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Abstract
A statistical theory is presented of the magnesium ion interacting with lysozyme under 
conditions where the latter is positively charged. Temporarily assuming magnesium is not 
noncovalently bound to the protein, I solve the nonlinear Poisson–Boltzmann equation 
accurately and uniformly in a perturbative fashion. The resulting expression for the effec-
tive charge, which is larger than nominal owing to overshooting, is subtle and cannot be 
asymptotically expanded at high ionic strengths that are practical. An adhesive potential 
taken from earlier work together with the assumption of possibly bound magnesium is then 
fitted to be in accord with measurements of the second virial coefficient by Tessier et al. 
The resulting numbers of bound magnesium ions as a function of MgBr

2
 concentration are 

entirely reasonable compared with densitometry measurements.

Keywords  Magnesium ion · Lysozyme · Poisson-Boltzmann equation · Second-virial 
coefficient · Densimetry · Ionic strength

1  Introduction

We have a fairly good understanding of the way biopolymers interact with monovalent ions 
like Na+ and Cl− (although there is now evidence that the electric fields of polyelectro-
lytes are so high that they influence the quantum mechanical properties of water [1] which 
has obvious implications for charged biopolymers). On the other hand, the interaction with 
multivalent ions remains elusive. The magnesium ion at small concentrations, for instance, 
has a strong influence on the thermodynamic properties of DNA solutions as was estab-
lished by Lerman et al. a long time ago [2]. In the case of lysozyme, the Mg2+ ion binds 
noncovalently to the positively charged protein, but this happens at high concentrations of 
the cation [3]. The binding appears to be corroborated in studies of the second virial coef-
ficient B2 of lysozyme in MgBr2 solutions where a minimum was found at around 0.3 M [4, 
5].

The second virial coefficient of lysozyme in NaCl solutions was measured thoroughly by 
many experimental groups which allowed Prinsen and myself to establish the two parame-
ters of the purported adhesive potential UA between lysozyme spheres quite unambiguously 
[6]. The potential is independent of protein charge and ionic strength, so there is sound 
reason to hypothesize that it remains valid even when the salt is divalent like MgBr2 . As in 
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Prinsen and Odijk [6], I solve the Poisson–Boltzmann equation perturbatively in order to 
compute the effective charge of the protein based solely on electrostatics. The magnesium 
ion is excluded from the lysozyme surface so that the effective charge is larger than nomi-
nal as has already been discussed by Tellez and Trizac [7]. The object of this paper is to set 
up a self-consistent theory of the interaction of the magnesium ion with positively charged 
lysozyme. Because the binding constant of the ion is unknown a priori, I evaluate an actual 
effective charge as an adjustable parameter via the measurements of B2 [4, 5] by letting the 
lysozyme spheres interact via the Poisson–Boltzmann equation and the adhesive potential 
UA . The resulting values of bound Mg2+ as a function of Mg2+ concentration are then com-
pared with those established by densitometry [3].

Tellez and Trizac already presented interesting numerical and analytical computations 
for spherical and cylindrical colloids in a 2–1 electrolyte (the cation is divalent, whereas 
the counterion is monovalent) [7]. Their analysis extends the previous multiscale method 
of Shkel et al. [8] and is useful when a𝜅 > 1 where a is the radius of curvature and �−1 is 
the Debye screening length, as they showed numerically. Here, the objective is different: 
I solve the nonlinear Poisson–Boltzmann equation perturbatively for all a� where a is the 
radius of the spherical colloid (lysozyme in our case). This results in a uniformly valid 
expression for the effective charge. The overshooting effect discussed in [7] can then be 
understood at all a� for positively charged proteins or nanoparticles. The fully computed 
expression turns out to be subtle.

2 � Solution of the Poisson–Boltzmann equation for a 2–1 electrolyte

The nanosphere bears a charge Zq where q is the elementary charge and Z > 1 . The elec-
trostatic potential �(r) between two spheres separated by a distance r is scaled by kBT  
where kB is Boltzmann’s constant and T is the temperature: �(r) ≡ q�(r)∕kBT  . If the con-
centration of 2–1 salt (MgBr2 in the experiments to be discussed below) is n, the Debye 
screening length �−1 is given by �2 = 8�QI with ionic strength I = 3n , the Bjerrum length 
Q = q2∕DkBT  where the permittivity D is assumed to be uniform. The Poisson–Boltzmann 
equation then reads

with boundary conditions

The linearized version of Eq. (1) has the usual Debye–Hückel solution

A pertubative solution to Eq. (1) is derived as follows (see Appendix  1 in [6]; an error  
was made there—the zero-order screening term was deleted—but this is corrected here; 
fortunately, it turns out that errors incurred in the tables of [6] are within the margin  
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of error). I seek a solution Ψ = Ψ0 + Ψ1 where Ψ1 is uniformly smaller than Ψ0 though  
Ψ0 now has a higher effective charge Zeff instead of Z owing to the divalent ion being sub-
stantially suppressed by the particle surface (see Eq. (1)). If we next scale the distance r 
between the spheres by � , R = �r , we have

with a source term

and

Equation (5) is readily solved by quadrature. First, set Ψ1 ≡ f (R)∕R which leads to

Then, set f (R) ≡ w(R)e−R yielding

Noting that w′
→ 0 as R → ∞ , we can integrate Eq. (11) to get

Another integration gives

since w → 0 as R → ∞ . I note that w is negative as it should be. Equation (13) may be re-
expressed in terms of the exponential integral

yielding

(5)
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We thus have that Ψ1(R) = w(R) exp(−R)∕R so Eq. (2) becomes

The second term on the right-hand side of Eq. (16) is rewritten in terms of exponential 
integrals with the help of Eqs. (13) and (15)

which is always positive. Hence, we have Z = Zeff − �Z2
eff

 or Zeff = Z + �Z2 correct to 
O(Z2) where

The asymptotic expansion of E1(�) at large � is well known to be virtually useless [9]. In 
effect, it is only as � becomes exceedingly large ( � = O(100) ) that Eq. (18) agrees with Eq. 
(3.16) computed by Tellez and Trizac [7]. Obviously, we need to use the full expression for 
g(�) in practical calculations.

Developing a series expansion of the effective charge at low ionic strength ( a𝜅 ≪ 1 ) is, 
however, straightforward. The leading term is of interest for it does not depend on a

This is a useful estimate for proteins and nanocolloids in the case Z = O(10) and 
Q� = O(0.1) say.

3 � Application to lysozyme in MgBr
2

As in previous work [6], the radius of the lysozyme is set a = 1.7 nm and the Bjerrum 
length Q = 0.71 nm at room temperature ( T = 298 K). Kuehner et al. established the charge 
Z = 7 at pH = 7.5 for lysozyme in a NaCl solution by titration [10]. I assume this is also 
the bare charge for lysozyme in the case at hand. The theoretical second virial coefficient

is connected to the experimental second virial coefficient Bexp via Bexp = NavB2∕M
2 [11] 

where Nav is Avogadro’s number and M is the molar mass (14.3 kg / mol for lysozyme). 
The hard sphere coefficient BHS = 16�a3∕3 = 82 nm3 . Hence, if the lysozyme molecule 
was a sphere, the experimental hard-sphere value would be Bexp, HS = 2.41 × 10−4 mol ml/
g2.

Tessier et al. measured Bexp of lysozyme in MgBr2 solutions at pH = 7.8 by self-interaction 
chromatography [4]. By contrast, Guo et al. had already determined Bexp by static light scattering 
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in 1999 [5]. The two sets are shown in Table 1. The second virial coefficient is probably difficult 
to measure accurately when the protein molecules attract each other, which may rationalize the 
disparity between the two methods. Both methods, however, establish that there is a minimum at 
about 0.3 M MgBr2.

Next, I shall use the comprehensive chromatography data to compute the number of mag-
nesium ions using

which is analogous to the total interaction potential introduced in [7] with Debye–Hückel 
potential

where

is the coupling parameter of the renormalized nonlinear Poisson–Boltzmann interaction. 
The depth of the adhesive well is UA , and its thickness is �a . An accurate estimate of the 
second virial coefficient B2 is computed in [6]:

(21)
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4
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,

Table 1   Experimental second 
virial coefficient Bexp as a 
function of the magnesium 
bromide concentration. Self-
interaction chromatography 
(SIC) [4]; Static light scattering 
(SLC) [5]

MgBr2 (M) Bexp (10−4 mol ml/g2)

SIC SLS

0.10 −2.30 −2.40
0.20 −5.00 -
0.30 −6.14 −4.50
0.43 −5.24 −4.40
0.53 −4.25 −3.70
0.70 −2.70 −3.20
1.00 0.00 -
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In the case of lysozyme in a NaCl solution � = 0.079, UA = 3.70 and �eUA = 3.20 [6]. It is 
assumed that these values pertain to lysozyme—MgBr2 solutions also.

Table 2 is derived as follows. First, the effective charge Zeff is computed from Poisson– 
Boltzmann electrostatics by numerically evaluating the function g(�) (Eq. (18)). This  
pertains to the case when no magnesium ions are assumed to be bound to the lysozyme. 
The numerical calculation of the exponential integral is well known to be notoriously non-
trivial, but a powerful representation has been presented by applied mathematicians [12].

Next, the coupling parameter � is supposed adjustable in view of Mg2+ binding to the 
surface and is computed numerically by imposing the experimental values of B2∕BHS [4] 
in Eq. (24). Equation (23) then yields the corresponding numerically adjusted Zeff, num . The 
number of bound Mg ions is simply ( Zeff, num − Zeff)∕2 . The number of bound ions in the 
densitometry experiments at 1 M MgCl2 was 4 at pH = 3.0 and 6 at pH = 4.5, which would 
lead to a tentative estimate of 10 at pH = 7.5. At 0.5 M MgCl2 , this number was 3 at pH = 
3.0.

The pH = 7.8 of the solutions used by Tessier et al. [4] is not identical with the pH = 
7.5 of the solutions used by Kuehner et al. [10]. In Eqs. (25) and (27), the parameters � and 
UA pertain to the latter pH [6]. However, the small disparity in pH does not affect these  
conclusions. From [10], one may infer ΔZ∕ΔpH ≃ −0.93 so that ΔZ ≃ −0.28 at pH =  
7.8. This leads to ΔZeff ≃ 0.3 in the range of 0.1–0.3 M MgBr2 . A relative change of the 
effective charge by 10% does not alter the number of bound magnesium ions in the interval 
(= zero).

It is also of interest to consider the properties of the layers of Mg2+ ions at the two high-
est MgBr2 concentrations of Table 2. The surface area of lysozyme is 36.3 nm2 . If the ions 
were spread evenly across the protein surface, the typical distance between neighboring 
ions would be d = 2 nm. The relevant electrostatic energy 4QkBT∕d = O(1) is not weak let 
alone if we were to include interactions beyond nearest neighbors. Hence, the nonconva-
lently bound ions would appear to be spread uniformly across the lysozyme surface.

(27)J2 ≃ 2�

[
e−� +

(
1 +

�

2

)2

exp

(
−

�

1 +
�

2

e−��

)]
,

(28)� ≡(e−� − 1 + �
)
∕�2.

Table 2   Number of magnesium ions bound to lysozyme computed as outlined in the text. The function g(�) 
is calculated numerically with the help of the procedure in [12] and Zeff = Z + �Z2 . The purely electrostatic 
coupling constant �eff is given by Eq. (23). When the attractive potential between two lysozyme spheres is 
switched on, �num is computed from Eqs. (24)–(28) and Zeff, num from Eq. (23)

MgBr2 (M) 0.10 0.20 0.30 0.43 0.53 0.73 1.00
� 3.06 4.33 5.31 6.35 7.05 8.10 9.69
g(�) 0.0759 0.0466 0.0320 0.0237 0.01985 0.01559 0.01135
Zeff 8.2 8.0 7.9 7.8 7.7 7.6 7.6
�eff 0.852 0.471 0.328 0.235 0.191 0.146 0.106
B2∕BHS −0.95 −2.07 −2.55 −2.17 −1.76 −1.12 0.0
�num 0.839 0.490 0.357 0.508 0.691 1.945 2.15
Zeff, num 8.1 8.2 8.2 11.5 14.6 27.7 34.2
bound Mg2+ 0 0 0 2 3–4 10 13
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4 � Discussion

We now have a mean-field theory of lysozyme in which its properties in monovalent salt 
(second virial coefficient [6], concentration dependence of the osmotic pressure [6], crys-
tallization [13] and diffusivity [14]) and in divalent salt (this work) are well explained by 
Poisson–Boltzmann electrostatics together with a well-defined adhesive well ( UA , �a with 
UA and � fixed parameters) which is independent of electrostatics (ionic strength). Moreo-
ver, Prinsen and I have argued on general grounds that traditional dispersion forces cannot 
even begin to describe the second virial as a function of the ionic strength [6]. Very exten-
sive computational work [15] on lysozyme in MgBr2 solutions is in stark disagreement 
with the experimental data [4, 5]: the predicted second virial coefficient decreases rapidly 
with the concentration of magnesium bromide. Accordingly, without a posited adhesive 
well, it is difficult to see how the minimum in the data for B2 can be explained at all. Note 
that the computational physics of biopolymers is still in a state of considerable flux [16].

5 � Concluding remarks

It is expected that no magnesium ions are bound to the lysozyme at low concentrations and 
this is well borne out by the first three entries in Table 2. Beyond the minimum in B2 , the 
second virial coefficient measured by Tessier et al. imposes a value of 13 bound magne-
sium ions at 1 M MgBr2 compared with a tentative extrapolation of 10 bound magnesium 
ions by densitometry [3]. Accordingly, it would be of interest to perform new measure-
ments at the appropriate pH in a full range of ionic strengths to see how well the current 
theory applies.
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