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The treatment of neuropathic pain remains a clinical challenge. Analgesic drugs and

antidepressants are frequently ineffective, and opioids may induce side effects, including

hyperalgesia. Recent results on brainstem pain modulatory circuits may explain those

clinical challenges. The dual action of noradrenergic (NA) modulation was demonstrated

in animal models of neuropathic pain. Besides the well-established antinociception

due to spinal effects, the NA system may induce pronociception by directly acting

on brainstem pain modulatory circuits, namely, at the locus coeruleus (LC) and

medullary dorsal reticular nucleus (DRt). The serotoninergic system also has a dual

action depending on the targeted spinal receptor, with an exacerbated activity of the

excitatory 5-hydroxytryptamine 3 (5-HT3) receptors in neuropathic pain models. Opioids

are involved in the modulation of descending modulatory circuits. During neuropathic

pain, the opioidergic modulation of brainstem pain control areas is altered, with the

release of enhanced local opioids along with reduced expression and desensitization of

µ-opioid receptors (MOR). In the DRt, the installation of neuropathic pain increases the

levels of enkephalins (ENKs) and induces desensitization of MOR, which may enhance

descending facilitation (DF) from the DRt and impact the efficacy of exogenous opioids.

On the whole, the data discussed in this review indicate the high plasticity of brainstem

pain control circuits involving monoaminergic and opioidergic control. The data from

studies of these neurochemical systems in neuropathic models indicate the importance

of designing drugs that target multiple neurochemical systems, namely, maximizing the

antinociceptive effects of antidepressants that inhibit the reuptake of serotonin and

noradrenaline and preventing desensitization and tolerance of MOR at the brainstem.

Keywords: descending pain modulation, opioids, serotonin, noradrenaline, neuropathic pain, dorsal reticular

nucleus

DESCENDING PAIN MODULATION: GENERAL VIEW

The existence of top-down modulation of nociceptive transmission was already postulated by the
gate control theory (1). The periaqueductal gray (PAG) matter, the first brainstem structure with a
demonstrated involvement in top-down pain modulation, has reciprocal projections with cortical
areas, amygdala (2), and the rostral ventromedial medulla (RVM). The PAG matter does not
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project directly to the spinal cord (SC) and relays the descending
input through the RVM (3), the main serotoninergic spinally
projecting neuronal population (4, 5). Top-down modulation
is also mediated by the release of noradrenaline at the dorsal
horn of the SC. Descending noradrenergic (NA) projections to
the SC arise from three brainstem NA neuronal populations:
the A5, A6 (comprising the nucleus subcoeruleus and the LC),
and A7 NA cell groups (6–9). Noradrenaline inhibits nociceptive
transmission at the SC through the activation of α2-adrenergic
receptors (α2-AR) located at peripheral nociceptors or spinal
neurons (10). Top-down modulation includes bidirectional
control, i.e., inhibitory and facilitatory. Pronociceptive actions
are well represented by the medullary dorsal reticular nucleus
(DRt), which is reciprocally connected with the dorsal horn
of the SC in a reverberating circuit that amplifies nociceptive
transmission (11, 12). Descending facilitation (DF) from the DRt
is enhanced in sustained pain models (13, 14) and may account
for spinal sensitization during neuropathic pain (15). The RVM
comprises two classes of non-serotoninergic neurons classified
by their role in nociceptive modulation: OFF- and ON-cells
(16). The activity of OFF-cells decreases during nociceptive-like
behaviors, while the opposite occurs with ON-cells, and OFF-
cells were proposed to play antinociceptive effects, whereas ON-
cells are likely to exert pronociceptive actions in descending pain
modulation (17).

The components of the descending pain modulatory system
show neuroplastic changes during neuropathic pain. In the RVM,
the imbalance in the activity of ON- and OFF-cells toward the
increased activity of the former during traumatic and diabetic
neuropathy may facilitate nociceptive spinal transmission (18–
20). The LC also plays bidirectional control of pain modulation.
Besides the well-established inhibitory actions through its
descending projections to the SC, the LC exerts pain-facilitatory
actions through projections to several areas of the pain control
modulatory system, such as the DRt (14, 21). Recent studies
described alterations of descending serotoninergic and NA
systems and local opioidergic modulation in several neuropathic
pain models. These data will be critically analyzed throughout
this review to discuss perspectives of designing analgesic drugs
that tackle the challenges of neuropathic pain management.

DESCENDING MONOAMINERGIC PAIN
MODULATION DURING NEUROPATHIC
PAIN

The descending serotoninergic and NA systems are altered
during neuropathic pain (Figure 1). Regarding the descending
serotoninergic modulatory system, an imbalance toward
facilitation was detected, which may account for the persistence
of pain (23, 24). In neuropathic pain, descending serotoninergic
modulation from the RVM is involved in the maintenance,
rather than in the installation, of chronic pain (23, 25). The
depletion of serotoninergic RVM neurons or of serotoninergic
pathways reduces nociceptive behaviors after, but not before,
nerve injury (26) and prevents nociceptive hypersensitivity
in traumatic neuropathic pain (TNP) models (27, 28). In

traumatic and diabetic neuropathic pain (DNP) models, an
increase in the serotoninergic input to the SC from hyperactive
serotoninergic RVM neurons was proposed to represent an
adaptation of descending pain modulation to the increased
barrage of nociceptive input (29, 30). The increased serotonin
(5-HT)-mediated input to the SC is likely to be pronociceptive
due to the higher activity of facilitatory 5-hydroxytryptamine
3 (5-HT3) receptors at the SC (see below). Further, accounting
for pronociceptive actions of the RVM during neuropathic
pain, an increase in spontaneous activity of ON-cells was
reported in traumatic and DNP models (17). In a chemotherapy-
induced neuropathic pain (CINP) model, similar results
were obtained, with higher activation of serotoninergic RVM
neurons and increased serotoninergic output to the SC (31).
This indicates that the RVM serotoninergic system is similarly
affected at least in some neuropathic pain models. Increases
in descending serotoninergic pain recruitment may yield
facilitation or inhibition, depending on the targeted subtype
of the spinal serotoninergic receptor (32). The activation of
5-HT1A/B and 5-HT7 spinal receptors inhibits nociception,
while the activation of 5-HT3 and 5-HT2A receptors has
the opposite effect (32–34). The administration of 5-HT1A
agonists produces strong antinociceptive effects and attenuates
depression-like behaviors related to TNP (35), whereas 5-HT1A
antagonist reduces or abolishes antinociceptive responses
(33, 36, 37). Spinal 5-HT1A receptors mediate the analgesic
effects of cannabidiol during diabetic neuropathy (38). The
systemic administration of 5-HT1A antagonists reduces the
antidepressant-like effect of venlafaxine (39). However, the
antidepressant and antinociceptive effects seem to use different
groups of 5-HT1A receptors (40). The administration of the
5-HT7 agonist induces analgesia (41), while the antagonist
increases neuropathic pain-like behaviors (42–44). In contrast,
the activation of the 5-HT2A receptors increases pain-like
behaviors in models of traumatic and diabetic neuropathy
(45, 46). The 5-HT3R, the only 5-HT ionotropic receptor with
excitatory functions, plays a crucial role in pronociception during
neuropathic pain (47). In TNP models, namely, animals with SC
injury, intrathecal administration of 5-HT3R antagonist induces
antinociception whereas the agonist intensifies allodynia (48, 49).
Moreover, pharmacological spinal blockade of the overexpressed
5-HT3R reverted the neuropathic pain-like behaviors during
CINP (31) and attenuated neuronal hyperactivity in diabetic
neuropathy (47). As a whole, the studies indicate that 5-HT3Rs
account for central sensitization in neuropathic pain (50).
More studies are necessary to better understand the net balance
between the increased serotoninergic input to the SC and the
role of spinal receptors, namely, in long-term neuropathic
pain models, and also considering the intensity of the noxious
stimulus inasmuch that biphasic modulation from the RVM was
reported (51).

Neuropathic pain also induces neuroplastic changes in NA
pain modulatory areas that may account for pain persistence
(52, 53). Several studies showed that LC neurons present higher
electrophysiological responses evoked by noxious stimulation
at early stages of nerve injury, but spontaneous activity does
not change at that early stages (53–55). It was shown that,
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FIGURE 1 | Neuropathic pain induces adaptations in the descending modulatory pain systems involved in serotoninergic and noradrenergic (NA) neurochemical

control, some of which are mediated by local opioidergic control. Major changes occur at the locus coeruleus (LC), rostral ventromedial medulla (RVM), and medullary

dorsal reticular nucleus (DRt) and affect top-down modulation of nociceptive transmission at the superficial dorsal horn (SDH). The figure summarizes the alterations

occurring in different pain models, namely, traumatic neuropathic pain (TNP), diabetic neuropathic pain (DNP), and chemotherapy-induced neuropathic pain (CINP).

The mechanisms underlying top-down modulation in different neuropathic pain models are discussed in this review. Adapted from Paxinos and Watson (22). 5-HT,

serotonin; 5-HT3R, 5-HT3 receptor; α2-AR - α2 adrenoreceptor; DBH, dopamine beta hydroxylase; DOR, delta opioid receptor; DRt, dorsal reticular nucleus; LC,

locus coeruleus; MOR, µ-opioid receptor; NA, noradrenergic; NET, noradrenaline transporter; RVM, rostral ventromedial medulla; SDH, superficial dorsal horn; TH,

tyrosine hydroxylase; TpH, tryptophan hydroxylase.

during chronic pain, the balance of LC function may shift
from pain inhibition to pain facilitation, which may account
for chronic pain installation (56). A recent study showed
higher spontaneous activity and enhanced response of LC
neurons after noxious stimulation in long-term traumatic
neuropathy (57). Some reports have also shown that the LC
has increased expression of noradrenaline-synthetizing enzymes
and noradrenaline transporter (NET) at late stages in long-
term traumatic neuropathic pain models (58, 59). The other
NA brainstem cell groups also contribute to the maintenance
of neuropathic pain. In the models of diabetic neuropathy, an

increase in neuronal activation at the A5 NA cell group was
reported at 4 weeks after the induction of diabetes (29), and
in traumatic neuropathic models, the administration of α2-
AR agonist into the A7 NA cell group reduces neuropathic
hypersensitivity (60). The alterations in the NA pain modulatory
centers affect nociceptive transmission at the dorsal horn of the
SC with a clear involvement of α2-AR. In TNP models, NA
spinal upregulation occurs with increased spinal noradrenaline
levels and enhanced efficacy of G protein-coupled α2-AR (61–
63). Furthermore, nerve injury increases the density of NA fibers
in the SC, which is associated with increased brain-derived nerve
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growth factor (BDNF), a neurotrophin involved in neuronal
differentiation and neuroplastic pain-related mechanisms (64).
Moreover, upregulation of the spinal NET was reported in TNP
models (65). With the progression of traumatic neuropathy, a
gradual loss of descending NA inhibition occurs (66). In the
CINP animal model, increased expression of NA biosynthetic
enzymes at the dorsal horn and the potentiation of the α2-AR-
mediated antinociception at the SC were recently described (67).
Although the studies of NA descending modulation have been
mostly directed to α2-AR, recent demonstrations that noxious
stimulation activates astrocytes at the superficial dorsal horn
(SDH) through α1A-AR (68) will open new avenues for pain
research in the future.

Besides the direct effects in the direct input to the SC, the
alterations of the serotoninergic and NA systems also affect
the brainstem pain modulatory system. The LC and A5 NA
cell groups project to the DRt (12). The increased activation
of NA LC and A5 neurons in traumatic neuropathic models
leads to increased release of noradrenaline into DRt, which
was proposed to enhance DF of nociceptive transmission from
that medullary area (14). The studies of the endogenous pain
modulatory system should, therefore, be performed considering
the connectivity between areas, which is a clinically relevant
issue. Patients with neuropathic pain have higher complaints
of pain when the PAG-RVM connectivity is stronger (69). The
enhanced recruitment of descending NA inhibition during CINP
likely aims to compensate for the increased 5-HT3-mediated
descending serotoninergic facilitation from the RVM (67).
Preclinical studies would benefit from shifting from studying a
single pain modulatory system in the brain to studying about
approaching the connectivity issues, namely, in what concerns
the interplay between the serotoninergic and NA systems.

OPIOIDERGIC MODULATION OF
BRAINSTEM PAIN CONTROL CIRCUITS

Endogenous opioids are involved in the control of the descending
pain modulatory system through the activation of mu (MOR),
delta (DOR), kappa (KOR), and nociceptin opioid peptide (NOP)
receptors (70). The endogenous opioids, such as enkephalins
(ENKs), β-endorphins, and dynorphins, bind, by order of
preference, to DOR, MOR, and KOR, respectively. Regarding
nociceptin, it binds to NOP and its role as an independent neural
“anti-opioid” system has been proposed (71).

The PAG and RVM constitute major sites of supraspinal MOR
analgesia (72, 73). Genetic approaches confirmed that MOR
activates the PAG-RVM descending pathway via suppression
of the inhibitory influence of local GABAergic interneurons
(Figure 2) (74, 75). The administration of opioids in the
RVM produces antinociception through direct inhibition of
pronociceptiveMOR-expressing ON-cells and indirect activation
(i.e., disinhibition) of antinociceptive OFF-cells (17). The
neurochemical nature and synaptic mechanisms of the PAG-
RVM circuitry were recently addressed using genetic approaches
(76). Neurons co-expressing gamma aminobutyric acid (GABA)
and preproenkephalin functionally correspond to OFF-cells

and directly project onto nociceptor terminals in the dorsal
horn to inhibit nociceptive transmission (Figure 2) (77).
Other GABAergic RVM neurons express MOR and project
to preproenkephalin dorsal horn interneurons, facilitating the
transmission of nociceptive information (76). The activation
of DOR and KOR also modulates the PAG-RVM circuit. The
mechanisms and consequences of DOR activation in the PAG-
RVM circuit are similar to MOR (Figure 2) (78, 79). DOR
agonists typically show lower adverse effects than MOR agonists,
but their efficacy is also lower, probably due to intracellular
trafficking (80). The administration of KOR agonists in the
RVM inhibits OFF-cells and blocks the antinociceptive actions
of MOR activation (81, 82). The NOP receptor is abundant in
the PAG and RVM (83). The role of the nociceptin/orphanin
FQ peptide (N/OFQ)–NOP receptor system is better studied
in the RVM, and NOP is expressed in OFF-cells and co-
expressed with MOR in ON-cells (Figure 2) (84, 85). Supraspinal
N/OFQ induces pronociceptive effects along with an anti-opioid
analgesic action (86). In contrast, N/OFQ attenuates opioid
withdrawal-induced hyperalgesia by inhibiting ON-cells (84).
Given the role of activation of ON-cells in the maintenance
of neuropathic pain (87), the inhibition of ON-cells likely
contributes to the antihyperalgesic and antiallodynic effects of
systemic and supraspinal NOP ligands in neuropathic pain
models (88, 89).

The effects of opioids have also been extensively studied
in the LC, where MOR is highly expressed (90). Opioid
receptors in the LC are implicated in pain modulation, stress
responses, and opioid drug effects (91, 92). Early studies
indicate that opioids produce antinociception by enhancing
the descending NA inhibition (93). In the extreme, opioids
inhibit LC neurons, and following chronic morphine infusion,
LC neurons undergo desensitization, accounting for tolerance to
opioids (94). Opioidergic modulation of the LC is complex as
opioids can also suppress descending inhibition (DI) through
the PAG-LC pathway (Figure 2) (74). In this respect, the
opioidergic system has two different roles at the PAG: one
enhances DI, through the PAG-RVM pathway, and the other
suppresses DI, through the PAG-LC pathway. Notwithstanding,
the final output to spinal nociceptive information will likely
further involve the opioidergic modulation of upstream brain
structures, such as the amygdala, with which the PAG is
connected (95).

The LC plays a complex role in pain modulation with
facilitatory and inhibitorymodes ofmodulation of nociception. It
exerts pain-facilitatory actions through its ascending projections
to several supraspinal areas (13, 14, 21) and inhibitory
actions through its descending projections to the SC. Opioids
produce antinociception partly by enhancing the descending
NA inhibition (96–99). LC neurons have also been implicated
in tolerance to opioids. The LC has a high density of MORs
(90, 100). In the extreme, opioids inhibit LC neurons; however,
following chronic treatment withmorphine, LC neurons undergo
desensitization, which contributes to the development of
tolerance to opioid effects (reviewed by 91). The desensitization
of LC neurons was inhibited in mice expressing a mutant
MOR that renders the receptor increasingly unable to interact
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FIGURE 2 | Diagram depicting the involvement of µ-opioid receptors (MOR, marked in blue) and δ-opioid receptors (DOR, marked in red) in descending modulation

from the periaqueductal gray (PAG) matter, RVM, LC, and the DRt. Opioids are involved in the mediation of descending inhibition (DI) and descending facilitation (DF)

from PAG circuits relayed in the RVM and LC, respectively. In the PAG-RVM circuit, MOR- and DOR-mediated inhibition of gamma aminobutyric acid (GABA)ergic

neurons disinhibits glutamatergic (Glu) neurons projecting to the RVM. In the PAG-LC circuit, MOR inhibits a subtype of Glu neurons, which express the phospholipase

C β4, projecting to NA LC neurons. This newly discovered circuit is thought to counterbalance the adverse excitatory effects of stress on the LC-NA system. Opioids

are also involved in the mediation of DI from the LC through MOR-mediated inhibition of GABAergic neurons that disinhibit NA neurons projecting to the spinal cord

(SC). Opioids in the RVM produce antinociception via direct inhibition of pronociceptive cells expressing MOR and DOR, which are GABAergic and functionally

correspond to ON-cells, and indirect activation (i.e., disinhibition) of antinociceptive cells, which co-express GABA and enkephalins (ENKs) and functionally correspond

to OFF-cells. Opioids in the DRt act through direct inhibition of DRt spinally projecting neurons, which express MOR, and indirectly through activation (i.e., disinhibition)

of local ENK neurons.

with β-arrestins, and these exhibit enhanced opioid-induced
analgesia (101).

At the DRt, opioids are a key local modulatory system
that can directly and indirectly modulate the spinal-DRt-
spinal reverberative pathway. Opioids act through direct
inhibition of DRt spinally projecting neurons that express MOR
and through disinhibition of enkephalinergic interneurons
that receive input from GABAergic interneurons that
express MOR (Figure 2) (102, 103). These GABAergic
interneurons are also presynaptically inhibited by DOR-
expressing fibers (102). Local overexpression of opioid
peptides, namely ENK, was shown to inhibit DRt pain
facilitation (104). The activation of MOR at the DRt plays
a fundamental inhibitory role at the DRt and was recently
shown to account for the analgesic effects of systemic
opioids (105).

The supraspinal opioidergic modulation may account for
neuropathic pain. During neuropathic pain, the increased DF
is not compensated by enhanced DI (50, 87). The engagement
of DI mediated by the RVM-OFF cells, through which

opioids produce descending pain inhibition, protects against
the development of neuropathic pain (106). Evidence of a
dysfunctional descending opioidergic inhibition in neuropathic
pain is further provided by the decrease of diffuse noxious
inhibitory control (DNIC) in animal models (107–111). DNIC
is mainly a neurophysiological phenomenon, and many authors
consider (102–104) that its psychophysical paradigm in humans
is represented by conditioned pain modulation (CPM). DNIC
is a unique form of endogenous analgesia that requires
descending inhibitory pathways (73) and is partly mediated
by opioids (107, 112). Tapentadol, a MOR agonist and
noradrenaline reuptake inhibitor (113), can restore DNIC/CPM
(108, 114). The effects of tapentadol are mostly attributed
to a synergistic effect of MOR activation and the inhibition
of noradrenaline reuptake at the SC (115). In the SC,
MOR serves as an interface for ascending inhibition and
descending opioidergic inhibition triggered from PAG-RVM (70,
116).

During neuropathic pain, the endogenous opioid peptides
and opioid receptors are altered at the supraspinal pain
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control system. Local release of endogenous opioids was
shown in cortical and subcortical brain areas of patients with
persistent neuropathic pain (117–120). In animal models of
neuropathic pain, increased ENK peptide levels were detected
in several components of the supraspinal pain control system,
including the PAG, RVM, and DRt (121, 122). The role of
endogenous opioid peptides has been studied using knockout
mice deficient in opioid-encoding genes revealing deficits in
supraspinal modulation (123). Dynorphin knockouts showed
the involvement of dynorphins in the affective component of
pain. Increased release of dynorphin together with increased
KOR signaling was recently detected in the mesolimbic
circuit and amygdala, and the upregulation of this system
was responsible for mediating the aversiveness/unpleasantness
of neuropathic pain (124, 125). The role of dynorphin in
the amygdalo-parabrachial pathway and its involvement in
emotional and pain control were recently proposed (126).
The studies performed in β-endorphin knockout mice suggest
that the continuous release of β-endorphin induces activation
of MOR and subsequent phosphorylation and desensitization
(127–129). Mice lacking proenkephalin and/or β-endorphin
showed that these peptides modulate the activity and the
levels of MOR, DOR, and KOR in descending pain control
areas of the brainstem (130). Neuropathic pain is associated
with a reduction in MOR function in the brainstem, with
decreased activation of G proteins likely due to increased
phosphorylation of the receptor, leading to its desensitization
(131). Reduced MOR-mediated G-protein activity was shown
in the PAG (132) and RVM (133) of neuropathic pain models.
At the DRt, we recently showed that neuropathic pain leads
to increased release of ENK peptides and desensitization of
MOR (105). Additionally, we showed a reduction in protein
levels of MOR and an increase in phosphorylation of MOR
(105). The reduction in MOR protein was likely associated
with increased phosphorylation, leading to desensitization and
subsequent degradation of the receptor, since no alteration in
mRNA levels of MOR was detected (105). These molecular
adaptations of MOR impair the analgesic function of MOR
at the DRt (105). Neuropathic pain is associated with altered
expression of the opioid receptors (105, 133) at several
supraspinal pain modulatory areas. Downregulation of MOR

in the brain seems to be common during neuropathic pain

(134, 135). In patients with neuropathic pain, reduced MOR
availability was observed in cortical brain areas involved in pain

modulation and in the PAG (119, 120, 136). DOR was also

found to be downregulated in the RVM after nerve injury (133).

Recent characterization of DOR confirmed its relevance in the
development of neuropathic pain. DOR knockouts developed
increased thermal and mechanical sensitivities in neuropathic
pain models (137), suggesting a protective role of DOR. At

the RVM, the downregulation of DOR together with the
desensitization of MOR (133) likely contributes to a decrease in
descending opioidergic inhibition. The downregulation of MOR
at SC and descending pain modulatory areas likely contributes to
the reduced potency of morphine in the neuropathic pain state
(105, 138, 139).

CLINICAL IMPLICATIONS OF THE
ALTERATIONS IN DESCENDING
MODULATORY SYSTEMS DURING
NEUROPATHIC PAIN

The treatment of neuropathic pain remains a challenge since
many drugs show inadequate analgesia and considerable side
effects. The studies of brainstem pain modulation in preclinical
models of neuropathic pain unraveled some mechanisms that
may account for the inadequate analgesia and indicate possible
approaches to overpass the challenges of neuropathic pain
management. Drugs with a primary function other than analgesia
are used for neuropathic pain treatment, such as antidepressants
that act upon the reuptake of serotonin and noradrenaline
(140). Antidepressants that act at the serotoninergic system have
their net analgesic efficacy reduced by the increased activity of
spinal 5-HT receptors involved in pain facilitation, namely, 5-
HT3 (32, 44–46). Regarding antidepressants that also inhibit
noradrenaline reuptake, such as duloxetine (141), the analgesic
effects due to inhibition of α2-AR at the SC may be attenuated by
the pronociceptive effects of noradrenaline at supraspinal pain
control centers (13, 14).

Weak and strong opioids are recommended as second- and
third-line treatments, respectively, mainly because of lack of
efficacy and safety concerns [reviewed by (140, 142, 143)].
The lack of effectiveness of MOR-acting drugs in neuropathic
pain might be because both neuropathic pain and opioid
treatment lead to desensitization of and tolerance to MOR (144).
Tolerance to opioids leads to increasing doses of opioids, which
is critical as this can lead to opioid-induced hyperalgesia (145).
Chronic morphine treatment induces a shift of MOR signaling
from inhibitory to excitatory at the DRt, enhancing DF from
the DRt (146). These findings indicate that the cumulative
effects of neuropathic pain and opioid drugs on MOR are
counterproductive. In the subsequent years, the study of the
brainstem pain control system needs to have a more translational
perspective. The effects of descending modulation should also
consider interactions occurring at both local neurochemical
modulation of supraspinal pain control circuits and between pain
control centers of the brain. Imaging studies in human subjects
have recently shown changes in the functional connectivity of
pain control centers of the brain (147), and this “connectome
perspective” should also be considered in the basic pain research
studies. The involvement of opioids in the control of the
connections and as a trigger of opioid-induced hyperalgesia
should be considered. These perspectives may allow to overcome
the current gaps in research studies deriving from the moderate
translation of basic studies of brainstem painmodulatory circuits.
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