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ABSTRACT

Somatic genomic copy-number alterations can lead
to transcriptional activation or inactivation of tumor
driver or suppressor genes, contributing to the ma-
lignant properties of cancer cells. Selection for such
events may manifest as recurrent amplifications or
deletions of size-limited (focal) regions. While meth-
ods have been developed to identify such focal re-
gions, finding the exact targeted genes remains a
challenge. Algorithms are also available that inte-
grate copy number and RNA expression data, to aid
in identifying individual targeted genes, but speci-
ficity is lacking. Here, we describe FocalScan, a tool
designed to simultaneously uncover patterns of fo-
cal copy number alteration and coordinated expres-
sion change, thus combining both principles. The
method outputs a ranking of tentative cancer drivers
or suppressors. FocalScan works with RNA-seq data,
and unlike other tools it can scan the genome un-
aided by a gene annotation, enabling identification of
novel putatively functional elements including lncR-
NAs. Application on a breast cancer data set sug-
gests considerably better performance than other
DNA/RNA integration tools.

INTRODUCTION

Tumors develop due to acquisition of somatic genomic
changes that alter the activity or function of cancer driver
genes. Identification of genes affected by such changes can
thus improve our understanding of oncogenesis and aid in
the development of novel therapies (1). A complicating fac-
tor is that most somatic alterations in tumors are nonfunc-
tional passenger events that do not confer selective advan-
tages to tumor cells.

One important mechanism by which genes are altered
during tumor development is through copy number aber-
rations, i.e. amplifications or deletions of genomic regions.
Frequently, these aberrations can affect entire chromosome
arms, but it may also be that events spanning shorter re-

gions recur at roughly the same position in multiple inde-
pendent tumor samples (‘focal regions’). Such patterns indi-
cate selection for altered expression of genes that may drive
oncogenesis (oncogenes) or hinder cancer growth (tumor
suppressors). Tools have therefore been developed to find
these frequently altered regions (2,3). However, the focal re-
gions identified by existing tools often span a large number
of genes, and many times it is not clear which gene is the
target, that is, mediates the selective advantage provided by
a particular alteration. While it seems intuitive that the gene
closest to the most recurrently altered position in a region
should be the main target, this is not always the case (4).

In order for a copy number change to confer a selective
advantage, the expression level of some particular target
gene also needs to be altered. Genes that, in a recurrently
altered region, fail to show consistent expression changes in
relation to copy number changes, e.g. due to lack of expres-
sion in some samples, are thus less likely to be the drivers
upon which selective forces are acting in this region. There-
fore, it is attractive to integrate expression and copy number
data when searching for driver candidates. A common way
of doing this is through the calculation of a correlation co-
efficient between changes in copy number and RNA (5,6).
This favors either a linear (in the case of the Pearson coef-
ficient) or a general increasing/decreasing relationship (for
instance the Spearman coefficient) between the two types
of alterations. Thus, if a gene is to be deemed of any po-
tential importance, it is required to be consistently overex-
pressed when amplified, or underexpressed when deleted.
Other methods have been developed that examine alternate
measures of association (7,8).

Some of the methods that integrate copy number and ex-
pression data have recently been compared using both sim-
ulated and real data (9,10). Unfortunately, performance has
been found to be lacking, especially with regards to speci-
ficity. A likely contributor to this lack of specificity is that,
while driver genes are expected to show coordinated DNA
and RNA change, such correlations can be expected also
for many non-causal genes, and positive correlation is thus
not sufficient to conclude a functional contribution. Addi-
tionally, unlike DNA-only tools such as GISTIC (4), the
width (focality) of copy number changes is not taken into
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account by current integrative methods. Furthermore, the
degree of recurrence across multiple patients is not always
considered. It is also conceivable that the driver of an aber-
ration can be an un-annotated gene, for instance producing
a long non-coding RNA (lncRNA). There is thus a lack of
integrative approaches that can leverage the full possibili-
ties of modern transcriptome sequencing technologies for
inquiries into copy number altered regions.

Here, we propose a strategy for uncovering focally copy
number altered loci that simultaneously show coordinated
changes in expression, thus drawing strength from both
strategies. Rather than a two-step approach, the method
relies on an integrative metric that rewards focality, recur-
rency and coordinated RNA change. This metric can be
used at the level of genes or in an annotation-independent
manner. We apply this tool, named FocalScan, to a large
breast cancer data set from The Cancer Genome Atlas
(TCGA), and compare its performance to some existing
programs for copy number/expression integration.

MATERIALS AND METHODS

A score that rewards recurrent coordinated focal copy number
and expression changes

Positive selection acting on a specific cancer driver gene may
lead to copy number alterations that recur in many inde-
pendent tumor samples. For these changes to be functional,
they should also be associated with a consistent effect on
the expression of this gene. In addition, focally altered re-
gions are more informative about likely driver genes than
arm-length aberrations. To find genes that fulfill these three
criteria, a scoring metric was constructed that rewards re-
current coordinated focal copy number and gene expression
changes. This metric is applied either to genes or small ge-
nomics tiles/segments.

Copy number change is defined here as the log2-
transformed ratio between the copy number of a genomic
position in the sample and in the diploid scenario (two
copies), as indicated in segmented copy number profiles re-
quired as input data. Segmented copy number levels are
remapped by FocalScan onto annotation features (genes or
genomic tiles, see below). Expression change of a gene/tile
in a given sample is defined relative to the median expres-
sion of all samples that are diploid. Diploid samples are, by
default, defined as those with absolute copy number change
less than 0.1 at the position of the particular gene/tile be-
ing examined (changes less than 0.1 are often artifactual in
nature (4)). The resulting expression change ratio is then
log2-transformed to obtain a measure comparable to that
of the copy number change. Prior to calculating the ratio,
a pseudo value is added to avoid division by zero. In or-
der for the pseudo value to be scale/unit independent, it is
by default scaled in relation to the median level of all non-
zero expression values in the data set. A scale factor can be
given to further adjust this value relative to the median. We
found that a scale factor of 10 gave the best performance on
average across different cancer data sets, which was there-
fore selected as the default. Expression read counts supplied
by the user are, by default, normalized using the median of
the top 5% most highly expressed genes or genomic tiles, to

compensate for cases where the reads of a few genes domi-
nate the data. Other options also exist, such as library size
normalization. It is also possible to use pre-normalized gene
expression values when performing a gene level analysis.

A score is calculated, for each gene/tile, as the dot prod-
uct between the two vectors that contain the above de-
scribed log2 ratios for all samples (Figure 1A). To account
for the focality of each copy number change, the copy num-
ber data is first subjected to a filtering procedure. This pro-
cedure acts as a high-pass filter by subtracting long copy
number alterations. For a given genomic position, the am-
plitude is compared to those of two nearby positions, one
upstream and one downstream, a fix genomic distance away,
using the formula depicted in Figure 1B. This fixed distance
is termed ‘window size’ and essentially acts as a length-
based cutoff to distinguish long from focal events (by de-
fault 10 MB is used, although this parameter is user ad-
justable).

FocalScan allows the use of two separate analysis strate-
gies: gene-based (Figure 1C, left) and tile-based (Figure 1C,
right). The tile-based analysis scores the genome indepen-
dently of any reference annotation. It can thus be used to
discover potentially interesting changes also in intergenic
regions (for instance, relating to novel lncRNAs). For this
purpose, by default the genome is divided into 1000 bp over-
lapping tiles. A score is then calculated for each tile, as de-
scribed above. The gene-based analysis instead calculates a
score for each gene, as defined in a user provided genome
reference annotation.

Positive scores indicate focal amplifications that are asso-
ciated with increased expression or focal deletions that are
associated with decreased expression. In some cases, neg-
ative scores can be found, suggesting an anti-coordinated
relationship: amplification events associated with decreases
in expression levels or deletions associated with increased
expression. Large score values indicate that the coordinated
changes are highly recurrent and/or that focal copy number
aberrations have a large effect on expression.

As input, the tool expects gene expression read counts
and segmented copy number data derived from high-
density SNP/copy number arrays or genomic sequenc-
ing. Read mapping, gene/tile expression quantification and
copy number segmentation are steps handled by external
tools, although BED files are provided to simplify expres-
sion quantification using, e.g. bedtools (11). Several tools
are available for copy number segmentation, including CNV
Workshop (12) (arrays) and cn.MOPS (13) (sequencing).

Peak detection algorithm

Driver genes in copy number altered regions are assumed by
FocalScan to show consistent coordination between copy
number status and gene expression levels, but we can also
expect a general trend of positive correlation between copy
number status and gene expression. For this reason, drivers
and surrounding passengers will form clusters/peaks of co-
ordinated alteration. To select candidates on a genome-wide
scale, a peak detection and gene prioritization algorithm
was implemented. The construction of such an algorithm
presented a number of challenges: First, peak widths can-
not be assumed to be constant across the genome; Second,
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Figure 1. Illustration of the FocalScan method and output. (A) Overview of the method workflow. (B) Illustration of the ‘high-pass’ filter employed to filter
out arm-length events. For each genomic position and sample, the copy number amplitude with minimal absolute value at two positions, a fix distance
apart, is subtracted from the copy number amplitude at the current position. (C) Visualization of score tracks spanning the ERBB2 locus, resulting from
gene level analysis (left) and tile-level analysis (right). Red indicates amplification, blue deletion. CNA, copy number amplitude (change relative diploid).

coordination scores are highly variable from one position
to another; Third, there are multiple scale levels on which
peaks may be defined: depending on the desired sensitivity,
a given event may constitute either an independent peak or
a sub-peak to a stronger nearby driver.

To deal with these challenges, an algorithm was devel-
oped that considers the genomic score pattern on different
‘scale levels’ (taking some inspiration from another recent
multi-scale approach (14)). The lowest, most granular, scale
level defines a position as a peak if it has a larger score
than its two neighbors. The next (higher) scale level uses the
peaks defined on the previous level as input and again de-
fines a peak if it is larger than its two neighbors, etc. Thus,
on each successive level, sub-peaks merge into larger ones
until only one peak dominates each chromosome (the ‘max-
imal’ scale). The strongest candidates persist across multi-
ple scales and no prior assumptions regarding peak widths
have to be made. An appropriate scale that picks out the
most dominant genes/tiles across the genome can then be
selected relative to the maximal one. As default, a scale cor-
responding to 70% of max is used. A lower one can be se-
lected for increased sensitivity or a higher one for a more
conservative result. Amplifications and deletions are ana-
lyzed separately this way and compiled into the final ranked

list of candidates. The solution is illustrated in Supplemen-
tary Figure S1, where peaks detected at the 70% scale level
(Supplementary Figure S1A) are contrasted with those de-
tected on the more sensitive 60% level (Supplementary Fig-
ure S1B).

Data retrieval, pre-processing and method comparison

RNA-seq reads for each cancer type, aligned to the hg19
reference, were downloaded in BAM format from the on-
line repository of TCGA (Cancer Genomics Hub: https:
//cghub.ucsc.edu). The reads were further binned to either
genes or tiles to quantify expression levels. For gene-level
expression quantification, low quality alignments were first
filtered out with samtools and the flag ‘-q 1’. Then, htseq-
count (15) was used with the parameters ‘-m intersection-
strict’ (a read is mapped to the intersect of all features
spanning any read position) and ‘-s no’ (do not assume
a stranded sequencing protocol). As reference annotation,
GENCODE v17 (16) was used. For tile-level expression
quantification, the bedtools coverageBed program (11) was
used with ‘-split’, ‘-counts’ and a tiled genome as refer-
ence. Segmented (with circular binary segmentation) copy
number data filtered for germline copy number alterations,

https://cghub.ucsc.edu
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originally measured on Affymetrix SNP6 arrays, were also
downloaded from TCGA.

The performance of FocalScan was compared with three
other tools, pint (17), edira (18), DR-Correlate (5). In order
to make the data compatible with these, some additional
pre-processing steps were required. For pint, the documen-
tation stated that the data should be approximately Gaus-
sian. As such, gene read counts were library size (‘RPM’)
normalized and log2-transformed. A pseudo value of one
was added to avoid issues with log transforming zero (val-
ues based on median expression, as with FocalScan, were
also evaluated, without much difference in performance).
Copy number levels were given in log2-ratio format. For
DR-Correlate, the documentation did not give any spe-
cific instructions for pre-processing. The data were there-
fore library size normalized and log2 transformed (adding
a pseudo value equal to median non-zero expression). Sim-
ilarly, copy number data were given on log scale (non-
transformed data and other pseudo values were also eval-
uated, without noticeable performance differences). For
edira, a specific function exists that takes ratio format data.
Therefore, gene expression ratios were calculated relative to
the median of diploid samples as described above for Fo-
calScan. Again a pseudo value was added to avoid division
by zero (median expression across the data set, only consid-
ering genes with reads). Copy number data were provided
on log2 scale. In addition, since not all of the tools could
handle missing values in the copy number data, genes with
more than 10% missing values were removed and remain-
ing cases were set to zero. Ranked gene lists were then cal-
culated, aided by the comparison framework developed by
Lahti et al. (9). Default parameters were used for all meth-
ods, including FocalScan.

RESULTS

A tool for uncovering recurrent focal DNA alterations coor-
dinated with expression

We implemented a computational tool (FocalScan) that
combines DNA copy number and RNA expression data
from tumors for the purpose of identifying candidate can-
cer drivers, which aims to address shortcomings in exist-
ing methodology. FocalScan rewards genes or genomic re-
gions where many tumors show coordinated changes in
DNA copy number and RNA expression, and where DNA
changes at the same time are focal/narrow (Figure 1A; Ma-
terials and Methods).

Briefly, to account for the size/focality of affected regions,
a filter is applied that subtracts arm-length size events to
favor focal copy number changes using a windowing ap-
proach (essentially a ‘high pass’ filter, Figure 1B). Next, in
order to detect changes in DNA and RNA amplitude that
are coordinated as well as recurrent, FocalScan next calcu-
lates the dot product between copy number changes (rel-
ative the diploid state) and expression level changes (rela-
tive a reference set of samples that are diploid at a given
position) across all included tumors. This score rewards
events that are recurrent (more terms are added to the sum)
and show large equally directed changes in both quantities
(larger terms are added), while at the same time being focal

at the DNA level (surviving the high pass filter). In sum-
mary, for a given locus, a high score indicates a highly re-
current focal copy number event where copy number gain is
associated with prominent RNA induction or, conversely,
copy number loss is associated with strong RNA reduction.

FocalScan is designed to be used with RNA-seq data
and, similar to existing tools, can score and assess individ-
ual genes with the help of a user provided gene annotation
file (Figure 1C, left). However, it also gives the option to
evaluate genomic regions unaided by a gene annotation,
achieved by dividing chromosomes into partially overlap-
ping genomic tiles (by default 1000 bp). This feature makes
it possible to search for novel, non-annotated, transcribed
elements, such as long noncoding RNAs, with potential
roles in cancer development (Figure 1C, right). The results
are presented in the form of a ranked list with statistics for
each locus examined (gene or tile). In addition, a peak de-
tection algorithm is employed to produce a reduced list of
candidate driver loci, to account for genomic regions where
multiple signals cluster closely together (see Materials and
Methods). Results are also written to .wig files for visualiza-
tion with compatible genome browsers including IGV (19).

FocalScan discovers known cancer genes and performs favor-
ably compared to alternative methods

In order to test our method, we applied FocalScan to a
set of 971 breast invasive carcinoma (BRCA) samples from
TCGA (20). The data were pre-processed as described in
Materials and Methods. To compare our results to other in-
tegrative methods, we identified additional tools that were
applicable on segmented copy number data from high-
density SNP arrays and RNA-seq data, and that did not
require a separate data set of normal tissue samples. The
additional methods were required to have available docu-
mentation, be open source and to execute without errors
upon following the provided instructions. Three tools were
found to be suitable: ‘edira’ (18) (which uses a modified cor-
relation coefficient), ‘pint (SimCCA)’ (17) (based on simi-
larity constrained canonical correlation analysis) and ‘DR-
Correlate’ (5) (Pearson or Spearman correlation, or a t-test
based method; Pearson correlation was used in this study).
Although other methods are available, their relative perfor-
mances have been studied previously (9,10,21).

We next assessed the degree of enrichment of known can-
cer genes among top ranked hits nominated by the differ-
ent tools, using a list of known cancer drivers. The list was
compiled from the databases Cancer Gene Census (CGC)
(22) and intOGen (23). While all methods had enrichments
higher than what would be expected by chance, we found
that FocalScan performed considerably better than the ref-
erence methods based on this metric (Figure 2A). A total
of 70% of the top 10, 35% of the top 20 genes, and 25% of
the top 100 genes overlapped with known cancer genes, to
be compared with 20%, 10% and 6%, respectively, for pint,
which scored best among the reference tools. The propor-
tion known cancer genes discovered by FocalScan among
the top 100 genes was significantly higher (Fisher test; p =
0.016 versus pint, p = 6.6 × 10−5 versus edira and p = 6.5
× 10−4 versus DR-Correlate) than for the other three meth-
ods.
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Figure 2. Performance comparison results. (A) Cumulative proportion known cancer genes across the ranked gene lists obtained using FocalScan, pint,
DR-Correlate and edira. ‘Random’ indicates the proportion of cancer genes expected by chance. (B) Overlaps among the top 100 genes found by each
method, with known cancer genes indicated in parenthesis. (C) Cumulative proportion of known cancer genes obtained with rankings based on FocalScan
score (‘FS’) with (‘HP’) and without high-pass filtered copy numbers, as well as peaks detected based on summed copy number amplitudes alone (with and
without filter) and Spearman correlation between filtered copy number and expression changes. CNA, copy number amplitude (change relative diploid).

Among the top 100 ranked genes found by FocalScan,
only two (WHSC1L1, ADIPOR1) were identified by more
than one method (Figure 2B). Of these, WHSC1L1 is a
known driver. The only genes co-discovered exclusively by
the other methods were VPS4A, DDX19A and COG9, none
of which are known drivers. Table 1 lists the top ten ranked
cancer gene candidates suggested by FocalScan. Seven
of these, ERBB2, CCND1, WHSC1L1, EGFR, IGF1R,
FGFR2 and CCNE1 are cancer genes according to either
CGC or intOGen. Notably, these ten genes were outliers not
only in terms of enrichment, but also in terms of FocalScan
score, which dropped sharply beyond this rank (Supplemen-
tary Figure S2). Additionally, we compared performance on
data from 20 other cancer types characterized by TCGA
and found that FocalScan offered improved performance
in the vast majority of cancers (Supplementary Figure S3),
with the exception of adrenocortical carcinoma (ACC) and
thyroid carcinoma (THCA).

To investigate how the properties unique to FocalScan
contributed to the result, we compared known cancer gene
enrichment results from FocalScan to those obtained us-
ing the following four alternative scoring metrics: Spear-
man correlation instead of FocalScan score (dot product),
absolute sum of copy number amplitudes, absolute sum of
copy number amplitudes with focality filter and FocalScan
score without focality filter. The comparison was done both
with (Figure 2C) and without (Supplementary Figure S4A)
peak detection on the resulting genome-wide score peaks.
We found that both the focality filter and the dot prod-
uct approach contributed to elevating the performance of
FocalScan above the alternatives. The window size of the
focality filter, a tunable parameter in FocalScan, was not
found to have a large effect on performance (Supplemen-
tary Figure S4B). In general, different peak detection scale
levels (see Materials and Methods) also performed similarly
in terms of known cancer gene enrichment among the top
ranked genes (Supplementary Figure S4C).

While CGC/intOGen enrichment should be useful as an
indirect measure of overall performance (24), it should be
noted that true positive cancer driver genes may be miss-

ing in these databases. Among the top 10 genes nominated
by FocalScan, we note that TRAF4 (rank 5), while absent
in CGC/intOGen, has been shown to drive breast cancer
metastasis (25) and was initially identified as overexpressed
and amplified in breast cancer (26). Likewise, PHGDH
(rank 8) is a known target of focal amplification in breast
and other cancers (27). Taken together, we find that the
list of top candidates in breast cancer is strongly enriched
for known cancer genes, supporting the usefulness of Fo-
calScan for nominating likely drivers.

Transcribed intergenic regions associated with genomic aber-
rations

Having shown that the gene-centric approach gives sensi-
ble rankings of known cancer genes, we next applied the
tile-based method to the same breast cancer data set in
order to identify putative unannotated altered genes. The
top ranking genomic peaks detected using this approach
largely overlapped with the top candidates from the gene-
centric analysis (Supplementary Table S1). Cases of dispar-
ity could be due to, for instance, uncertainty of read ori-
gin when two genes overlap. Multiple intergenic peaks were
additionally detected (Supplementary Table S1, rows with-
out gene names), including a strong signal in between ETV6
(involved in tumorigenic rearrangements in several types
of cancer (28–30)) and the neighboring BCL2L14 (origi-
nally thought to have pro-apoptotic activity (31), which has
since been refuted (32)) on chromosome 12 (Figure 3A).
Raw read data from the tumors, as well as tissues in the
Human BodyMap 2.0 compendium (accessed via Ensem-
ble (33)), revealed an approximately 2.5 kb mono-exonic re-
gion with elevated read coverage (Figure 3A). Expression
was higher in focally amplified tumors than in those hav-
ing broad amplification of this locus (Figure 3B, p = 1.27 ×
10−10 with a Wilcoxon rank-sum test). A pan-cancer com-
parison showed that these focally amplified breast cancer
tumors accounted for the highest expression levels of this
RNA observed across 19 TCGA cancer types, although the
median level was higher in some other cancers (Figure 3C).
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Table 1. Top ranked genes in breast cancer samples from TCGA

Rank Gene symbol Score Sum CNAHP # Amp. # Del. ρ P

1 ERBB2a 943.9 263 142 5 0.312 2.36E-23
2 CCND1a 446.9 220 197 11 0.370 7.77E-33
3 WHSC1L1a 441.0 202 170 39 0.327 1.10E-25
4 EGFRa 129.6 21 16 2 0.025 0.444
5 TRAF4 118.4 81 108 15 0.210 4.75E-11
6 IGF1Ra 116.8 27 38 15 0.128 6.14E-5
7 FGFR2a 96.9 25 24 5 0.018 0.574
8 CCNE1a 84.5 27 37 22 0.085 0.008
9 PHGDH 80.5 21 37 16 0.032 0.314
10 AIM1 68.8 24 31 3 0.063 0.050

aKnown cancer gene (Cancer Gene Census and/or intOGen).
‘Sum CNAHP’: Summed filtered copy number amplitide (change relative to diploid). ‘# Amp.’: Number of samples with amplification. ‘#Del.’: Number
of samples with deletion. ρ: Spearman correlation coefficient. P: P-value of Spearman correlation.

Translating the sequence of the expressed region using
ExPASy (34) revealed no open reading frames longer than
125 amino acids. A Pfam (35) search showed no matches to
known protein domains, further supporting that the tran-
script is not protein coding, although it could theoretically
code for a small peptide. Additionally, the region appears
conserved across several mammalian species, suggesting it
may have functional relevance (Figure 3A). H3K27Ac mod-
ifications in the region as revealed by ENCODE data (36)
could indicate enhancer activity, possibly implying a role as
an enhancer RNA (Figure 3A).

Additional signals in unannotated regions included a
peak in the long non-coding RNA PVT1 (Supplemen-
tary Figure S5A), known to be co-amplified with, and to
up-regulate the protein levels of, the nearby MYC onco-
gene (37). Notably, this transcribed region was intronic
and did not overlap with annotated PVT1 exons. An ab-
sence of spliced reads at this position indicates that it could
be a novel transcript, rather than an unannotated PVT1
exon. Active transcription and open chromatin structure
was further supported by flanking DNase I hypersensitive
regions and overlapping H3K27Ac peaks (36). Additional
focally amplified intergenic elements of potential interest
are shown in Supplementary Figure S5B–D, on chromo-
some 8 in BRCA, chromosome 12 in glioblastoma multi-
forme (GBM) and chromosome 3 in head and neck squa-
mous cell carcinoma (HNSC). The results show that Fo-
calScan can nominate candidate non-annotated transcripts
with amplification and expression patterns characteristic of
cancer drivers, which may serve as starting points for func-
tional studies.

DISCUSSION

Integrating copy number and expression data has the poten-
tial to reduce the search space when identifying targets of re-
current amplifications and deletions in cancer. FocalScan is
a tool implemented to perform such a joint analysis, thereby
aiding the search for functional alterations across multiple
tumor samples in both annotated and non-annotated DNA
regions. According to our assessments, FocalScan performs
favorably compared to other integrative tools when evalu-
ated on RNA-seq data and segmented copy number data
from TCGA. The results suggest that top ranked genes
should be useful candidates to evaluate as potential cancer

drivers. The tool is primarily intended be used as a stan-
dalone application (as demonstrated here), but could also
be used in conjunction with, e.g. GISTIC, to get further
clues about genes in already established focal regions.

The overlap between the genes identified by the differ-
ent tools was limited, likely due to a generally low sensi-
tivity offered by available copy number/expression integra-
tive methods (9,10). In contrast to FocalScan, enrichment
of known cancer genes was low, and well-known breast can-
cer genes such as ERBB2 and CCND1, were absent. There
was also a lack of consensus among these tools for genes
not discovered by FocalScan. While one may consider com-
bining the results from multiple tools to increase sensitivity,
our results suggest that this could lead to reduced specificity.

FocalScan can be applied in an annotation-independent
manner, enabling discovery of non-annotated intergenic re-
gions showing patterns of coordinated expression and fo-
cal copy number change. This is made possible by the non-
gene-centric nature of RNA-seq. We demonstrate this func-
tionality through application on breast cancer data, high-
lighting one such region on chromosome 12. While exper-
imental validation would be needed to establish a func-
tional role, this demonstrates the ability to identify puta-
tively functional loci that would be undetectable in gene-
centric analyses.

Challenges still remain in accurately separating main
drivers, co-drivers and passengers within a given focally al-
tered region. FocalScan employs a peak detection step de-
signed to select the highest-scoring gene in a cluster of sig-
nals, assuming that each score peak only has one gene un-
der selection. However, it is also possible that multiple genes
(co-drivers) contribute in a given region, and one may there-
fore still wish to investigate other nearby highly scoring
genes. In cases of uncertainty, FocalScan can output auxil-
iary statistics such as mean expression levels and correlation
for each gene to enable additional filtering of results.

In conclusion, we describe a novel bioinformatics
method, FocalScan, designed to suggest candidate driver
genes that are targets of focal copy number alteration in
cancer. This is accomplished by integrating copy-number
and gene expression data across multiple tumor samples.
The tool is capable of fully utilizing the potential of RNA-
seq data to inquire into changes in intergenic regions, aid-
ing the search for novel transcribed elements of cancer rel-
evance.
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Figure 3. Characteristics of the region spanning a putative novel lncRNA.
(A) From top to bottom: FocalScan scores for chromosome 12; tile-based
scores across the indicated zoomed in region; copy number amplitudes
across 971 BRCA tumors; individual RNA-seq reads for TCGA-BH-
A0AV-01A-31R-A115-07; read counts in TCGA-BH-A0AV-01A-31R-
A115-07 across the region chr12:12 178 920–12 193 648; Human BodyMap
2.0 coverage; human expressed sequence tags (ESTs); conservation scores
for rhesus, mouse, dog and elephant; enrichment of H3K27ac modifica-
tions from ChIP-seq data. (B) Expression of chr12:12 184 830–12 187 738
in samples without copy number alteration (absolute copy number ampli-
tude < 0.1), broad amplifications (copy number amplitude > 0.1 and copy
number segment longer than 1 Mbp) and focal (shorter than 1 Mbp) am-
plifications. Horizontal black lines indicate median. ‘*’ indicates a signifi-
cant difference according to a Wilcoxon rank-sum test (P = 1.27 × 10−10).
Expression was normalized using the percentile method, as described in
‘Materials and methods’. (C) Normalized expression of this region in 19
cancer types (names abbreviated according to TCGA). Red circles indi-
cate focally amplified samples in BRCA. CNA, copy number amplitude
(change relative diploid).

AVAILABILITY

FocalScan is command-line based and implemented in
MATLAB. The software and accompanying documenta-
tion is available on GitHub at https://github.com/jowkar/
focalscan. It does not require any additional MATLAB
toolboxes, and can be run as a standalone application with-
out any MATLAB installation (for Mac and Linux). The
software has been tested on Mac, Linux and Windows.
Note, however, that the standalone application is restricted
to those platforms that are capable of running the v901

MATLAB runtime. The amount of RAM required is de-
pendent on the amount of samples and on whether a gene-
or tile-level analysis is performed. A gene-level analysis with
1000 samples can be performed on a laptop with ∼8 GB of
memory. A corresponding tile-level analysis requires about
30 GB RAM.

To run FocalScan, input data can be given in several ways.
For gene-level analysis, RNA data can be given in CSV-
format. For both tile and gene-level analysis, RNA data
can also be provided as read count files corresponding to
each sample. For tile-level analysis, only the second op-
tion is available. Copy number data should be given in seg-
mented (‘SEG’) format for both types of analyses. A script
to quantify tile-level expression in included with FocalScan
(requires bedtools). For gene-level analysis, a genome anno-
tation should be given in BED format (GENCODE v17 is
provided by default).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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