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Abstract: Extracorporeal circulation (ECC) methods are being increasingly used for mechanical
support of respiratory and cardio-circulatory failure. Especially, cardiopulmonary bypass (CPB)
during cardiovascular surgery, sustenance of the patient’s life by providing an appropriate blood flow
and oxygen supply to principal organs. On the other hand, systemic inflammatory responses in patients
undergoing cardiovascular surgery supported by CPB contribute significantly to CPB-associated
mortality and morbidity. Our previous research showed that CPB causes a systemic inflammatory
response and organ damage in a small animal CPB model. We have been studying the effects of
hyperoxia and blood plasma substitute on CPB. In this review, we present a study focusing on the
systemic inflammatory response during CPB, along with our findings.

Keywords: systemic inflammation; cytokine; oxidative stress extracorporeal circulation; cardiopulmonary
bypass

1. Introduction

Extracorporeal circulation (ECC) methods are being increasingly used for mechanical support
of respiratory and cardio-circulatory failure. Especially, cardiopulmonary bypass (CPB) during
cardiovascular surgery, sustenance of the patient’s life by providing an appropriate blood flow and
oxygen supply to principal organs. [1]. Until the 1950s, cardiovascular surgery had a very high
mortality and morbidity rate. This situation changed due to the development of the CPB system
by Dr. Gibbon [2] and body surface cooling for hypothermia by Dr. Gordon [3]. These inventions
established modern cardiovascular surgery.

However, it has been known that CPB initiates an inflammatory reaction cascade. Cardiovascular
surgery with CPB is often associated with a systemic inflammatory response syndrome, significantly
affecting the postoperative mortality and morbidity [1,4,5]. The inflammatory response caused by CPB
is known to especially affect humans [6,7].

There are several factors that appear to be cause for the systemic inflammatory reaction, such
as contact of blood with the CPB device’s surface, surgical operation trauma, endotoxemia, blood
loss, and ischemic reperfusion injury [8]. Accordingly, activation of the complement and immune
system, leucocytes, and endothelial cells occurs, which in turn is responsible for the release of
multiple pro-inflammatory cytokines [9]. The increase in cytokines, as in interleukins (IL), tumor
necrosis factor (TNF), kallikrein, and bradykinin [10], exacerbates the inflammatory response during
cardiovascular surgery with CPB [11]. Inflammation during extracorporeal circulation causes systemic
inflammatory response syndrome and induces serious complications [12,13]. Kidney injury occurs
especially frequently, and it is closely related to inflammation during cardiopulmonary bypass [14–16].
In fact, looking at clinical data, acute kidney injury (AKI) occurs in 5% of admitted patients [17] and
in 5–30% of patients undergoing cardiovascular surgery, who have a high mortality and morbidity
rate [17,18].
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Moreover, inflammation and arrhythmia after cardiac surgery are also highly related. Myocardial
reperfusion after aortic cross unclamping generates enormous stress and might activate leukocytes.
Patients who have higher postoperative leukocyte counts are significantly more likely to develop
postoperative atrial fibrillation [19–22], and patients developing postoperative atrial fibrillation tend to
have a greater degree of monocyte-macrophage lineage activation, as reflected by high expression of
CD11b [23].

In addition, cardiac surgery with CPB results in generation of active oxygen species (oxidative
stress) and coagulopathy. Eventually, these phenomena can cause failure of multiple organs and
catastrophic complication.

CPB causes a variety of catastrophic complications, and leukocyte activation, especially neutrophils
and monocytes, results in worse outcomes for patients undergoing cardiac surgery with CPB.

Our recent report showed that CPB leads to a cytokine release and major organ damage in a rat
CPB model [24–28]. In this review, we will introduce our study focusing on the inflammatory response
in CPB. Figure 1 summarizes the inflammatory response in CPB.
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2. Evaluation of Inflammation Caused by Cardiopulmonary Bypass in a Small Animal Model

2.1. Our Rat Cardiopulmonary Bypass Model

Cardiovascular surgery with CPB is often accompanied by a systemic inflammatory response,
significantly affecting postoperative mortality and morbidity [4]. Further research is needed to
elucidation of the pathological physiology during CPB. On the other hand, difficulties in clinical study
and large animal experiments have made its elucidation difficult. In this situation, it is desirable to have
a small animal CPB model [24–28], which enables continue experiments, to research the mechanism of
vital reaction during CPB.

Male Sprague-Dawley rats (400–450 g), 14–16 weeks old, were used. After the animals were
anesthetized with 5.0% isoflurane mixed oxygen enriched air inhalation with a vaporizer, they were
placed in the supine position, and a rectal temperature probe was then inserted. Following orotracheal
intubation using a 14G catheter (Terumo Corp, Tokyo, Japan), the animals were mechanically ventilated
under 40% of oxygen fraction with a Model 687 respirator (Harvard Apparatus Ltd., Edenbridge, Kent,
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UK) providing volume-controlled ventilation at a frequency of 70/min, with tidal volume of 8–10 mL/kg
body weight. Isoflurane 2.0–2.5% was used to maintain anesthesia, and the rectal temperature was
kept at 35–36 ◦C. The right femoral artery was cannulated with SP-31 polyethylene tubing (Natsume
Seisakusho Co. Ltd., Tokyo, Japan) for arterial blood pressure monitoring using a Power-Lab system
(Model ML870, AD Instruments Japan Inc, Nagoya, Japan). SP-55 polyethylene tubing (Natsume
Seisakusho Co. Ltd.) was used to cannulate the left common carotid artery as the arterial return
cannula for the CPB system, and heparin sodium (500 IU/kg) was given through this cannula. A 16G
cannula (Togo-medkit Co. Ltd., Tokyo, Japan) was passed through the right internal jugular vein
advanced into the right atrium as the conduit for venous uptake. The CPB system consisted of a roller
pump (MP-3, Tokyo Rikakikai Co., Ltd., Tokyo, Japan) a miniature membrane oxygenator (Senko
Medical Instrument Mfg. Co., Ltd., Tokyo, Japan), and polyvinyl chloride tubing line (Senko Medical
Instrument Mfg. Co., Ltd.). CPB circuit was primed by 3 mL of sodium bicarbonate, 3 mL of mannitol,
8 mL of Ringer’s solution, and 1 mL (1000 IU) of heparin. Animals in which the hemoglobin level
declined to less than 7 g/dl at any point were excluded from the study. Figure 2a,b shows the rat
CPB model.
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oxygenator with a membrane area of 0.03 m2, a polyvinyl chloride tubing line, and a roller pump are
shown [28]. (a), schema, (b), actual situation.

2.2. Hyperoxia Promotes the Inflammatory Response during Cardiopulmonary Bypass

In a previous study has shown that, among patients admitted to intensive care units following
resuscitation from cardiac arrest, the normoxia control group had significantly lower in-hospital
mortality than the hyperoxia (arterial pressure of oxygen (PaO2) of 300 mm Hg or greater) control
group [29]. A recent study showed that hyper oxygen condition induces oxidative cell damage by
promoting the formation of reactive oxygen species (ROS) [30] and the inflammatory cytokines
expression [31]. However, PaO2 is controlled at high levels during CPB in clinical sites [31].
We hypothesized that hyperoxia aggravates the systemic inflammation and causes organ damage during
CPB. We considered that appropriate normoxia control would lead to a reduction of inflammatory
cytokine levels, providing protective effects against organ damage during CPB. To test our speculation,
the effects of normal and high levels of PaO2 on the levels of cytokines (TNF-α, IL-6, and IL-10) and
organ damage enzymes (lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and alanine
aminotransferase (ALT)) were investigated in a rat CPB model. Moreover, the lung wet-to-dry weight
(W/D) ratio was measured as an index of edema. In addition, dihydroethidium (DHE) staining was
performed to detect superoxide production in the liver and lung tissues.



Biology 2020, 9, 81 4 of 13

The experimental design is shown below. The animals were randomly divided into three groups:
SHAM group received surgical procedure only without CPB, and PaO2 was controlled at 100–150 mmHg
in the experiment period (n = 5), hyperoxia CPB group, PaO2 was controlled at greater than 400 mmHg
during CPB (n = 7), and normoxia CPB group PaO2 was controlled at 100–150 mmHg during CPB
(n = 7). In all experiments, CPB perfusion flow was controlled at 60–70 mL/kg/min. During the
experimental period, the partial pressure of arterial carbon dioxide (PaCO2) was ordinarily controlled
at 35–45 mmHg in all groups.

Blood samples were collected with every 60 min (pre-CPB, 60 min after initiation of CPB
and end-CPB). Plasma levels of cytokines were measured by enzyme-linked immunosorbent assay
(Quantikine® ELISA kit, R&D systems, Minneapolis, MN, USA,) and multiplex suspension array
(Bio-PlexTM Assay Kits, Hercules, CA, USA). The concentrations of LDH, AST, and ALT were measured
by automated colorimetry from plasma samples (DRI-CHEM 7000 Analyzer, FUJIFILM, Kanagawa,
Japan). All animals were sacrificed at the end of experiments by potassium chloride injection into the
heart, and the left lung was harvested and divided into three parts [25]. The lung block was weighed
before and after desiccation for 72 h in a dry oven at 70 ◦C for the calculation of the W/D ratio [25].
Additionally, a part of the liver and the right lung were placed in cold PBS buffer and then embedded in
a dry ice acetone method for cryo-sectioning. The frozen segments were cut into 7-µm-thick transverse
sections that were then placed on glass slides [25]. DHE stain solution (Wako Pure Chemical Industries,
Ltd., Osaka, Japan) diluted 30,000 times with dimethyl sulfoxide was topically applied to each tissue
section. The slides were incubated in a light-protected chamber at 37 ◦C for 30 min. Images of the
tissue sections were obtained using a fluorescence microscope (wavelength 594 nm, exposure time
80 ms) with a rhodamine filter [25]. Fluorescence intensity, which positively correlates with the amount
of superoxide generation, was determined in the liver and lung tissues using software (Image J, v1.60,
National Institutes of Health, Bethesda, MD).

All value is presented as means± standard error (SE). Comparisons among groups were performed
using analysis of variance (ANOVA). Fisher’s PLSD post hoc test was used for subsequent comparisons
between groups at the same time points. Statistical analyses were performed with Stat View 5.0
(Abacus Concepts, Berkeley, CA, USA). Statistical significance was assumed when the p value was less
than 0.05. The following studies underwent similar statistical processing.

Figure 3 shows the results [25]. Before CPB, the plasma levels of inflammatory and organ damage
enzymes were not significantly different among the SHAM, hyperoxia CPB, and normoxia CPB groups.
In the SHAM group, plasma inflammatory and organ damage enzymes remained unchanged during
the experiment. In the hyperoxia CPB group, pro-inflammatory cytokines (TNF-α and IL-6) increased
significantly, reaching a maximum at the end of CPB. However, in the normoxia CPB group, the
increases in the pro-inflammatory cytokines were significantly suppressed by approximately 40%
compared to the hyperoxia CPB group (Figure 3a,b). On the other hand, in the normoxia CPB group,
IL-10 significantly increased, reaching a maximum at the end of CPB, approximately 60% higher in
comparison to the hyperoxia CPB group at the end of CPB (Figure 3c).
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Figure 3. Plasma levels of tumor necrosis factor (TNF)-α (a), interleukin (IL)-6 (b), IL-10 (c), lactate
dehydrogenase (LDH) (d), aspartate aminotransferase (AST) (e), alanine aminotransferase (ALT) (f) [25].
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In the hyperoxia CPB group, the levels of LDH, AST, and ALT increased significantly 60 min after
CPB initiation and increased further at the end of CPB. On the other hand, in the normoxia CPB group,
the elevated levels of organ damage enzymes were significantly suppressed by approximately 50%
at the end of CPB compared to the hyperoxia CPB group (Figure 3d–f). Neither AST nor ALT levels
changed significantly during CPB from the pre-CPB levels in the normoxia group. The CPB groups
showed significantly higher W/D ratios than the SHAM group (Figure 4). Although, the increase in
the W/D ratio was significantly suppressed in the normoxia CPB group compared to the hyperoxia
CPB group. DHE staining in the lung and liver tissues was strikingly enhanced in the hyperoxia CPB
compared to the normoxia CPB group (Figure 5a,b), this data suggesting greater superoxide production
with a hyperoxia condition management during CPB.
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in situ detection of superoxide in each group’s lung and liver. Confocal microscope sections of organ
are labeled with the fluorescent oxidative dye dihydroethidium [25]. Scale bar: 100 µm. (b) Mean
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2.3. Effect of Blood Plasma Substitute Priming on the Systemic Inflammation and Lung Edema Following
Cardiopulmonary Bypass

Recently, a new 6% hydroxyethyl starch (HES) with a medium molecular weight (130 kDa)
and a very low substitution degree (0.4) was used as a blood plasma substitute (6% HES 130/0.4;
VOLUVEN®, Fresenius AG, Bad Homburg, Germany). This HES has already been approved in
many countries for general fluid replacement. It has also been reported that 6% HES 130/0.4 has
pharmacodynamics and pharmacokinetic advantages, such as deceased tissue storage, rapid plasma
elimination, and low impact on the blood coagulation system [32,33]. In addition, recent studies have
shown that fluid replacement with HES 130/0.4 reduced the inflammation during gastroenterological
surgery [34]. We hypothesized that 6% HES 130/0.4 as CPB priming solution would attenuate the
systemic inflammatory response with a reduction of pro-inflammatory cytokine levels, providing
protective effects against organ tissue damage during CPB [35]. Therefore, in a previous study [16], the
effectiveness of HES as CPB priming solution was examined. Plasma levels of TNF-α, IL-6, and colloid
osmotic pressure (COP) were investigated in the rat CPB model. Additionally, the lung tissue W/D
ratio was studied.
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The animals were randomly divided into three groups: SHAM group (n = 5), Ringer’s acetate CPB
group (n = 7), and HES 130/0.4 CPB group (n = 7). The SHAM group received surgical preparation
only without CPB. In the Ringer’s acetate CPB group, the CPB circuit was primed with Ringer’s acetate
solution (Veen F® Kowa Co., Ltd.), and in the HES 130/0.4 CPB group, the CPB system was primed
with 6% HES 130/0.4 (VOLUVEN®, Fresenius Kabi Japan K.K.). CPB perfusion flow was controlled at
60–70 mL/kg/min. Respectively, the PaCO2 and PaO2 controlled at 35–45 and 300–400 mmHg. Blood
samples were collected at five defined time points, pre-CPB, 30 min, 60 min, 90 min, and 120 min
(end-CPB). The 0.9% NaCl was used in fluid replacement management. The 0.9% NaCl was injected by
0.5 mL at the blood sampling timing (total injection volume of 2.5 mL during the experiment).

Pre CPB, the plasma levels of TNF-α and IL-6 were not significantly different among the SHAM,
Ringer’s acetate CPB, and HES 130/0.4 CPB groups. Plasma levels of TNF-α and IL-6 remained
unchanged during the experimental periods in the SHAM group. In the Ringer’s acetate CPB group,
TNF-α and IL-6 increased significantly, reaching a maximum at the end of CPB. However, in the HES
130/0.4 CPB group, the increases in the pro-inflammatory cytokines were significantly suppressed
by approximately 35% compared to the Ringer’s acetate CPB group (Figure 6a,b). In addition, it
was possible to preserve normal plasma COP levels in the HES CPB group during the experiment
(Figure 7). The introduce CPB groups showed significantly higher W/D ratios than the SHAM group
(SHAM 4.85 ± 0.08, Ringer’s acetate CPB 6.29 ± 0.14, HES 130/0.4 CPB 5.63 ± 0.15) (Figure 8). On the
other hand, the increase in the W/D ratio was significantly suppressed in the HES 130/0.4 CPB group
compared to the Ringer’s acetate CPB group.
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2.4. Method of Suppressing the Inflammatory Response during Extracorporeal Circulation

In a previous article, we examined the protective effect of hydrogen gas (H2) in a rat CPB model [24].
We hypothesized that H2 insufflation would attenuate the systemic inflammation with a reduction of
cytokine levels, providing protective effects against organ damage during CPB.

The animals were randomly divided into three groups: SHAM group (n = 5), CPB group and CPB
+ H2 group (n = 7), in which H2 was given into an oxygenator during CPB for 60 min. In the CPB + H2

group (n = 7), H2 was added into the membranous oxygenator during CPB at a concentration of 1.4 %
(O2 flow: H2 flow = 1:1). Blood samples were collected pre and 20 and 60 min after the initiation of
CPB (end of CPB). Plasma cytokine levels (TNF-α, IL-6, IL-10) were measured. The W/D ratio of the
lung was also measured end of experiment.

In the CPB group, the cytokine levels increased significantly 20 min after CPB initiation and
increased further at the end of CPB compared with the SHAM group. However, in the CPB + H2 group,
such increases were significantly suppressed at the end of CPB (Figure 9).
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We suggest that H2 is a possible new potential therapy for counteracting CPB-induced systemic
inflammation. H2 insufflation may attenuate the hyperoxia induced formation of ROS and cytokines
through the antioxidant effects. In addition, efforts to control inflammation in the extracorporeal
circulation include new methods for directly removing leucocytes and cytokines [36] and development
of new coatings and drugs [37]. The strategy of enhancing the biocompatibility of extracorporeal
circulation devices and suppressing inflammation will continue in the future.

3. Summary

The present study proved that the pro-inflammatory cytokines significantly increased more in
the high oxygen partial pressure condition CPB [25]. Furthermore, the lung tissues in the hyperoxia
control CPB had higher W/D ratio than the physiologic oxygen partial pressure control CPB, and,
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therefore, they are presumed to have formation of edema. Additionally, DHE staining for generation of
superoxide indicated that there was a striking increase in the liver and lung tissues in the high oxygen
partial pressure condition CPB. Several studies have shown that the surfaces of the artificial material
activate platelets, leucocytes, and the immune complement system. Activated monocyte-macrophage
lineage release cytotoxic agents and ROS associated with the systemic inflammatory response and
damage to principal organs [38,39]. There has been a study that showed that hyperoxic condition
exposure induces oxidative stress that may activate necroptosis, which is involved in the pathology of
hyperoxic acute lung injury [40].

Our hypothesis is that hyperoxia condition causes an increased generation of ROS and confounds
the systemic inflammation and damage to principal organs during CPB. The primary product in
cellular ROS production is the anion of superoxide. As shown in the present our study, DHE stain
fluorescence was used to detect superoxide intracellularly. This is an extensively used method for
detection of superoxide [41]. The present data show that the DHE stain fluorescence of the lung and
liver tissues was conspicuously enhanced in the oxygen excessive supply condition during CPB.

Additionally, in our study [35], a blood plasma substitute (6% HES 130/0.4) was used as a CPB
system priming solution, and the impacts on the systemic inflammatory response and lung edema
following CPB were analyzed in a rat model. It was demonstrated that biochemical markers and
cytokines for organ damage were effectively suppressed in the HES 130/0.4 CPB group compared to
those in the Ringer’s acetate CPB group during CPB in the rat model. The lungs of rats in the Ringer’s
acetate CPB group had a higher W/D ratio at the end of experiment than the HES 130/0.4 CPB group and
are, therefore, presumed to have formation of edema. Maintenance of a normal COP led to suppression
of the systemic inflammatory response and lung edema in the HES 130/0.4 CPB group. The mechanism
of the anti-inflammatory effects of 6% HES 130/0.4 in CPB is to maintain COP. Maintenance of a normal
COP by HES 130/0.4 suppresses vascular hyperpermeability, further reducing damage to the vascular
endothelium and cells of organs. In current clinical research, rehydration therapy with HES 130/0.4
significantly improved tissue oxygenation in patients undergoing gastroenterological surgery [42].
Contrastingly, an equivalent amount of a crystalloid fluids were associated with a striking deterioration
of cellular tissue oxygenation. Adverse effects of crystalloid fluids massive infusions were explained by
the fact that crystalloid fluids were mainly distributed in the intercellular cement, resulting in reduced
interstitial COP and, later, endothelial and cell tissue edema [42]. In addition, there is evidence from
animal studies suggesting that COP decrease causes shedding of the endothelial glycocalyx layer so
as to significantly increase the capillary leak of albumin and possibly of other plasma proteins [43].
Maintenance of a normal COP suppresses vascular hyperpermeability, further reducing damage to the
endothelial glycocalyx layer. Recently, some papers have reported that CPB-induced inflammation is
associated with glycocalyx degradation [44]. HES 130/0.4 has the potential to improve organ tissue
microcirculation. On the other hand, in the latest review, it was said that there is almost no clinical
difference between colloidal solution and crystalloid solution in critically ill patients [45]. The certainty
of the evidence may improve with inclusion of ongoing studies in future updates.

From another point of view, it is time to fundamentally review the method of extracorporeal
circulation and the surgical procedure for inflammation control in cardiac surgery. It is thought that it is
necessary to review the surgical procedure without regard to the conventional method. More recently,
minimally invasive cardiac surgery and minimally invasive extracorporeal circulation technologies
are actively performed [46,47], and improvement of patient outcomes is expected. Long-duration
follow-up data are needed to identify any long-term advantage. In addition, drugs such as steroids
are also administered for cardiac surgery, aiming at suppressing inflammation and protecting vital
organs [48,49]. There has been considerable research on this subject, but the results are unclear [50–52].
Furthermore, the effect of inhibiting inflammation by preoperative plasma-thrombo-leukocyte apheresis
has also been reported in an animal experiment [53]. In clinical sites, the focus has been on the potential
of leukocyte removal, and anti-inflammatory strategies used to reduce CPB-related complications have
been analyzed in a systematic review of randomized, controlled trials [54]. This analysis suggests use
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of a leukocyte filter [55,56]. Proactive intervention from the preoperative phase may also be necessary
for inflammation control. There are other groups that have evaluated inflammation in small animal
extracorporeal circulation models, as well as our group [57,58]. Wang and colleagues reported the
anti-inflammatory effects of ozone [59].

In the future, it is important to develop high biocompatibility devices, eliminate active oxygen
generation, use anti-inflammatory drugs, and remove direct inflammatory substances to suppress
inflammation during ECC. Basic research on the biological response to extracorporeal circulation is very
important, and there is no doubt that a physiologically close circulation can suppress inflammation.
On the other hand, it is generally known that CPB induces myocardial damage. Furthermore, the
biological properties of myocardial injury after cardiac arrest is introduced are strongly associated
with apoptosis and increased inflammation of myocardial tissue, causing transient cardiac dysfunction.
At present, basic research using small animals was mainly conducted during CPB, and no studies
evaluated after CPB. Further studies are needed to assess the apoptosis and inflammation in myocardial
tissue after CPB.

4. Ethics Approval and Consent to Participate

This study was approved by the National Cerebral and Cardiovascular Center Research Institute
Animal Care and Use Committee and the Niigata University of Health and Welfare Animal Care and
Use Committee (ethical code: 30009,28010). All procedures met the National Institutes of Health
guidelines for animal care.

Availability of Data and Materials: Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.
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Abbreviations

ECC Extra-corporeal circulation
CPB Cardio-pulmonary bypass
W/D Wet-to-dry
DHE Dihydroethidium
ROS Reactive oxygen species (ROS)
PaO2 Arterial pressure of oxygen
PaCO2 Arterial pressure of carbon dioxide
SE Standard error
ANOVA Analysis of variance
PLSD Protected least significant difference
COP Colloid osmotic pressure
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