limitations of their effort. However, organizers may

still have unintentionally responded more positively due to their personal involvement in the

efforts, as has been established by behavioral research on response bias (e.g., [35]).

Third—and related to the previous limitation—we did not collect data on participants’ sub-

jective experiences or on objective learning outcomes. Some previous work has looked to

empirically examine participants’ perceptions and learning outcomes (e.g., [13, 19, 20, 30,

31]), and the present work is intended to complement that work. Future work should attempt

to bridge these 2 perspectives quantitatively and qualitatively. Special attention should be

paid to whether the organizers’ goals and perceived benefits match participants’ expectations

and experiences. These follow-ups are especially important given recent mixed findings on

whether short-format trainings—such as boot camps—are [13, 19, 20, 31] or are not [30]

effective.
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Finally, shortcomings (and successes) are likely underreported because codes were derived

from responses to open-ended questions. A more accurate count might come from creating a

survey that asks for explicit ratings of closed-form questions. Future work should identify con-

verging ways of evaluating ad hoc efforts by bridging qualitative and quantitative methodolo-

gies. One starting point may be to leverage the codebook developed here to inform closed-

form surveys or to continue to code open-ended responses.

Conclusion

While ad hoc efforts (like volunteer research experience and seminar series) have broadly been

a staple of academic institutions, ad hoc efforts have played a particularly important role

within data science education. The role of ad hoc efforts will likely continue to rapidly evolve

with the evolution of data science itself—especially as the field grows to encompass formal

courses, degrees, divisions, and departments.

We explored a variety of ways that ad hoc education efforts have attempted to complement

formal curricula, along with important considerations that can increase the likelihood that

these efforts meet their desired impacts. Additional qualitative and quantitative work is

needed, but our discussion of the lessons learned across the MSDSEs will allow future efforts

to improve upon past efforts and to benefit a wider audience.

Here, we developed a new codebook that may be used to ground future evaluations of ad

hoc efforts. We then used that codebook to extract insights, suggestions, and recommenda-

tions that will allow active and future practitioner-leaders from a variety of fields—in computa-

tional biology and beyond—to improve their educational outreach. By presenting this

synthesis of ad hoc education efforts in data science to practitioner-leaders, we seek to inform

conversations about refining these efforts, understanding their place in data science education,

and shaping the future of data science education.

Materials and methods

We sought to compile an understanding of what types of ad hoc efforts have been developed

and to extract a series of lessons learned from these responses.

Efforts surveyed

To find a diverse yet tractable group of ad hoc efforts to survey, we considered the efforts

undertaken across the MSDSEs. We sought to include every educational effort held at an

MSDSE that did not necessarily provide any course credit and was not required to complete a

degree program. In some cases, students could apply for independent study to receive credit

for extended (e.g., semester-long) ad hoc efforts, but this was not universally the case.

The MSDSEs were the Center for Data Science at NYU (https://cds.nyu.edu), the Berkeley

Institute for Data Science at UC Berkeley (https://bids.berkeley.edu), and the eScience Institute

at UW (https://escience.washington.edu). These sibling initiatives were charged with advanc-

ing the intersection of domain sciences and data science, making them a prime test case for

understanding the state of ad hoc education efforts today.

Data collected

To learn from the MSDSEs’ ad hoc education efforts, we contacted the organizational leads of

the MSDSE environments to inquire about what events they already knew were happening,

compiled a preliminary list of efforts held, and contacted organizers of those events with an

online survey. We sought to include every educational effort that was not designed to offer
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course credit or be needed to complete a degree program at one of the universities. Links to

the survey were also sent via email to general listservs at each of the 3 MSDSE institutions.

These complementary approaches allowed us to target known organizers of known efforts and

to solicit responses from a broader range of efforts and individual organizers.

The survey consisted of 2 multiple-choice questions about goals and audiences (see

Table 3), questions for logistics, and 6 open-ended questions targeting 4 main areas: (a) the

description of the effort, (b) its strengths and weaknesses, (c) lessons learned, and (d) sugges-

tions for future efforts. The exact wording for these open-ended survey questions is provided

in Table 4. This survey was designed to get organizers to think critically about their effort and

elicit a balanced perspective on each effort in context.

In addition to quickly incorporating and disseminating emerging methods and tools

through focused efforts that deploy quicker than curricula, ad hoc education efforts can meet

other needs that have not been fully served by curricula. While many universities are innovat-

ing to address data science education (including initiatives at UC Berkeley [http://data.

berkeley.edu/], NYU [http://datascience.nyu.edu/], and UW [http://escience.washington.edu/

education/]), we identified 4 key areas in which ad hoc education efforts could strive to sup-

port community needs: improving coding ability, improving practical knowledge of statistical

methods, exposure to research, and mentoring and career development. Similarly, we identi-

fied 9 possible audiences that ad hoc efforts might target. Respondents were able to indicate

which, if any, of these audiences and goals they had in mind, and they were able to input addi-

tional audiences and goals that we did not provide to specify effort intentions.

Table 3. Multiple-answer survey questions presented to ad hoc education effort practitioner-leaders.

Survey Question Options

1 What was the goal of the effort? • Improve coding ability, including ability to use libraries and new

tools

• Improve knowledge of statistical methods

• Exposure to research

• Mentoring or career development

• Other (open-ended)

2 What was the target population of your

effort?

• None—no specific target group

• Undergraduate students

• Graduate students

• Postdocs

• Diverse academic disciplines

• Low coding experience

• Diverse demographics (i.e., including individuals from

underrepresented groups)

• Students interested in academia

• Students interested in industry

• Other (open-ended)

https://doi.org/10.1371/journal.pcbi.1007695.t003

Table 4. Open-ended survey questions presented to ad hoc education effort practitioner-leaders.

Survey question

1 What was successful about the effort?

2 What was unsuccessful about the effort?

3 What would you change about this effort?

4 What suggestions for future efforts do you have as an outgrowth of this effort?

5 Do you have any other lessons to share?

6 Do you have any thoughts about the future of ad hoc education efforts (e.g., gaps to be filled, suggestions for new

formats, efforts that are becoming less useful)?

https://doi.org/10.1371/journal.pcbi.1007695.t004

PLOS COMPUTATIONAL BIOLOGY Ad hoc efforts for advancing data science education

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007695 May 7, 2020 14 / 18

http://data.berkeley.edu/
http://data.berkeley.edu/
http://datascience.nyu.edu/
http://escience.washington.edu/education/
http://escience.washington.edu/education/
https://doi.org/10.1371/journal.pcbi.1007695.t003
https://doi.org/10.1371/journal.pcbi.1007695.t004
https://doi.org/10.1371/journal.pcbi.1007695


Analysis

To extract lessons learned and suggestions for ad hoc efforts, the first and second authors used

inductive coding research methods from ethnography and other qualitative research to analyze

practitioner-leaders’ open-ended responses through close, iterative contact with the data [27,

28, 36]. These standard methods in qualitative research allow for grounded and inductive

insights from open-ended data or a mix of open-ended and structured data (e.g., [37, 38]).

The first and second authors began by reviewing the responses together. The first author

then created an initial codebook of relevant themes taken from considering the answers holis-

tically. The first and second authors then worked to refine the codebook together through

another round of independent coding while discussing the codebook. The 2 authors retained

Table 5. Codebook used to code open-ended responses from survey respondents and statistics on how many

responses mentioned a code. Codes were developed using grounded qualitative methodology [27]. Because the survey

relied on open-ended questions, the ratings provided here are likely lower than what organizers would report with spe-

cific multiple-choice (e.g., Likert-style scales) or polar (e.g., yes/no, true/false) questions.

Category Code text Number (%) of

responses

Suggestions Leaders surveyed participants before or after the event (before: to assess

expectations, skill level, etc.; after: to assess improvement opportunities, goal

attainment, etc.)

7 (31.8%)

Successes Leaders reached or engaged diverse skill levels and/or disciplines; event had

accessible format

11 (50%)

Successes Participants learned technical skills (including reproducibility) and/or tools;

attendance led to improved research

15 (68.2%)

Successes Participants had nontechnical benefits: learned soft skills (e.g., ethics,

communication, presenting opportunity, learning how to learn), got

mentored, formed collaborations

9 (40.9%)

Successes Leaders created reusable educational outputs for reproducing effort or similar

efforts

3 (13.6%)

Successes Leaders reported a feeling of significant participation: i.e., lots of participation

at the time of the event or lower participation over a long period (e.g.,

community building)

9 (40.9%)

Shortcomings Leaders felt insufficient participation/momentum for the effort (e.g., low

engagement from participants, insufficient preparation by leaders, or

insufficient momentum/investment in continuing effort)

5 (22.7%)

Shortcomings Leaders had challenge bridging diversity in skill sets, preparation level,

experience, etc.; leaders reported feeling it was hard to get everyone on the

same page

9 (40.9%)

Shortcomings Leaders struggled to manage expectations of participants 4 (18.2%)

Shortcomings Leaders reported that they didn’t gather any/enough metrics to justify success

of effort and wish they had

3 (13.6%)

Shortcomings Leaders had insufficient bandwidth to support unsupported effort in the

short or long term (e.g., leaders were exhausted)

5 (22.7%)

Shortcomings Leaders reported lack of success in achieving some kind of diversity (e.g., skill

sets, demographics, career stages, disciplines)

4 (18.2%)

Changes Leaders reported that they did or would change something format specific

(e.g., reorganization, logistics) for a future version of this effort or similar

efforts

19 (86.4%)

Changes Leaders did or would like to address issues of diversity in future efforts (e.g.,

broadening skill levels, addressing imposter syndrome), including by

recruiting and selecting to engage more diversity (in participants and

leadership)

10 (45.5%)

Changes Leaders reported that they did or could ask future participants to prepare for

the effort in some way (e.g., ask for their expectations beforehand, assess

levels of preparedness beforehand)

6 (27.3%)

https://doi.org/10.1371/journal.pcbi.1007695.t005
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the codes that both authors individually rated as applying to at least 2 distinct efforts. The first

and second authors then coded the analyses together to come to full agreement on all final

codes that are discussed here, similar to previous work in this area [39]. The final codebook

and resulting codes formed the foundation for the analyses presented here (see Table 5); as

noted earlier, we see the the resulting codebook as a product of this research that could be use-

ful for future studies exploring ad hoc efforts [39].
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