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Malaria is amosquito-borne disease caused by single-celled blood parasites of the genus

Plasmodium. The most severe cases of this disease are caused by the Plasmodium

species, Falciparum. Once infected, a human host experiences symptoms of recurrent

and intermittent fevers occurring over a time-frame of 48 hours, attributed to the

synchronized developmental cycle of the parasite during the blood stage. To understand

the regulated periodicity of Plasmodium falciparum transcription, this paper forecast and

predict the P. falciparum gene transcription during its blood stage life cycle implementing

a well-tuned recurrent neural network with gated recurrent units. Additionally, we also

employ a spiking neural network to predict the expression levels of the P. falciparum

gene. We provide results of this prediction on multiple genes including potential genes

that express possible drug target enzymes. Our results show a high level of accuracy in

being able to predict and forecast the expression levels of the different genes.

Keywords: genes expression, genes profile, recurrent neural network, Plasmodium falciparum, machine learning,

malaria, spiking neural network

1. INTRODUCTION

According to the World Health Organization, malaria has established itself as one of the leading
causes of death in developing countries concentrated within the tropics and subtropics. In 2017,
there were an estimated 219 global million malaria cases, where the majority of these cases
were found in Sub-Saharan Africa and Southeast Asia. While there is a projected downward
trend in expected malaria cases, the high mutational capacity of the Plasmodium parasite
coupled with its changing metabolism makes the development of new effective drug treatments
a continuous problem.

As an apicomplexan, Plasmodium falciparum do not have a single stable life stage.
Instead, they periodically transition between several intermediate stages within a complete
life cycle. Beginning with the injection of infectious sporozoites from the mosquito gut to
the human circulation, the parasite migrates to hepatocytes where they consume intracellular
content and rapidly proliferate, preparing themselves for erythrocytic invasion post cell lysis.
Once within the erythrocytes, the parasite adjusts itself to its immediate environment by
transitioning between the three distinct stages: trophozoite, merozoite, schizont. Over a general
time frame of 48 h, it cycles through these stages causing a series of synchronized mass
erythrocyte destruction and invasion, giving rise to the clinical symptoms of intermittent
fever associated with malaria [Centers for Disease Control and Prevention (CDC), 2017].
Corresponding to the requirements of rapid cloning during this stage, separate studies
have measured a significant increase in glucose uptake, parasitic growth rate, hemoglobin
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degradation, and transcriptional activity (Read et al., 2019). For
these reasons, the blood stage of P. falciparum remains an area of
high interest for antimalarial development.

Currently, one of the primary open questions in Plasmodium
biology is how the parasite maintains precise control of gene
expression during these stages (Read et al., 2019). It is well-
established that gene expression is a highly regulated process,
allowing the parasite to perform the necessary biological
functions at a given developmental stage. Considering the role of
mRNA as an intermediate product between transcribedDNA and
the translated protein, precise time-dependent gene expression
profiles can be used to identify stage-specific metabolic genes as
a means to better understand how the Plasmodium metabolism
changes relative to time. From the central dogma, it can
be understood that transcribed DNA precedes the translation
of a protein. With high concentrations of distinct mRNA
stands within a cell, high concentrations of the corresponding
protein will be expected. Despite conflicting ideas about the
transcriptome-proteome interaction, it has been shown that there
is still a positive association between mRNA and protein levels
(Bozdech et al., 2003). Overall, there is an undeniable relationship
between mRNA and protein abundances which lends itself
toward understanding the relative availability of certain enzymes
at a given point in development based on gene expression data.

In this work, we estimate the expression profile of genes
associated with the essential enzymes thus providing a tool
to help reduce the timeline needed to create these profiles.
To achieve that, we proposed a recurrent neural network
model to forecast the mRNA abundance throughout the 48
h post-infection (hpi) in the intraerythrocytic developmental
cycle (IDC) for the malaria parasite P. falciparum. Figure 1
shows an overview of our approach. First, a Recurrent Neural
Network (RNN) is implemented, trained, and validated using
80% of our dataset. Then the RNN is used to forecast a time
series of gene expression for prior gene expression information.
Finally, a function is applied to smooth the forecast time series.
Additionally, with the mRNA abundance throughout the 48 h
post-infection, we employed a spiking neural network (SNN)
to profile the gene expression level (low or high) for multiple
stages in the intraerythrocytic developmental cycle. The SNN
is trained and validated using part of the dataset and then is
used to predict the genes expression level based on the mRNA
abundance throughout the 48 h post-infection. By using a quite
extensive dataset of gene expression for P. falciparum from
current literature with multiple potential drug targets, the results
in this paper show an accurate prediction and forecast of the
mRNA abundance for the next stage of the parasite, and the
genes expression level during the 48 h IDC. Overall, our approach
provides precise estimations, was able to accurately provide the
trend and expression level in the gene profiles when compared
with experimental data.

2. RELATED WORK

Amongst the multitude of biological processes occurring within a
cell, metabolism is considered to be among the most researched.

Specifically, antimalarial development focuses on identifying
essential metabolic components that can serve as drug targets
(Carey et al., 2017). Multiple studies approach this idea by
constructing a network model of the parasitic metabolism,
relevant to the specific stages (Dholakia et al., 2015; Phaiphinit
et al., 2016). Knowing that the parasite employs different
metabolic components for each stage, it is possible to determine
effective drug targets based on which set of enzymes are most
significant at a given developmental stage.

Focusing on the relationship between the developmental
stage and transcriptional activity, several studies have observed
the variation in mRNA abundance through microarray
measurements at sustained time intervals. For instance, Painter
et al. (2018) were able to produce a genome-wide mRNA
abundance profile at a 1-h resolution for the complete 48 h
of the intraerythrocytic stage. This representation shows the
cascading nature of P. falciparum gene expression, where a single
gene is highly expressed for a discrete segment of time and is
followed by a succession of genes each with their segment of
expression. Moreover, Mamoun et al. (2001) showed that histone
methylation is more heavily related to the schizont stage which
may correspond to reduced gene expression profiles during this
stage. Ultimately, their work points toward an inherent pattern
in gene expression data which we capture in this paper through
machine learning techniques used to identify key enzymes and
peak gene expression at a given stage.

Recently, deep learning models, such as Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN), have
seen increased usage in biology and medical applications.
Tavanaei et al. (2017) proposed CNN for predicting tumor
suppression genes and proto-oncogenes. Additionally, Kelley
et al. (2016) learned the functional activity of DNA sequences
from genomics data by applying CNNs. Multiple machine
learning models were applied to discriminate between high-
expression and low-expression genes, focusing on three distinct
stages of the red blood cell phase of the Plasmodium life cycle
(Read et al., 2019). Moreover, Singh et al. (2016) developed a
unified discriminate framework using a deep CNN to classify
gene expression using histone modification data.

Various time series methods such as Auto-regressive Moving
Average (Buendia and Solano, 2015; Ebrahimi et al., 2017);
Simple Exponential Smoothing (Luo et al., 2017); Holt-Winters
Exponential Smoothing (Ghaffari et al., 2018) have been widely
applied to electronic health records. Recently, a Gated Recurrent
Unit (GRU) was introduced to handle missing values in
multivariate time series data (Che et al., 2018). A Time-Aware
Long Short termmemory (LSTM) model was proposed to handle
irregular time intervals in longitudinal patient records to capture
the progression patterns for Parkinson’s disease (Baytas et al.,
2017). In this work, we developed an RNN using GRU to forecast
the gene expression profile for three different stages of the P.
falciparum parasite during the blood stage life cycle.

Spiking Neural Networks (SNN) are also being used in various
applications. Specifically, Kasabov (2014) demonstrated that
SNNs are suitable for the creation of a unifying computational
framework for learning and understanding of various spatio-
and spectro-temporal brain data. Moreover, Antelis et al. (2020)
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FIGURE 1 | The method overview: Light blue rectangle represents our RNN model with the gated units as cycles, the hidden units as squares, the dark blue rectangle

represents our SNN model with the spiking neuron as cycles. The input is the mRNA abundance time series of PF3D7_1337500. The early stage time series is used

for RNN, the whole time series is used for SNN. The output of RNN is the mRNA abundance time series during its life cycle in blood stage, the output of SNN is the

expression level for multiple stages.

showed the capabilities of SNN in the recognition of motor
imagery tasks from electroencephalography signals. In Morro
et al. (2017), they presented a smart stochastic spiking neural
network architecture to efficiently enhance the time-consuming
process for virtual screening. Finally, Vellappally et al. (2018)
applied the xeno-genetic spiking neural network for examining
dental problems and facilitating oral health maintenance. In this
work, we developed an SNN to classify the gene expression levels
for different stages of the P. falciparum parasite during the blood
stage life cycle.

3. METHODOLOGY

3.1. RNN Architecture
RNNs, are fully connected neural networks with recurrent
connections in their hidden layers, specialize in processing a
sequence of values (Goodfellow et al., 2016). RNNs consist of
three layers: an input layer, a hidden layer, and an output layer.
RNNs handle sequential data better than feed-forward networks
because the hidden layer receives both current inputs at time
step t as well as information about its previous hidden state at
time step t − 1 through a recurrent connection as following:
h(t) = θ(xt , ht−1). The function θ is a non-linearity such as
tanh or sigmoid. Unlike other types of neural networks, RNNs
share the same parameters across all steps, thus, reducing the
number of parameters the networks need to learn. However,
training RNNs can be complicated by vanishing and exploding
gradients (Bengio et al., 1994), which greatly affects long-
term dependencies learning. To address these problems, several

variants of RNNs such as GRU (Cho et al., 2014) or LSTM
(Schmidhuber and Hochreiter, 1997) have been proposed.

We implement our proposed method using GRU. We choose
GRU because of the nature of our dataset; the length of the time
series covers up to 50 observations. GRU is computationallymore
efficient than the commonly used LSTM because it provides a
simpler network but with a comparable performance (Chung
et al., 2014). Particularly, GRU addresses the vanishing gradient
problem as well as capture the effect of long-term dependencies
by applying the gating mechanism. The GRU architecture
updates hidden states using the following equations:

zt = σ (Wzxt + Uzht−1 + bz) (1)

rt = σ (Wrxt + Urht−1 + br) (2)

h̃t = tanh(Whxt + Uh(ht−1 ⊙ rt)+ bh) (3)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (4)

where zt is the vector for update gate with weight matrices Wz

andUz ; rt is the vector for resetting the gate with weight matrices
Wr and Ur ; σ denotes the sigmoid function and ⊙ denotes the
element wise multiplication; xt is the input at time step t, ht−1 is
the previous hidden state; bz , br , and bh are trainable bias vectors.
In this architecture, the update gate selects whether the hidden
state is updated with a new hidden state h̃t while the reset gate
decides whether the previous hidden state ht−1 is ignored (Cho
et al., 2014).

We train each RNN using the Adam optimizer (Kingma and
Ba, 2014) and mean squared error as a loss function. To combat
exploding gradients, we apply weight decay. Additionally, we use
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Exponential Smoothing (Brown, 1959) to smooth the forecast
time series. With the sequence of observations with start time
at t = 0, the exponential smoothing function is defined by the
following formulas: s0 = x0 and st = αxt + (1− α)st−1, where st
is the output of the algorithm and xt is the actual observation at
time t; and 0 < α < 1 is the smoothing factor.

We use mean absolute percentage error (MAPE), unbiased
MAPE (uMAPE), and volume-weighted MAPE (vMAPE) to
measure the prediction accuracy of a forecasting series. We use
the following formulas to calculate the error where xt is the actual
value and yt is the forecast value at time t:

MAPE =
100%

n

n∑

1

|
yt − xt

xt
| (5)

uMAPE =
100%

n

n∑

1

|
yt − xt

(xt + yt)/2
| (6)

vMAPE =

∑n
1 |yt − xt|∑n

1 |xt|
(7)

During training, for each model, we compute three error
evaluation metrics (MAPE, uMAPE, vMAPE). We choose the
model that scores best on at least two of the three validation
metrics. If there is a tie, we choose the model with the best
vMAPE. Thus network architectures and parameters are chosen
based on validation performance.

3.2. SNN Architecture
Spiking neural networks (SNNs) are inspired by information
processing in biology, where sparse and asynchronous binary
signals are communicated and processed in a massively parallel
fashion. SNNs are the third generation of neural networks
(Maass, 1997), in which neurons communicate through binary
signals known as spikes. An SNN architecture consists of spiking
neurons and interconnecting synapses that are modeled by
adjustable scalar weights. SNNs are capable of learning rich
spatio-temporal information (Kasabov, 2014).

Training for classification models of SNNs has recently been
investigated based on both the supervised and unsupervised
mechanisms. In this work, we use the adapted Widrow-Hoff
learning rule proposed in Ponulak and Kasiński (2010). The
learning rule for the ith synaptic input to neuron n is given by:

1wni = (yd − yo) ∗ xi (8)

where wni is the amount of weight change for the synapse, xi is
the ith synaptic input, yd and yo are the desired and observed
outputs, respectively.

We use simulated networks of leaky integrate-and-fire (LIF)
neurons in the experiments, which is the most popular one for
building SNNs. LIF neurons are characterized by the internal
state called the membrane potential. The membrane potential
integrates the inputs over time and generates an output spike
when the neuronal firing threshold. As mentioned above, there
is a positive association between mRNA and protein levels, thus
different expression levels should correspond to different mRNA
abundance patterns. Consequently, when these expressions with

different patterns are converted into spikes in the SNN, the
membrane voltage of each output spiking neuron would be
different. Additionally, it has been shown that the SNN can
achieve a better performance of classification if the membrane
voltages of output spiking neurons vary from each other (Yu
et al., 2014). Therefore, we implemented SNN with LIF because
it is computationally simple, can easily be implemented in any
hardware, and appropriated for our problem.

The operation of the LIF neuron model is described by five
basic operations: synaptic integration, leak integration, threshold,
spike firing, and reset (Cassidy et al., 2013).

Vt = Vt−1 +

N−1∑

i=0

xi(t)si (9)

Vt = Vt − λ (10)

If Vt ≥ α then Spike and Vt = R (11)

where Vt is the membrane potential, t is discrete time step, N
is the number of synapses, xi(t) is the ith synapse, si synaptic
weight of ith synapse, λ is leak, α is spiking threshold, and
R is the resting potential. During the integration, for each
neuron in a time step, the membrane potential is the sum
of the membrane potential in the previous time step and the
synaptic input. Following the integration, the model subtracts the
leak value from the membrane potential, and finally, when the
membrane potential reaches a threshold, the neuron spikes and
the membrane potential is reset to a resting value.

The mRNA abundance information is presented to the SNN
directly without significant transformation. We directly mapped
the time series values onto distinct neurons so that temporal
information of the time series is encoded directly into the
network without extra processing. We use receiver operator
characteristic (ROC) curves, and the prediction accuracy to
evaluate each model. The area under the ROC curve (AUC)
quantifies the ability of the classifier to balance sensitivity (true
positives) against specificity (avoiding false positives).

3.3. Dataset
We generate a list of genes corresponding to those potential drug
targets from Fatumo et al. (2009) and our previous work in Tran
and Ekenna (2017). To broaden our dataset, we used PlasmoDB
(Aurrecoechea et al., 2008) to find all the related genes to our
list based on protein sequence similarities via utilization of the P-
BLAST tool (Altschul et al., 1990). We acquire mRNA abundance
information for those genes from Painter et al. (2018). Finally, we
normalize (from −1 to 1) the mRNA abundance for each gene
using the following equation:

Xnorm = −1+
2 ∗ (X − Xmin)

Xmax − Xmin
(12)

We apply the normalization method, so the training process is
more stable and faster since it’s shown that gradient descent
converges much faster with feature normalization than without
it (Ioffe and Szegedy, 2015). The dataset contains 697 genes and
their mRNA abundances are represented with a time series of
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TABLE 1 | Comparison among forecasting methods.

Experiment 1 Experiment 2 Experiment 3

MAPE uMAPE vMAPE MAPE uMAPE vMAPE MAPE uMAPE vMAPE

Our method 0.74 1.05 0.17 2.06 0.90 0.15 2.96 3.62 0.22

ARMA 0.91 8.74 0.38 2.50 4.25 0.39 1.52 9.12 0.62

SES 1.50 3.58 0.31 1.54 7.51 0.29 4.98 21.3 0.77

HWES 1.15 1.75 0.34 2.69 56.0 0.36 4.13 7.63 0.72

TABLE 2 | Accuracy of our model.

Error rate 10 (%) 20 (%) 30 (%)

Experiment 1 38.57 72.38 87.14

Experiment 2 45.44 77.89 91.70

Experiment 3 25.85 56.46 77.21

48 observations. We split the dataset into the set for training,
validation, and testing. For this work, we group the 48 h period
into three main asexual stages within the red blood cell cycle: ring
(0–21 hpi), trophozoite (22–32 hpi), and schizont (33–47 hpi).
We combine the mRNA abundance information from Painter
et al. (2018) and the expression level from Das et al. (2019) to
create the additional dataset for testing our classification method.
Overall the dataset contains 1991 genes with their normalized
mRNA abundance and expression level. For genes expression
level, we split the 48 h period into six stages: early ring, late
ring, early trophozoite, late trophozoite, early schizont, and
late schizont.

4. EXPERIMENTAL RESULTS

4.1. Evaluation Methods
4.1.1. Time Series Prediction

In this work, we are interested in forecasting the mRNA
abundance during the parasite life cycle in the blood stage.
Thus we use the information from the previous stage to forecast
the next stage. Specifically, we implement two RNN models to
perform three experiments since we have different lengths for
time series for each experiment.

1. Experiment 1: using time series of ring stage to predict time
series of trophozoite stage;

2. Experiment 2: using time series of both ring stage and
trophozoite stage to predict time series of schizont stage;

3. Experiment 3: using time series of ring stage to predict time
series of trophozoite stage then using the combining time
series to predict the time series of schizont stage.

RNN1 is used for experiment 1, and RNN2 is used for both
experiment 2 and 3. Each experiment was repeated 10 times and
the average performance is reported.

To evaluate our method’s performance, we compared it
to classical time series forecasting methods such as Auto-
regressive Moving Average (ARMA) (Hamilton, 1994), Simple

Exponential Smoothing (SES) (Brown, 1959), and Holt Winter’s
Exponential Smoothing (HWES) (Winters, 1960). We utilized
and implemented these methods because they are proven to be
efficient in time series data forecasting especially considering
the nature of our dataset which is univariate time series data
without seasonality.

4.1.2. Genes Expression Prediction

In this work, we will predict the expression level for each stage
during the parasite life cycle. Therefore, we use the time series
of mRNA abundance to predict the expression level, which
is either low or high, for the ring, trophozoite, and schizont
stage. Specifically, we implement the SNN model to perform the
following experiment: using time series of 48 h periods to predict
the expression level for each: late ring (LR); late trophozoite (LT);
late schizont (LS). We use the whole time series of 48 h periods
to predict instead of its average, minimum, or maximum values
because wewant to keep the time aspect of themRNA abundance.
Additionally, with little input data, the machine learningmodel is
very likely to be under-fitting, in which it is unable to capture the
relationship between the input and output variables accurately.

To evaluate our method’s performance, we compared it to
state-of-art models used in Read et al. (2019): logistic regression
with elastic net regularization (LogR), tree model with gradient
boosting (TGB), and multi-layer perceptron model (MLP). Since
the work in Read et al. (2019) only predict the expression level
for the late ring; the late trophozoite; the late schizont, we
designed the experiment to compare our model performance
with them. The experiment was repeated 10 times and the average
performance is reported.

4.2. Implementation
Our method is implemented using Python with Pytorch (Paszke
et al., 2019). For each model, we used 70% of the dataset to train
and 20% of the data set to test. The remaining 10% is used as a
validation set to optimize the model parameters. For RNN, we
implemented them with two hidden layers. The first hidden layer
has the same size as the input layer and the second hidden layer
the same as the output layer size. We trained both RNNs using
a batch size of 1, learning rate of 0.01, and weight decay values
of 10−5. The number of epoch and smoothing factors are 200,
300, and 0.5, 0.4 for RNN1 and RNN2, respectively. We use the
provided statistics library in Python to implement ARMA, SES,
and HWES.

We implement SNN using Python with PyTorchSpiking
(Research, 2020). Similar to RNN, we used 70% of the dataset
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FIGURE 2 | Examples of results for experiment 1.

FIGURE 3 | Examples of results for experiment 2.

FIGURE 4 | Examples of results for experiment 3.

to train and 20% of the data set to test, and 10% is used for
validation. We implemented SNN with one hidden layer, which
has half the size of the input layer. We simulated SNN for
10 s, the maximum firing rate of the input neurons is 100
Hz, the batch size is 100, the number of epoch is 200, and
the default value for other parameters. We used the provided
information from Read et al. (2019): LogR using the scikit-learn
implementation (Pedregosa et al., 2011), TGB using the XGboost
Python implementation (Chen and Guestrin, 2016), and MPL
using Pytorch with two hidden layers, each containing the same
number of nodes as the input layer.

4.3. Results
4.3.1. Time Series Plot Prediction Results

Table 1 shows the performance of our proposed
model comparing to other time series forecasting
methods. The best performing method is highlighted
in bold. Since our evaluation metric measures the error
rate, the lower the error values are, the better the
forecasting series are. Overall, our method has the best
performance because it models the non-linear relationship
between each observation while is lacking in other
comparable methods.
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FIGURE 5 | Forecast series for Dihydrolipoyl dehydrogena.

To better show the performance of our method, forecast time
series are deemed accurate if one of their calculated error rates is
less than a certain threshold. Table 2 shows the overall accuracy
of our proposed model with 10, 20, and 30% error rates when
forecasting mRNA abundance time series. For experiment 1, our
results indicated that 87% of the forecast time series have a 70%
similarity with the actual time series; 72% of the forecast time
series have a 80% similarity; and 39% of the forecast time series
have a 90% similarity. For experiment 2, 92, 78, and 45% of the
forecast time series have a 70, 80, and 90% similarity, respectively.
For experiment 3, 77, 56, and 26% of the forecast time series have
a 70, 80, and 90% similarity, respectively.

During our experiments, we observed that the more time-
series information we use as input, the more accurate our
forecast. Experiment 3 has a slightly lower accuracy because
errors accumulate from forecasting earlier time series for the
trophozoite stage to forecasting time series for the schizont stage.
Overall, the accuracy of our predicted results is high.

4.3.2. Time Series Plot Results

Figures 2–5 shows time-series results on some sample genes
when using our method to forecast different gene expression
profiles. The red line represents the actual time series from
experimental data, the blue line represents the average forecast
time series, and the shaded blue region represents its standard
deviations over ten runs using our model. We present genes in
this paper that illustrate how our forecast time-series can follow
the expression profile (upward trend, downward trend, or both).

Figure 2 shows results on the three different genes for
experiment 1. Both the magnitude and trend of the forecast
time series follow closely the actual time series gotten from
experimental data, with a very small standard deviation (blue
shaded region). Figure 3 shows the results on the three different
genes for experiment 2. Similar to the procedure taken in
experiment 1, the forecast time series also follows closely to
the actual time series, with also very small standard deviation,
showing the robustness of our method to predict the gene
expression profile. Figure 4 shows the results on three different
genes for experiment 3. Although the forecast time series is not
as accurate and the standard deviation is larger, it still follows the

TABLE 3 | Comparison among classification methods.

LogR TGB MLP SNN

LR 0.802 0.779 0.766 0.836

LT 0.899 0.902 0.895 0.910

LS 0.758 0.771 0.792 0.815

trend of the actual time series. Thus, we are still able to determine
the gene expression profile reliably.

Figure 5 shows the result when using our model to predict the
mRNA abundance profile for genes PF3D7_1232200 associated
with Dihydrolipoyl dehydrogena. Dihydrolipoyl dehydrogena is
one of the enzymes we identified as a potential drug target from
our previous work (Tran and Ekenna, 2017) using knock-out
reactions in the metabolic network model. We illustrate how our
model can forecast the genes expression profile. The accuracy
of the forecast time series is high, especially in experiment 2.
In experiments 1 and 3, the magnitude of the forecast mRNA
abundance is different from the actual one, but the upward and
downward trend in genes expression profile is identical. Thus,
we are still able to determine at which stage the genes are the
most active.

4.3.3. Genes Expression Prediction Results

Table 3 shows the performance of our proposed model
comparing to other prediction methods. The best performing
method is highlighted in bold. We evaluate our model using an
accuracy rate. For MLP and SNN, the accuracy is averaged over
10 trials. Overall, our method has the best performance.

Figure 6 shows the ROC curves when using the time series
from the test set to classify the expression level for the late
ring, late trophozoite, and late schizont. We reported the trial
with the median accuracy for all the comparable methods.
The AUCs of our method are 0.84, 0.85, and 0.75 for the
late ring, the late trophozoite, and the late schizont. Overall,
we observed similar levels of performance across the three
erythrocytic stages.

Overall, our model forecasts the time series accurately,
the trend of expression for each gene is closely captured by
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FIGURE 6 | ROC of classification models for each stage.

our model, and the expression levels are correctly classified.
Additionally, with our current dataset, it takes only a fewminutes
to train our models, and a few seconds to forecast the time series
and classify the expression level. Genes which highly express
during the trophozoite stage produce proteins increasing the
metabolic activity of the parasite. Thus, by accurately forecasting
the gene expression profiles, we can verify whether the genes
are active during the trophozoite stage. Moreover, the genes
which highly express during the schizont stage, are related to the
replication and mitotic division of the parasite. Knowing which
genes express during the schizont stage, could potentially aid
in better knowledge and control over the parasite development
cycle. Finally, since the model could forecast the time series and
expression level for the trophozoite and schizont stage, it could
potentially reduce time and serve as an important template for
biologists. Therefore, with our model’s high accuracy, we can
potentially provide a beneficial tool to help biologists generate
a model of the complete gene expression profiles even before
performing more involving experiments in the lab. In some
cases where there is an abundance of data but there could
be some missing data at some time point for some reason,
our work could fill in those gaps by accurately predicting the
missing data.

5. CONCLUSION

In conclusion, to our knowledge, we are the first one to proposed
the usage of RNNs and SNNs to forecast the gene expression
profile for the P. falciparum parasite during the blood-stage life
cycle. Even with a small dataset for training, our model performs
very well in most scenarios. Overall, our method can forecast
adequately the magnitude, the trend of mRNA abundance, and

the expression level of the P. falciparum parasite during the blood
stage life cycle. In the future, with the forecast gene profiles,
we would like to predict the relationship among those genes
to identify the gene or group of genes which express potential
drug target enzymes. Considering the many existing variants
of the Plasmodium parasite, we plan to evolve our method to
investigate the profiles of these variants. Additionally, we plan
to refine our model so that it will take a smaller amount of data
(3–5 data points) and predict the next immediate data point
(instead of the whole next stage), thus making it more practical
for biologists.
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