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Purpose: Optic nerve damage is the principal feature of glaucoma and contributes
to vision loss in many diseases. In animal models, nerve health has traditionally been
assessed by human experts that grade damage qualitatively ormanually quantify axons
from sampling limited areas fromhistologic cross sections of nerve. Both approaches are
prone to variability and are time consuming. First-generation automated approaches
have begun to emerge, but all have significant shortcomings. Here, we seek improve-
ments through use of deep-learning approaches for segmenting and quantifying axons
from cross-sections of mouse optic nerve.

Methods: Two deep-learning approaches were developed and evaluated: (1) a tradi-
tional supervisedapproachusinga fully convolutional network trainedwithonly labeled
data and (2) a semisupervised approach trained with both labeled and unlabeled data
using a generative-adversarial-network framework.

Results: From comparisons with an independent test set of images with manually
marked axon centers andboundaries, both deep-learning approaches outperformed an
existingbaseline automated approach and similarly to two independent experts. Perfor-
mance of the semisupervised approach was superior and implemented into AxonDeep.

Conclusions: AxonDeep performs automated quantification and segmentation of
axons from healthy-appearing nerves and those with mild to moderate degrees of
damage, similar to that of expertswithout the variability and constraints associatedwith
manual performance.

Translational Relevance: Use of deep learning for axon quantification provides rapid,
objective, and higher throughput analysis of optic nerve that would otherwise not be
possible.

Introduction

Retinal ganglion cell (RGC) loss is the primary
feature of glaucoma, a leading cause of irreversible
vision loss.1,2 RGCs are also damaged as a part of
several other diseases, including forms of traumatic
brain injury (TBI),3,4 diabetes,5 multiple sclerosis,6,7
and Alzheimer’s disease,8 among others.9 To evalu-
ate RGC damage, the two fundamental options are to
quantify RGC soma in the retina or RGC axons in

the optic nerve, which in health typically have a 1:1
relationship. Because axon damage can occur earlier
than somal loss,10,11 there are many situations in which
it is useful to quantify both. Although the identifi-
cation of RGC-specific markers has helped advance
techniques for quantification of RGC soma,12,13
techniques for quantification of RGC axons, which are
smaller andmore difficult to label, have lagged.Manual
counting of axons has traditionally been adopted by
human experts.14–18 However, manually counting is not
only time-consuming but also prone to vary among
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different experts. Grading of optic nerve appearance
based on pathological features has been useful for
making some advances,19–24 but it is even more subjec-
tive and prone to variation.

First-generation automated approaches for quanti-
fying axons, such as AxonJ,25 AxonMaster,26,27
AxoNet,28 and use of QuPath29 have several known
limitations. For example, AxonJ, which members of
our group were involved in developing, was designed
to recognize axons only in healthy, not diseased, optic
nerves.25 AxonJ has been demonstrated to not perform
well with damaged nerves.29 It is also relevant that
few of the existing approaches were developed using
mice (AxonMaster, nonhuman primates; AxoNet, rats;
QuPath, rats). It can be expected that deep-learning
approaches, especially given their success in numerous
medical application domains,30–35 ultimately would
be more robust. In fact, recently, the deep-learning
approach AxoNet28 has been proposed for providing
axon counts; however, this approach still does not
provide direct segmentation of the axons, and thus
the ability to compute additional potential quantita-
tive measures (such as area distributions) using this
approach is limited.

In the present work, we propose a deep-learning
approach, named AxonDeep, for the segmentation
of optic nerve axons in murine tissue. This work was
motivated by the need to overcome some of the known
limitations of first-generation approaches25 and a
desire to obtain complete segmentations (allowing
quantitative measures of multiple axon measurements,
beyond just counts) that are not possible with the
current tools.28 Our deep-learning architecture is
based on recent work on asymmetric network struc-
tures whereby a deep encoder combined with a light-
weight decoder can provide an improved performance
over symmetric deep-learning architectures for image
segmentation problems with more complex scenes.23,27
In developing AxonDeep, two deep-learning appro-
aches were evaluated: (1) a traditional supervised
approach using a fully convolutional network (FCN)
trained with only labeled data and (2) a semisupervised
approach trained with both labeled and unlabeled data
using a generative-adversarial-network framework.
Using the semisupervised approach to be able also
to take advantage of unlabeled data, in addition to
labeled data, during training was motivated by a need
to help address the challenges associated with the
manual effort required to generate training sets. Both
deep-learning approaches were compared to the AxonJ
approach, with the semisupervised approach found to
have the better overall performance. Thus we introduce
AxonDeep as a deep-learning-based axon segmenta-
tion tool trained based on a semisupervised approach.

Methods

Procurement and Preparation of Mouse
Optic Nerve Specimens for Image Analysis

Mice
Optic nerves (n = 56 nerves, one nerve from each

of 56 mice) were collected from three different mouse
strains modeling various presentations of healthy
and diseased optic nerves: DBA/2J with various
degrees of an inherited age-related form of glaucoma
(n = 11 nerves)36,37; D2.B6-Lystbg-J/Andm (abbrevi-
ated hereafter as D2.Lyst) with healthy optic nerves
(n = 5 nerves); C57BL/6J that had been subjected to
either blast-induced TBI within an enclosed chamber
or sham treatment (n = 27 nerves)3,4,22; and Diver-
sity Outbred (J:DO) with healthy optic nerves but
predicted to exhibit genetic background-dependent
natural variability in optic nerve features (n = 13
nerves).38,39 Tissues in the current study were collected
from mice contributing to prior publications40,41;
however, all data reported herein arise from new analy-
ses performed uniquely for this study. All mice used in
this study were originally purchased from The Jackson
Laboratory (Bar Harbor, ME, USA). All animals were
treated in accordance with the ARVOStatement for the
Use of Animals in Ophthalmic and Vision Research.
All experimental protocols were approved by the Insti-
tutional Animal Care and Use Committee of the
University of Iowa.

Nerve Processing
Nerves were processed for histology as previously

described.17,25,42 In brief, mice were euthanized by
carbon dioxide inhalation with subsequent decapi-
tation. Heads were collected and the skulls opened
before fixation in half-strength Karnovsky’s fixative
(2% paraformaldehyde, 2.5% glutaraldehyde in 0.1 M
sodium cacodylate) at 4°C for 16 hours. Optic nerves
were dissected from brains and drop fixed in the same
fixative for an additional 16 hours at 4°C. Nerves
were stained with 1% osmium tetroxide, dehydrated in
graded acetone (30%–100%), infiltrated and embedded
in resin (Eponate-12; Ted Pella, Redding, CA, USA),
and polymerized in a 65°C oven. Semithin (1-μm)
cross-sections were cut, transferred to glass slides,
stained with 1% paraphenylenediamine, and mounted.

Procurement of Images for Training,
Validation, and Testing of the Network

Light micrographs (physical dimensions: 90.2 ×
67.5 μm; resolution: 4140 × 3096 px) were collected
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Figure 1. Flowchart of datasets, experimental design, and progression of tool development. The total dataset was composed of a diverse
collection of optic nerve specimens from multiple genotypes and strains with natural phenotypic variability (i.e., J:DO), normal health (i.e.,
D2.Lyst) and forms of damage resulting from naturally occurring disease (i.e., DBA/2J) or inducible injury (i.e., TBI blast). Nerves were qualita-
tively graded (grade 1: mild/no damage [green]; grade 2: moderate damage [yellow]; grade 3: severe damage [red]) and divided into cohorts
with 28 nerves for training, 10 nerves for validation, and 18 nerves for final testing. Across each set, the composition of nerves by damage
grade remained consistent for the validation and training sets (ratio of [2:1] grade 1/grade 2 nerve); note that the tool was not designed to
quantitate grade 3 nerves with severe damage and that only unlabeled images as part of the training set included grade 3 nerves. Based on
annotations by expert 1, a total of: 6762 axon centers were marked in the training set, 2668 axon centers were marked in the validation set,
3317 axon centers were marked, and 1103 axons were traced in the final testing set. From the unannotated set of images (n = 50) used in
the training set, there were in excess of 150,000 axons.

from stained optic nerve cross-sections at a total
magnification ×1000 using identical camera settings,
as previously described.17,25,42 In brief, light micro-
graphs were acquired from representative (i.e., a field
not atypical from the rest of the nerve) and nonoverlap-
ping fields from one cross-section of each optic nerve
using an upright light microscope (BX52; Olympus,
Tokyo, Japan) equipped with a CCD camera (DP-72;
Olympus).

Separation of Images for Purposes of Train-
ing/Validation and Testing of the Deep-Learning
Networks

Optic nerve images were divided into two major
subdivisions used for different purposes, a “train-
ing/validation” set and a “testing” set (Fig. 1). To
ensure an equal distribution of nerves with compara-
ble levels of damage between the two sets, a qualita-
tive damage grade was first assigned to each nerve by
consensus among a panel of three independent graders

(1 = mild or no damage, 2 = moderate damage, and
3 = severe damage), as previously described.14 Repre-
sentative examples of each damage grade are shown in
Supplementary Figure S1. Within grade-1 nerves, two
subgroups were used: (i) grade-1 no apparent damage,
defined as nerves from strains of healthy mice and
histologically free of damage, and (ii) grade-1 mild
damage from diseasemodels (i.e., DBA/2J36,43 or blast-
induced TBI4,44) at early stages in which no damage
was yet apparent but could be present subclinically.
Among the 56 nerves, images from 38 nerves (one to
two images per nerve from 38 mice) were assigned to
the training/validation set (24 grade-1 nerves: 12 with
grade-1 no apparent damage and 12 with grade-1 mild
damage; 12 grade-2 nerves; and two grade-3 nerves)
and images from the remaining 18 nerves (one image
per nerve from of 18 mice) were assigned to the test
set (12 grade-1 nerves: six with grade-1 no apparent
damage and six with grade-1 mild damage; six grade-2
nerves). Axon number in mice is highly dependent on
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genetic background45; therefore the grade-1 C57BL/6J,
grade-1 DBA/2J, and every J:DO nerve is expected to
have a different number of axons. Because of potential
challenges in segmenting (manually or automatically)
severely damaged nerves, the two grade-3 nerves were
assigned to the training set (and only used as additional
unlabeled examples in the semisupervised approach).
Of the challenges with segmenting grade-3 nerves,
some relate to the fibrotic and gliotic changes that
drastically alter gross nerve appearance. The current
studywas designed to emphasize trainingAxonDeep to
recognize axons from nerves with more of a continuum
in gross appearances (normal, mild damage, moderate
damage) and limited testing to only grade-1 and grade-
2 nerves. The remaining 36 mild and moderate nerves
in the combined training/validation set were further
randomly divided into 26 nerves to be used for training
and 10 nerves to be used for validation. Note that, as
is standard practice with deep-learning techniques, the
training process was used for automatically determin-
ing the trainable network weights, whereas the valida-
tion process was used for deciding hyperparameters
and tuning the network. The random division of the
36 mild/moderate nerves into training and validation
sets resulted in 17 grade-1 nerves and nine grade-2
nerves in the training set, and seven grade-1 nerves
and three grade-2 nerves with moderate damage in the
validation set. A reference segmentation was manually
obtained on a 1024 × 1024 subfield as described in
the next section on each of the 36 mild/moderate
nerves allocated to the training/validation sets (6762
total axons on the 26 training images and 2668
total axons on the 10 validation images); however,
all 50 available 4140 × 3096 full-sized images (in
the training set) were also used as unlabeled images
(with more than 150,000 axons total) for helping to
train the semisupervised approach (see semisupervised
approach).

Obtaining Reference Axon Segmentations to
be Used for Training and Validation

As our deep-learning networks provide pixel-based
marking of axons, our reference standard to train
the network and optimize hyperparameters needed
to include complete segmentations of the axons.
In other words, we needed to obtain binary axon
masks (white = axon pixels; black = non-axon pixels)
alongside the original images to train the networks.
The supervised network required all input images
for training to have complete segmentation informa-
tion and the semisupervised network still required
complete segmentation information for a subset of

images. Because obtaining completely traced axons
from scratch is labor intensive (even for obtaining
the subset of complete segmentations needed for the
semisupervised approach), for training purposes, our
strategy to obtain complete segmentations involved
manually marking axon centers in combination with
manually correcting the boundaries of an automated
segmentation. (Note that, as discussed later, our strat-
egy for obtaining complete tracings for evaluation
purposes on the test set did not involve an automated
step, as was used in the training stage, to avoid
any bias associated with involving an automated
segmentation.)

More specifically, obtaining the reference tracings
to be used for training involved the following. From the
4140 × 3096 image(s) available per nerve for training
purposes, we first randomly selected one of the images
and cropped a subfield of size 1024 × 1024 (location
selected at random) for purposes of obtaining complete
segmentation tracings. On each of these 1024 × 1024
subfields, we ran the baseline AxonJ approach followed
by additional morphological smoothing processes to
obtain a smooth starting segmentation for purposes of
manual editing. Figure 2B shows an example segmen-
tation of the axon image in Figure 2A. In addition,
we independently obtained manual center-point
markings by placing a center point at an approximate
center of each axon (dead/dying axons are marked
separately, but not used in this work), as shown in
Figure 2C.

Next, the border of each segmented axon was
detected,46,47 and the contours were converted into
representative keypoints. Here we used a simple heuris-
tic approach to generate the points. More specifi-
cally, the Ramer Douglas Peucker algorithm48 was
used to generate a keypoint representation. This greedy
algorithm iteratively found a polyline that is close to
the contour we segmented, with the maximum distance
from the interpolated line between keypoints and the
true edge was less than a predetermined distance ε.
Here we used an ε of 5.0 pixels. These keypoints
were then visualized with a GUI interface, as shown
in Figure 2D.

We next combined the results from the manually
marked centers (Fig. 2C) and smoothed AxonJ
contours as follows: (1) False positives (i.e., axons
segmented by AxonJ, but not marked by the human
expert) were excluded from the mappings; (2) false
negatives (i.e., axons not segmented by AxonJ) were
annotated with a small starting circle. An example
pruned map can be seen in Figure 2E. Finally, the
contours were manually corrected by changing the
locations (marked in red) of the interactive keypoints
shown in Figures 2E and 2F.
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Figure 2. The coupling of manually corrected automated segmentations with manual tracing of center marks of axons was used to
construct the reference segmentations for training. (A) Light micrograph of a paraphenylene diamine–stained optic nerve cross section
in enhanced format (histogram equalized for better visualization) used as an input image for training. (B) Binary AxonJ result. (C) Manually
markedaxon centers. (D) AxonJ result in (B) displayedusing interactiveGUI (clickingonanaxonwould cause interactive keypoints to appear).
(E) Pruned AxonJ result with red interactive keypoints for a sample axon contour indicated. (F) Result of editing sample axon contour. By
combining automated segmentation (B), manually traced center marks (C), and manual corrections (E, F), references for training data can
be obtained. Scale bar: 5 μm.

Obtaining Reference Axon Counts and
Segmentations to be Used for Final
Evaluation (Testing)

For the final one-time evaluation of each trained
approach on the test set, we also obtained reference
manual axon counts and complete segmentations.
However, unlike in training, in obtaining complete
segmentations we traced the boundaries of the axons
from scratch (i.e. not editing an automated result) to
avoid any bias associated with use of an automated
approach.More specifically, for each of the test images,
after obtaining a random 1024 × 1024 crop from a
raw full-sized image, as shown in Figure 3(A-B),
approximated axon centers within the bounding box
were manually marked to evaluate the axon count
predictions (Fig. 3C). The axons close (less than 120
pixels) to image borders were ignored in the evalua-
tion because it is hard to accurately assess the axons

when part of them are outside the border. For the
pixel-based evaluation of the axon segmentations, a
randomly chosen 400 × 400 sized cropped subfield was
used for complete tracing by the same expert (rather
than editing an existing segmentation as was done
for training). Figure 3D shows an example selection
of the traced area in the bounding box. Note that
a description of the metrics used for comparing the
reference standard to the automated approaches
for final evaluation appears in the Evaluation
subsection.

Deep-learning Approach 1: FCN for
Segmentation

Figure 4 provides an illustration of the architec-
ture of our FCN used to provide a pixel-level segmen-
tation of the axons in the image. Overall, it uses an
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Figure 3. Manual annotation of axon centers and contours for evaluating tool performance. An example of progressive annotations on
the samemicroscopic field from a paraphenylene diamine–stained optic nerve cross section in (A) raw full-sized form (4140× 3096 px) and
cropped subfields (1024 × 1024 px) (B) before manual annotation of (C) axon center marks (green x) and (D) axon tracings (green outlines
and infilling; 400 × 400 px) in a smaller subfield to provide a reference for axon counts and contours for final evaluation in the test set. Inset
blue box denotes the border for inclusion of axons for counting and tracing and elimination of edge effects for panels A to D. Scale bar: 10
μm (A) and 5 μm (B–D).

encoder-decoder framework with use of an established
encoder (a deepResNeXt-5049 in our case) in combina-
tion with a more lightweight, asymmetric (compared
to the encoder) decoder. This type of architecture is
an example of a feature pyramid network and has
been shown to be successful in image-segmentation and
detection tasks.23,50–52 For the encoder of the network,
we used a deepResNeXt-5049 architecture, which uses a
very similar structure as ResNet53 while offering better
performance. Use of a deep encoder was motivated
by the need to consider the context of a relatively
large surrounding region in determining whether a
pixel belongs to an axon. Note that the asymmetry
of the encoder-decoder is different from the symmet-
ric structure used in the popular U-Net framework
popular in many pixel-based medical segmentation
tasks.23

For the training data, in order to minimize the
chance of adjacent axons being segmented as a single
object, we separately predicted the axons and the
borders between adjacent axons with two channels as
output (as shown in Fig. 4 and Figs. 5B and 5C).
To generate the borders for training, we performed
a morphological dilation on each manually corrected
binary axon segmentation and found its overlap with
the rest of the morphologically dilated axons. This
overlap was defined as the border between adjacent
axons (shown in Fig. 5C). Note that at test time,
these segmented borders can be used to better separate
attached axon segmentationmasks. As a result, a single
channel of axon image with resolution divisible by 32
was used as input, and the network output consisted of
two channels: an axon mask and the borders between
nearby axons.
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Figure 4. An illustration of the network for our FCN approach. The backbone network is paired with a light-weight feature pyramid-like
decoder. The network takes a single channel axon image as input andoutputs an axonprobabilitymap andborders between adjacent axons.

Figure 5. Examples of training data from analyses of optic nervemicrographs. An example of a (A) raw optic nerve image input, (B) gener-
ation of an axon mask (axons appear aswhite, and non-axons as black), and (C) borders between adjacent axons. Scale bar: 5 μm.

In order to train the network, similar to an approach
used previously,54 at each training step, the total loss
was a function combining a soft Dice loss (LDice) and
binary cross entropy loss (LBCE):

LFCN = LBCE − logLDice,

where

LBCE = −
∑
i

(yi · log ŷi + (1 − yi) · log (1 − ŷi))

and

LDice = Intersect
Union

= 2
∑

i yi · ŷi + α∑
i yi +

∑
i ŷi + α

,

where, yi and ŷi are corresponding truth and prediction
at each pixel location i. Here α = 1 provides numerical
stability and prevents cases of zeros.

At inference time, to generate the final output
of the axon segmentation, a watershed algorithm55

was applied with axon segmentations minus adjacent
borders as basins and axon segmentations as masks.56

Deep-learning Approach 2: Semisupervised
Learning

To be able to take advantage of both labeled (time-
consuming to acquire) and unlabeled data (i.e., just
the input images without any manual annotations)
during training, we also used a semisupervised learning
approach based on incorporating the FCNarchitecture
described above into a generative-adversarial-network
(GAN) setup. In a traditional GAN,57 a generator
subnetwork G (designed to generate realistic images
from noise) is simultaneously trained with a discrimi-
nator networkD (designed to differentiate between real
images and those generated by the generator). Because
the subnetworks are trained together (in an alternating
fashion), the networks “compete” in a minimax game
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so that ultimately the generator subnetwork can gener-
ate realistic images on its own (to fool the discrimi-
nator to try to win the competition). In other words,
the addition of the discriminator subnetwork is used
to help in the training of the generator subnetwork,
but the discriminator subnetwork is not needed once
training is complete. (Note that in other applications,
one can actually keep the discriminator rather than the
generator for purposes of having a starting point for
a semisupervised classifier as in Salimans et al.58 and
take advantage of both labeled and unlabeled data for
image-level classification tasks.) However, in our case,
rather than just generating realistic-looking images,
we wish to take input images and produce a result-
ing segmentation. Thus we follow a similar approach
as previously used59,60 and a GAN-like framework to
help train a segmentation network with both labeled
and unlabeled data. An illustration of our approach
can be seen in Figure 6. Intuitively, instead of having
a generator G to take noise and generate realistic-
looking images, we use a subnetworkG to take an input
image and produce a resulting segmentation and a
subnetwork D to differentiate (at a pixel level) between
segmentations produced by the network G and refer-
ence segmentations (i.e., being able to tell whether the
segmentation, at each pixel, was from the generator
subnetwork or used as the reference ground-truth).
Here both G and D for our semisupervised learning
approach use the same network structure following the
FCN approach in the previous section. Note that after
training is complete, as with a traditional GAN, we
can just use the trained G subnetwork (and not use
the discriminator subnetwork) in practice (e.g., during
testing) so that the inputs/outputs are just like they
would be with the FCN described in the prior section.

Just as with a traditional GAN, each training itera-
tion alternates between training the G network and
training the D network. When training the G network,
the weights in theD network are frozen and will not be
updated (and vice versa). Both labeled and unlabeled
images can be used to update the weights (in each
epoch, all 26 labeled images in the training set are used
and a random subset of 26 of the 50 unlabeled images,
to match the number of labeled images, is used). In
training G (i.e., the segmentation network), when the
input is a labeled image (i.e., the input X has a corre-
sponding reference segmentation Y), the loss function
is a combination of the same supervised loss used in
the fully supervised approach as well as a binary cross-
entropy loss based on passing the result of the gener-
ator (i.e., segmentation) network through the current
version of the discriminator:

LG = β · LFCN + Lbce (D (G (X ) ,X ) , 1) ,

where β = 10 to balance supervised loss and GAN loss
and Lbce is LBCE with a plain Sigmoid function:

Lbce = −
∑
i

(
yi · log 1

1 + e−ŷi
+ (1 − yi)

· log
(
1 − 1

1 + e−ŷi

))
.

Note that in this case, the generator wants the
discriminator to output a value of 1 at each pixel to
indicate that the discriminator is fooled into thinking
the generator’s output is a true manual tracing. When
the input is an unlabeled image X, a reference labeled
image is not available, so the loss function is solely
based on the binary cross-entropy loss indicated in the
second part of the equation above:

LG = Lbce (D (G (X ) ,X ) , 1) .

Similarly, in training D (the discriminator that tries
to differentiate, on a pixel-by-pixel level, using both
the segmentation map and original input image as
input, whether the resulting segmentation came from
the generator/segmentation network or a manual refer-
ence), when the input is an unlabeled image X, the loss
function is also based on a binary cross-entropy loss,
but this time to encourage the generator’s output to
result in a value of 0 at each pixel location from the
discriminator (i.e., the discriminator wants to correctly
predict that the generator’s output is not a reference
segmentation):

LD = Lbce (D (G (X ) ,X ) , 0) .

In training D, when the input is a labeled image (i.e.,
the input X has a corresponding reference segmenta-
tion Y), the current version of the generator is used
to create the generated segmentation map, G(X). A
“mixed” image Mix(G(X), Y) is then created by
randomly selecting each pixel to have a value either
from the generated segmentation map G(X) or the
reference image Y. A mask image M is created with
values of 1 at locations where the pixels came from
Y and 0 where pixels came from G(X). The loss
function used is the binary cross-entropy loss between
the discriminator output (using the original image and
mixed image as input) and the mask image of 1s
and 0s:

LD = Lbce (D(Mix (G (X ) ,Y ),X ) , M ) .

As before, this loss function will encourage the
discriminator to have an output of 0 at locations where
the input was from the generator network and an
output of 1 at locations where the input was from the
actual reference segmentation.
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Figure 6. Training the semisupervised approach alternates between updating the generator network weights and updating the discrim-
inator network weights. Both the generator and discriminator have the same basic underlying architecture as the FCN approach. (After
training only the generator network is retained as the final segmentation network.) The input to the generator is a raw axon image and
the input to the discriminator is the raw axon image plus a segmentation output. The network uses both labeled data (with both axon
images (X) and reference segmentations (Y) available) and unlabeled data (X) in updating theweights. (A) In updating the generator weights
with labeled data, the loss function encourages the generator output to match the reference segmentation and to “fool” the discriminator
into thinking that the generated output is a reference output. (B) In updating the generator weights with unlabeled data, the loss function
encourages the generator to “fool”the discriminator in thinking that the generated output is a reference output. (C) In updating the discrim-
inator weights with labeled data, the loss function encourages the discriminator to correctly output a 1 for pixels coming from a reference

→
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←
segmentation and a 0 for pixels coming from a generated segmentation. Note that a randomly mixed segmentation image (between the
generated segmentation and reference segmentation) is provided as part of the input to the discriminator. (D) In updating the discriminator
weights with unlabeled data, the loss function encourages the discriminator to correctly output a 0 for pixels not coming from a reference
segmentation.

Training Strategies

To implement our approaches, the PyTorch frame-
work was used for all of the experiments. A single
Nvidia GeForce 1080Ti GPU with 12GB memory was
used for training and testing. To train the networks,
we usedmini-batch stochastic gradient descent (Adam)
as the optimizer.61,62 The input image size for train-
ing was set to be 512 × 512, with a batch size of four,
randomly cropped from training images. Before each
training mini-batch, data augmentation was applied to
the input images with random resize, cropping, flip,
Gaussian blur, and contrast changes.

For the learning rate, the FCN approach used an
initial value of 1e-3 and was divided by a factor of
10 when the training loss plateaued. For the semisu-
pervised approach, a learning rate of 1e-4 for the D
network and 1e-3 for the G network was used.

To determine when to stop training, the networks
were evaluated on the validation set every 10 epochs. To
balance the quality of axon segmentation and the count
of axons generated from post-processing, we used an
equal combination of accuracy and the absolute axon
number difference between prediction and reference as
the metric for the segmentation. More specifically, the
receiver operating characteristic curves with respect to
prediction thresholds were measured and area under
the receiver operating characteristic curves was calcu-
lated as a measure of pixel accuracy. The network
parameters providing the highest performance on the
validation set was used as our final approach for evalu-
ations.

Evaluation

The AxonJ approach and our trained FCN and
semisupervised approach were used to provide both
axon counts and complete segmentations for each of
the 18 test images (corresponding to 3317 marked
axon centers and 1103 fully traced axons from the
first expert). The axon counts and complete tracings
(obtained as discussed previously) from a single expert
were used as the reference for comparisons with the
automated approaches. The absolute percent axon
count difference (as a percentage of the reference
count, i.e., the absolute difference in counts between
the approach and the first expert divided by the number

of counts measured by the first expert and then multi-
plied by 100) and theDice similarity coefficient (a pixel-
based measure of similarity) between each automated
result and the reference were computed for each image
and averaged across all images. In addition, the Pearson
correlation coefficient (R) between the counts provided
by each automated approach and the manual refer-
ence counts were computed. The axon counts and
complete tracings were also obtained from a second
expert and compared to those from the first expert
(again, measuring the average absolute count differ-
ence as a percentage, the Pearson correlation coefficient
of the counts, and the Dice similarity metric of the
complete tracings).

In addition, to further evaluate the semisuper-
vised approach against a similar structured FCN,
we compared these two approaches with different
sizes of training data size. Both approaches were
trained on different sizes of randomly chosen labeled
images: 100% (26 images), 50% (13 images), 25% (6
images), 10% (2 images). Meanwhile, for each train-
ing data size, the semisupervised learning approachwas
also trained on all the unlabeled/unmarked data (50
images). Metrics of absolute count difference, corre-
lations, and Dice coefficients were then compared
between the two models trained on each data size.

Results

Overall quantitative results are summarized in Table
1 (with results separated by damage grade avail-
able in Supplementary Table S1), with the semisuper-
vised approach having the best overall performance.
Comparing the counts resulting from the semisuper-
vised learning approach with the reference counts
resulted in amean absolute percent difference in counts
of 4.4%, with a Pearson’s correlation coefficient of R
= 0.97. The Dice coefficient (a measure of the relative
overlap of the pixel-based segmentations) was 0.81 for
the semisupervised approach. In contrast, the mean
absolute percent difference in counts for the AxonJ
approach was significantly (P < 0.05 using paired t-
test) higher (9.0%), the Pearson’s correlation coeffi-
cient was significantly (P < 0.05 using Williams’ test63)
lower (R = 0.86), and the Dice coefficient was signifi-
cantly (P < 0.05 using paired t-test) lower (0.70). The
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Table 1. Comparing the Performance of Each Approach on the Final Testing Set

Metric Approach

(Relative to Expert 1): Expert 2 AxonJ FCN Semisupervised

Abs. % diff. 6.6% ± 5.5% 9.0% ± 8.1% 6.2% ± 3.6% 4.4% ± 3.3%
R 0.93 0.86 0.93 0.97
Dice coefficient 0.79 ± 0.04 0.70 ± 0.10 0.80 ± 0.05 0.81 ± 0.04

Abs. % diff., absolute percent difference; R, Pearson’s correlation coefficient.
The absolute percent difference and Dice coefficient values are reported as the mean ± the standard deviation across the

corresponding test images.

Figure 7. Comparing axon segmentations performedby the fully convolutional network and semisupervised approaches relative to AxonJ
and amanual reference. Two representativemicroscopic fields of paraphenylene diamine-stained cross sections, collected fromanervewith
moderate (top row) and mild (bottom row) damage, with manual annotation (first column) and automated segmentations performed by the
indicated approaches (three columns to the right). (A, E) Raw subfields (1024 × 1024 px) with manual annotation that include axon center
marks (yellow x; inset blue border) and smaller subfields for axon tracings (green infilling; inset black box, 400 × 400 px) performed by expert
1 to provide a reference. Inset blue box denotes the border for inclusion of axons for manual center marks (larger blue border) and tracings
(smaller black border). Segmentation of axons (in blue) rendered from the raw image performed by (B, F) AxonJ and the (C, G) FCN and
(D, H) semisupervised deep-learning approaches. Red markings highlight instances in which the algorithm of each approach detected
borders between adjacent axons to prevent the segmentation of multiple axons as a single axon (C–H). Scale bar: 5 μm.

FCN approach and second expert had similar results
that were just slightly worse than the semisupervised
approach. Visually, the semisupervised approach also
performed best, yielding qualitatively more confident
and clean predictions than the FCN approach (Fig. 7).
Compared with the AxonJ results, fewer false-positive
regions were segmented.

When visually comparing the performance of the
semisupervised approach versus FCN with differ-
ent sizes of training data (Fig. 8), at each training
size, the semisupervised approach showed qualitatively

cleaner segmentations and less noise, with borders
between axons more clearly seen compared to the FCN
approach. Quantitatively, with the exception of the
absolute percent difference in counts when using only
10% (i.e., two images) of the labeled images for train-
ing, the semisupervised approach had a better perfor-
mance (Table 2). The discrepancy between Dice metric
and the absolute percent error of the counts in the 10%
case may have been in part due to the counts being
more affected by the postprocessing stage in its removal
of smaller objects.
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Figure 8. Comparing the resultant axon segmentations generated by the fully convolutional network and semisupervised learning
approaches with incremental decreases in the amount of training data. Axon segmentations (in blue) generated under direct training by
(A–D) the FCN and (E–H) semisupervised learning approach from the same microscopic field. Non-axons are represented in black and red
markings highlight instances in which the algorithm of each approach detected borders between adjacent axons to prevent neighboring
axons from being segmented as a single axon (A–H). Scale bar: 5 μm.

Table 2. Comparison of FCN and Semisupervised Approach When Training on Different Training-Set Sizes

FCN 100% FCN 50% FCN 25% FCN 10% Semi 100% Semi 50% Semi 25% Semi 10%

Abs. % diff. 6.2% 5.6% 8.1% 9.0% 4.4% 4.3% 6.2% 9.4%
R 0.93 0.93 0.87 0.82 0.97 0.96 0.90 0.83
Dice coeff. 0.80 0.79 0.78 0.57 0.81 0.80 0.78 0.71

Abs. % diff., absolute percent difference; R, Pearson’s correlation coefficient; Semi, semisupervised approach; Dice coeff.,
Dice coefficient.

The absolute percent difference andDice coefficient values are reported as themean across the corresponding test images.

Discussion and Conclusion

Overall, in this work, we proposed a deep fully
convolutional network named AxonDeep for segment-
ing axons in paraphenylenediamine-stained optic nerve
cross sections frommice and presented results of train-
ing this network using a supervised approach (using
only labeled data) and a semisupervised approach
(extending the network in a generative-adversarial-
network framework for purposes of training with both
labeled and unlabeled data). Our results show a signif-
icant improvement over AxonJ using the semisuper-
vised learning framework both visually and based on
quantitative metrics comparing axon counts and axon
segmentations with an expert reference. In the final

test set, we did not include cases of severely damaged
nerves as it was already known that AxonJ would
perform poorly in such cases. Although severe nerves
were not included as part of supervised training and
evaluation, here we include a few qualitative examples
to indicate the increased ability of the semisuper-
vised approach (AxonDeep) in segmenting axons of
damaged nerves versus AxonJ. For example, Figures
9B to 9E show example results of AxonJ in cases
of severely damaged nerves. In these cases, there are
around 500 axons counted with AxonJ, compared
to less than 100 axons annotated by an expert. The
output from the semisupervised learning approach
can be seen in Figures 9C to 9F. Thus the perfor-
mance of this iteration of AxonDeep to recognize
axons from some severely damaged nerves appears
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Figure 9. Comparison of axon segmentations performed by AxonJ
and semisupervised learning approach in optic nerves with severe
damage. (A, D) Microscopic fields taken from two different optic
nerves (top versus bottom row) exhibiting severe damage and corre-
sponding axon segmentations (in blue; non-axons in black) gener-
atedby (B,E) AxonJ and the (C,F) semisupervised learningapproach.
Scale bar = 5 μm.

promising, but it is important to reiterate the caveat
that AxonDeep has only been validated for use on
nerve images with normal to moderate degrees of
damage.

Different from existing deep-learning approaches
for providing axon counts, such as AxoNet,28 we
directly segment axons. Use of the semisupervised
training approach to be able to still use untraced
images was one of our strategies for more effectively
dealing with the challenge and time-consuming nature
of obtaining complete reference segmentations, as is
needed for training. Another strategy that we used (for
training purposes only) to help address the difficulty in
obtaining complete reference segmentations, as previ-
ously described in more detail in the methods, was
to develop an approach for editing existing segmen-
tations rather than tracing completely from scratch.
Before editing, to help avoid any bias in the number
of axons marked by the existing segmentation, we
only provided the starting automated result for axons
whose center points were independently marked by
an expert. Thus, although the boundaries of axons
themselves for purposes of training may have had
a bias toward the starting automated approach, the
number of axons in the complete reference segmenta-
tions matched the counts provided manually and thus
were not biased by the automated approach. (In a
prior iteration on a different dataset, we considered
editing the automated result directly without this step,
but decided it had the potential for biasing the results
towards the automated result too much.) As previously
mentioned, although we believed this was an accept-

Figure 10. Inter-expert congruency in defining axon centers. An
exampleof an image subfield (A) before and (B) aftermanual annota-
tion of axon center marks (colored x) to show inter-expert congru-
ency. Center marks in green (green x) denote axons marked by both
experts, whereas those in purple (purple x) denote axons marked by
only one of the two experts (but not both experts). Inset blue box
denotes the border for inclusion of axons for counting, tracing, and
elimination of edge effects. Scale bar: 5 μm.

able compromise for training, we did not want to have
reference segmentations biased toward an automated
approach for purposes of the final evaluation and thus
obtained complete tracings on smaller subfields. In
future work, the current version of AxonDeep could
potentially be used for editing additional segmenta-
tions for training purposes.

Being able to consistently define the actual bound-
aries of axons is an area that could potentially be
further explored in future work. For example, we noted
that in both FCN and semisupervised approaches, the
Dice coefficient between the reference and semiauto-
matically generated axon segmentations was around
0.8–0.9 in the validation set, which was higher than
the Dice coefficient of 0.79 between two experts in
the test set. Despite a high degree of agreement
between experts for assigning axon centers, there are
instances of disagreement (Fig. 10). Note the incon-
sistency between experts are not fully shown in axon
count evaluations, since only the consistency of counts
is evaluated. In the future, approaches like proba-
bilistic U-Net could be used to help model such
uncertainties.

The current approach has also only been evalu-
ated on subfields of an entire nerve. Although we
are currently working on an approach for quantify-
ing axons from a montage of the entire optic nerve,
we currently recommend that laboratories using this
approach sample as many nonoverlapping fields as
possible, and using a separate measurement of the
total optic nerve cross sectional area, mathematically
convert the sum of the sampled areas into a calculated
total axon number. In contexts where nonhomoge-
neous axon densities may be suspected, we recommend
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quantifying successive slices of the same optic nerve
(which should have near identical axon numbers), or
performing the analysis twice on each section, with the
microscope slide rotated by 90° in the second iteration,
such that averaging can be used to better control for
sampling variabilities.

Implementation of AxonDeep could assist in the
execution of a broad range of experiments. The
mouse optic nerve contains ∼50,000 axons, although
that number can vary widely according to genetic
background.45 Quantifications of axon number is a
gold-standard for measuring disease severity,17,64–67
but the labor-intensive nature of manual axon count-
ing often results in studies instead using qualitative
grading scales.19,68,69 As with all of the tools that the
field has put forward to count RGC somas26,27,40,70–74
or axons26–29,75,76 in various animal models, the
automated counts performed by AxonDeep greatly
reduce the labor of manual counts and eliminate the
possibility of user-to-user, lab-to-lab, or model-to-
model variability inherent to subjective grading scales.
An advantage of AxonDeep is that it performs axon
segmentations, as well as counts. Thus it will also be
possible to study whether axon size and shape vary
during disease state. Given the high interest that has
existed for many years in studying differential suscepti-
bility of RGCs with comparatively large versus small
soma,77 and the interesting energetic differences in
large versus small axons,78 AxonDeep could be used to
study many quantitative aspects of axon morphology
that were previously not practical.
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