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Assessing sequence‑based 
protein–protein interaction 
predictors for use in therapeutic 
peptide engineering
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Engineering peptides to achieve a desired therapeutic effect through the inhibition of a specific 
target activity or protein interaction is a non-trivial task. Few of the existing in silico peptide design 
algorithms generate target-specific peptides. Instead, many methods produce peptides that 
achieve a desired effect through an unknown mechanism. In contrast with resource-intensive high-
throughput experiments, in silico screening is a cost-effective alternative that can prune the space 
of candidates when engineering target-specific peptides. Using a set of FDA-approved peptides we 
curated specifically for this task, we assess the applicability of several sequence-based protein–protein 
interaction predictors as a screening tool within the context of peptide therapeutic engineering. We 
show that similarity-based protein–protein interaction predictors are more suitable for this purpose 
than the state-of-the-art deep learning methods publicly available at the time of writing. We also show 
that this approach is mostly useful when designing new peptides against targets for which naturally-
occurring interactors are already known, and that deploying it for de novo peptide engineering 
tasks may require gathering additional target-specific training data. Taken together, this work offers 
evidence that supports the use of similarity-based protein–protein interaction predictors for peptide 
therapeutic engineering, especially peptide analogs.

In silico screening for peptide therapeutic engineering.  Peptide therapeutics represent a unique 
opportunity to interfere with abnormal enzymatic activity or to disrupt protein–protein interactions (PPIs) in 
a targeted fashion. In contrast with small molecules, peptides can often be designed for very high specificity 
against their target, thereby conferring them an advantageous safety profile. Given that peptides are simply 
chains of amino acids, the chemical space they span is, for all intents and purposes, chemically accessible in its 
entirety.

In spite of their advantages, peptide therapeutics represent an exceedingly small fraction of all approved 
therapeutics, with only 70 compounds approved in the U.S., Europe and Japan as of 20201. In practice, oral 
delivery of peptide therapeutics remains a sizable challenge due to their low bioavailability caused by the pres-
ence of proteases in the gastrointestinal tract, and size and charge constraints associated with the permeability 
of the mucosal membrane of the gut, among others2. Recently, Semaglutide, which was approved by the FDA 
for the treatment of diabetes and obesity, became the first oral Glucagon-like peptide receptor peptide therapy 
approved in the US.

As a result, almost all peptides currently in clinical use must be delivered intravenously3. Nevertheless, there 
is a shared optimism that advances in targeted delivery technologies will significantly lower the barriers associ-
ated with oral peptide delivery3. For example, liposomal delivery of peptide therapeutics appears to be promis-
ing option for multiple routes of administration (oral, intranasal, pulmonary, etc.)4. Other technologies such as 
hydrogels and permeation enhancing molecules are also currently being investigated, though more work needs 
to be done before they can be brought to the clinic3. It is thus reasonably foreseeable that peptides may garner a 
renewed interest in the near future.

In silico peptide engineering for therapeutic applications is already an active area of research, with multiple 
groups having leveraged advances in deep learning to develop novel algorithms for the development of antimi-
crobial peptides5–7, anti-cancer peptides8, and anti-hypertensive peptides9, among others. Many of these methods 
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generate peptides expected to achieve a certain effect; however, their exact target is often unknown. Some of 
these methods leverage neural networks trained on large datasets to learn the distribution of peptides possess-
ing the desired properties. Peptides can then be sampled from such distribution to generate novel peptides that 
are similar, but different to those in the training set5,8. Other peptide engineering methods evaluate the fitness 
of peptides in vitro (e.g. IC50 in6).

Surprisingly few target-specific peptide engineering approaches have been developed10,11. This is unsurpris-
ing, given that validated protein–peptide interactions are relatively scarce in comparison with protein–protein 
interactions. As such, it is difficult to develop general-purpose peptide engineering algorithms that could be 
broadly applied to design a peptide that interacts with one’s protein target of choice. To the best of our knowledge, 
InSiPS11 is the only entirely in silico method that addresses this problem as of today.

Regardless of the peptide engineering approach used, the ability to identify a therapeutic peptide’s target or 
to evaluate the likelihood that it will interact specifically with a target protein is highly desirable. Such a method 
would provide a quick, cheap way to identify candidates in preparation for more time-consuming and expensive 
in vitro or in vivo validation experiments.

Sequence‑based protein–protein interaction predictors.  Several sequence-based PPI prediction 
algorithms can evaluate the likelihood of an interaction between proteins. However, no widely used method 
has been developed specifically for the prediction of protein–peptide interactions. In theory, nothing precludes 
traditional PPI predictors from making predictions for pairs involving a short peptide, but in practice many of 
these predictors are trained on pairs involving large proteins. As such, it is not yet clear how applicable these 
methods are for protein–peptide interactions.

Though generally thought to provide less accurate predictions than structure-based methods, sequence-
based predictors are widely used and appreciated because they can generate predictions for any pair of proteins, 
so as long as an amino acid sequence is available; however, it should be mentioned that several predictors do 
require proteins to have a minimum length. While protein–peptide docking simulations can provide a wealth of 
thermodynamic information that sequence-based predictors cannot, few proteins are amenable to these experi-
ments. In general, the resolution of protein structures required for these simulations should be in the sub-2.5 
Å range12,13, of which there are relatively few, though reasonably accurate structures predicted with AlphaFold 
214 are now available for most proteins. Furthermore, sequence-based predictors tend to require far fewer com-
putational resources to run compared with structure-based methods which may require iterative docking, a 
resource-intensive procedure. In fact, our massively parallel implementation of the SPRINT algorithm15 can 
predict the entire human interactome in under an hour using a 40-core machine with 64 GB memory. As such, 
sequence-based PPI predictors provide a unique opportunity to quickly and inexpensively screen synthetically 
designed peptides and to assess their potential as candidates in wet lab experiments.

Two broad types of approaches are currently being used to predict protein–protein interactions: similarity-
based methods and machine learning-based methods (Fig. 1). Similarity-based methods such as PIPE416 and 
SPRINT15 score proteins based on the fundamental idea that a pair of known interacting proteins P1 and P2 
provides evidence for an interaction between the query proteins Q1 and Q2 if P1 is similar to Q1 and P2 is similar 
to Q2. These methods, in essence, quantify the strength of the evidence for an interaction under this assumption, 
using substitution matrices such as PAM120 or BLOSUM64 to assess the similarity between query and interact-
ing protein pairs. These methods are close to what one may call instance-based learning in machine learning 
terminology. In contrast, machine learning-based methods “learn” to recognize patterns or features that occur 
frequently in interacting proteins. To make predictions, the machine learning models then look for the presence 
or extent of these patterns in query protein pairs. Depending on the authors, the predictors may learn patterns 
from the physicochemical properties of the protein sequences or simply from the amino acid composition (eg. 
di- and tri-peptide composition, pseudo-amino acid composition, etc.). The most recent models tend to imple-
ment the latter approach with powerful deep learning models to learn the “grammar” of interacting proteins17–19.

The PIPE sequence-based PPI predictor16 has been successfully used to design novel peptides that interact 
with a selected target. The In Silico Peptide Synthesizer (InSiPS)11, built around PIPE, uses genetic algorithms 
to explore the peptide space and maximize peptide fitness. The fitness function is designed such that the pre-
dicted interaction score between the peptide and the target is maximized, but the interaction score between the 
peptide and all other proteins is minimized. This ensures that the algorithm favours peptides that are predicted 
to interact specifically with the protein target. So far, InSiPS has been demonstrated to produce valid peptides, 
but no published work has shown that it can produce valid peptide binding to human targets. Furthermore, 
little work has been done to validate the use of recent deep learning PPI prediction models for applications in 
peptide engineering.

The one‑to‑all curve for a qualitative assessment of peptide quality.  The one-to-all curve is a 
simple, yet informative visualization of the interaction landscape of a protein-binding compound. Information 
contained within the curve has been shown to be useful in the context of PPI20 and miRNA target prediction 
tasks21. It is obtained by plotting the predicted interaction score of all proteins expressed in the target organism, 
tissue, or subcellular location as a function of the ranking of that score, relative to the score of other proteins, for 
one peptide. The morphology of the curve enables a qualitative assessment of a peptide in terms of its ability to 
bind the intended target and its specificity.

Within the context of peptide-protein interactions, most one-to-all curves for peptides are L-shaped or 
sigmoidal. In the more common L-shaped curve, most proteins lie along a baseline representing the proteins to 
which a very low interaction score with the peptide is predicted, indicating that an interaction is not supported 
by the evidence (training data) used to train the model. In the context of peptide engineering, all but very few 
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peptides will produce a curve where the targeted protein lies along the baseline (Fig. 2A), consistent with the 
idea that very few peptides will actually bind to a given protein target.

The number of proteins which lie above the elbow of the curve provide information with respect to the 
specificity of the peptide, i.e. whether the peptide is predicted to interact with multiple proteins. As such, it is 
not only desirable for the target protein to be as high above the elbow as possible, as it must be one of the few 
high-scoring proteins, it must also be higher scoring than other non-target proteins. In many cases, a highly 
non-specific interaction with a protein target will be predicted, yielding a curve such as the one shown in Fig. 2B. 
Such peptides are unlikely to be useful in practice, due to the high likelihood of off-target interactions, potentially 
leading to undesirable side effects.

Figure 2C represents the most desirable scenario for a good peptide therapeutic candidate. The target protein 
is strongly predicted to interact with the target protein, and the only other proteins achieving a similar score 

Figure 1.   Similarity- and machine learning-based protein–protein interaction predictors. Similarity-based 
methods differ from machine learning-based methods in that the evidence supporting an interaction is 
quantified by counting the number of similarities to known instances of interacting proteins in a database. 
Machine learning-based methods are trained to learn patterns found in interacting protein pairs, and identify 
those patterns in the query proteins.
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are proteins with high similarity to the target (isoforms, for example). In such cases, peptide specificity may be 
further optimized in vitro.

The y axis of the one-to-all curve is not always easy to interpret, particularly when the PPI prediction score is 
unbounded. Most machine learning-based predictors convert raw prediction scores into probabilities between 0 
and 1 using the softmax function. However, similarity-based methods instead output a number that reflects the 
strength of the evidence, as is the case with SPRINT15. In such cases, it is the user’s responsibility to identify an 
appropriate threshold value on the score above which protein pairs are predicted to interact. This can be done 
using cross-validation experiments.

Contributions.  Herein, we evaluate the applicability of sequence-based PPI predictors in identifying pep-
tides fit for in vitro or in vivo validation. Using a set of FDA-approved peptides, we compare three state-of-the-
art sequence-based PPI predictors and their usefulness in evaluating peptides for creation of peptide analogous 
to endogenously expressed proteins, and for de novo peptide design for novel protein targets. We believe that 
this work has significant implications for peptide engineering and could guide use of PPI predictors in future 
peptide engineering pipelines.

Methods
The code and instructions needed to reproduce the data and analyses presented here are available in the GitHub 
repository: https://​github.​com/​Green​CUBIC/​Pepti​deScr​eening.

Assumption.  Several peptides have been approved by the FDA for the treatment of a number of conditions 
such as heart failure and diabetes. Given that these peptides have been shown to be safe, one could deduce that 
these peptides interact specifically with their target, i.e. interact with few proteins other than their intended 
target. Off-target interactions are unlikely to be numerous, as this would likely cause unintended side effects.

This assumption underpins the interpretation of one-to-all curves generated as part of this work. In other 
words, FDA-approved peptides should, in theory, rank their known target protein among the first proteins on 
the one-to-all curve and score much higher than other proteins.

Curating FDA‑approved peptides.  To identify suitable peptide therapeutics for assessment with PPI 
predictors, we retrieved a list of all therapeutic peptides approved by the FDA for therapeutic use as of 2017, as 
compiled previously22. Of those 69 peptides, we selected those whose length was greater than 20 amino acids 
and only comprised standard amino acids (see Table 1), leaving a total of 13 peptides. This additional round of 
curation was necessary, because certain predictors cannot predict interactions involving very small protein frag-
ments and/or non-standard amino acids. Finally, for each peptide, we retrieved the associated protein target(s) 
from the DrugBank database23.

Training and deploying PPI predictors to score interactions.  We selected 3 state-of-the-art 
sequence-based PPI predictors for comparison (Table 2). Two of them (PIPR and D-SCRIPT) are deep learning-
based, whereas the other (SPRINT) is similarity-based.

Both PIPR and D-SCRIPT generate protein embeddings to use as inputs to deep neural networks. In other 
words, the protein sequences are projected into a latent space, where the coordinates relative to those of other pro-
tein pairs capture their relationship in terms of their sequence similarity or distance. There are a number of ways 
one may generate embeddings. The authors of PIPR18, for instance, concatenate the sub-embeddings obtained 
from residue co-occurence obtained by training a Skip-Gram model with another sub-embedding obtained 
by clustering amino acids into 7 classes of electrostaticity and hydrophobicity to generate a one-hot encoding 

Figure 2.   Representative one-to-all curves. Many one-to-all curves adopt one of three morphologies: (A) no 
interaction between the peptide and the target, (B) non-specific interaction where the peptide is predicted to 
interact with many proteins in addition to the target, and (C) where the peptide specifically interacts with the 
intended protein target (and possibly, closely related proteins).

https://github.com/GreenCUBIC/PeptideScreening
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(second sub-embedding). On the other hand, D-SCRIPT24 uses the existing Bepler & Berger embedding25, which 
is generated with a bidirectional long short-term memory neural network. The embedding generator is trained 
using three tasks involving two input proteins: prediction of the shared SCOP level of the proteins, self-contact 
maps of their 3D structures and the “soft symmetric alignment”.

While a D-SCRIPT model pre-trained on human PPIs is available, both PIPR and SPRINT require validated 
interaction data to make predictions. PIPR, like any machine learning-based binary classifier, requires positive 
and negative protein pairs for training. In contrast, SPRINT only takes interacting protein pairs (positive exam-
ples) as an input. These interactions are not used to “train” SPRINT per se, as SPRINT is not a machine learning 
method in the conventional sense, but are instead used as a database which the algorithm queries against in 
search of similarities with a query protein pair.

To generate the training set for PIPR and generate the SPRINT database, we retrieved all PPIs involving 
two human proteins from the BioGRID database (version 4.3.196)26 and filtered them so as to only retain high-
quality interactions27, i.e. interactions reported by at least two groups, and detected with stringent experimental 
methods27. We added pairs assumed to be non-interacting to PIPR’s training set by adding random protein pairs 
to produce a balanced training set. We then trained PIPR for 100 epochs on this training set and generated the 
one-to-all curves for all 13 peptides. Similarly, we produced the one-to-all curves using SPRINT and the pre-
trained D-SCRIPT model.

Given that all but one selected peptides target receptors expressed on the cell surface, all one-to-all curves 
were generated using proteins predicted to be exposed on the cell’s surface as opposed to the entire proteome. 
We obtained the list of the 2,886 proteins predicted to make up the human surfaceome from The in silico 
surfaceome28. We added thrombin, a protein involved in the coagulation cascade to all curves, because it is 
targeted by one of the therapeutic peptides (bivalirudin).

Simulating peptide screening in de novo engineering.  Given that all peptides under study are actu-
ally truncated segments of endogenously expressed proteins (“native” in Table 1) or recombinant analogs, train-
ing the models using the endogenous equivalents of the therapeutic peptides represents an optimistic scenario. 
In that “optimistic” scenario, we know that an interaction highly similar or identical to that we are attempting 
to predict is present in the training data. This mimics a scenario where we wish to design a peptide with some 
similarity to an endogenously expressed protein known to interact with the protein target.

For this reason, we ran blastp29 with the default parameters to identify proteins which share a region of 
high similarity with the therapeutic peptides. All interactions involving hits found via the BLAST searched were 
removed from our PPI dataset to produce training data for a “pessimistic” scenario representing the de novo 
case. This pessimistic scenario, denoted (−) as opposed to the optimistic scenario (+), reflects what one may 
encounter when designing peptides against a target for which no interactors are known.

After re-training PIPR on the pessimistic dataset, we re-generated the one-to-all curves using this pessimistic 
PIPR model and SPRINT.

Table 1.   FDA-approved peptides evaluated in this study.

Compound name Molecular target Chemical basis Length Known targets (accession ID)

Corticotropin MC receptors Native 39 Q01726;Q01718;P41968;P32245;P33032

Calcitonin (salmon) Calcitonin receptor Native 32 P30988

Tetracosactide MC receptors Native 24 Q01726;Q01718;P41968;P32245;P33032

Calcitonin (human) Calcitonin receptor Native 32 Q16602

Carperitide NPR-A Native 28 P16066;P20594;P17342

Bivalirudin Thrombin Analog 20 P00734

Nesiritide NPR-A Native 32 P16066;P20594;P17342

Pramlintide Calcitonin receptor Analog 37 Q16602

Exenatide GLP-1 receptor Native 39 P43220

Liraglutide GLP-1 receptor Analog 32 P43220

Tesamorelin GHRH receptor Analog 44 Q02643

Teduglutide GLP-2 receptor Analog 33 O95838

Lixisenatide GLP-1 receptor Analog 44 P43220

Table 2.   State of the art sequence-based PPI predictors.

Predictor Type Machine learning model Features Availability Ref.

SPRINT Similarity-based scoring Not applicable Not applicable C++ source 15

PIPR Machine learning RCNN Latent representation of protein sequences generated by a combination of convolu-
tion layers and re- sidual gated recurrent units Python source 18

D-SCRIPT Machine learning Bi-LSTM + CNN Combination of a pre-trained embedding model with a predicted contact map Python package 24
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Results
SPRINT outperforms deep learning models.  The rank of the targeted protein(s) along the one-to-all 
curve conveys a lot of information with respect to the potential of a peptide as a therapeutic, since it is desir-
able to optimize for specific interactions. In general, a peptide whose target protein is outranked by hundreds 
or thousands of off-target proteins on the one-to-all curve is very unlikely to make a good candidate, under the 
assumption that the predictions are accurate.

Figure 3A displays the distribution of ranks of the targets on the one-to-all curve for all the therapeutic pep-
tides considered. We observe a wide spread in the ranks of the targets along the one-to-all curves, indicating vari-
able degrees of success in predicting a specific interaction between the therapeutic peptides and their target(s).

With the aforementioned assumption in mind, we found that D-SCRIPT did not assign high ranks to the 
known targets on the one-to-all curves, but also failed to predict an interaction for any of the peptide-target pairs, 
assigning an interaction probability close to 0 in each case (see Supplementary material). The median rank of the 
peptide-target pairs on the respective one-to-all curves is 1330/2886, with only one peptide-target pair ranking 
in the top 500 on its corresponding one-to-all curve, and none ranking in the top 1% (Fig. 3B).

PIPR performed better than D-SCRIPT, for both scenarios considered, though this difference was not statisti-
cally significant when looking at PIPR (+) ( p = 0.06 ; Wilcoxon rank-sum test) and PIPR (−) ( p = 0.60 ). In the 
pessimistic scenario analogous to assessment of de novo peptides, PIPR predicted an interaction (interaction 
probability > 50%) for 3 out of the 21 peptide-target pairs, though no peptide-target pairs ranked in the top 1% 
on their one-to-all curve. In the optimistic scenario, however, where interactions involving proteins with high 
similarity to the therapeutic peptides are included in the training interactions, PIPR ranks five peptide-target 

Figure 3.   Rankings of interactions involving peptide-target pairs. (A) Distributions of ranks of the peptide-
target pairs are shown for models whose training data included interactions involving an endogenous peptide 
analog (optimistic scenario; +) and models trained without (pessimistic scenario; −). The ranks of the true 
targets for two therapeutic peptides are illustrated on their one-to-all curves on the right side of the box plot. (B) 
Counts of therapeutic peptide targets ranking in the top 1% on the corresponding one-to-all curve.
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pairs in the top 1% of their respective one-to-all curve. While PIPR did rank targets more highly than non-
targets in more cases than D-SCRIPT, it should be noted that it produced a number of curves with a sigmoidal 
morphology with many high-scoring proteins (see Supplementary Figures). This suggests that PIPR may be 
particularly prone to false positives.

SPRINT is the predictor that achieved the highest success, scoring six true targets among the top 1% proteins 
on their curve in the pessimistic scenario, and 16 in the optimistic scenario. The median rank of the peptide-
target pairs is also predicted to be lower by SPRINT than by PIPR in both scenarios. However, SPRINT produced 
statistically better ranks when comparing the methods for the optimistic scenario (+) ( p < 0.01 ), but not for the 
pessimistic scenario (−) ( p = 0.13 ). In general, it appears that SPRINT outperforms deep learning predictors 
for the task of predicting protein–peptide interactions, particularly in the optimistic scenario where all known 
interactions are leveraged to make predictions.

Sensitivity to point mutations.  We found that SPRINT and PIPR, in the optimistic training scenario, 
were able to detect point mutations in the sequence of the peptides, by computing the one-to-all curves for all 
mutants produced by mutating every single non-Gly amino acid in the sequence to Gly (Fig. 4). Both methods 
produced positive and negative changes in score upon mutation. However, these changes were less likely to result 
in a change in the target ranks for SPRINT than PIPR, because the target scores were often well above that of 
non-target proteins on SPRINT-generated curves, and this gap was rarely offset by a drop in score.

Even though mutations led D-SCRIPT to produce large rank changes, those are an artifact of the position of 
the targets in the baseline portion of the one-to-all curve. Small changes in score can produce very large changes 
in rank when the scores are very close to 0, as is the case for target scores generated by D-SCRIPT. Looking only 
at the scores produced by D-SCRIPT, it appears that it is rather insensitive to point mutations in the peptide 
sequence.

Protein–protein interaction predictors are useful for peptide analog screening.  Consistent with 
the results above, screening for peptide analogs with some similarity to endogenously expressed proteins is a 
scenario where SPRINT outperforms the other predictors, as illustrated with lixisenatide in Fig. 5.

Lixisenatide is a 44 amino acids glucagon-like peptide-1 agonist marketed by Sanofi and used in the treatment 
of type 2 diabetes to increase insulin secretion. This peptide is an GLP-1 analog corresponding to a portion of the 
exendin-4 protein found in the venom of Gila monster (Heloderma suspectum)30. The target, the glucagon-like 
peptide 1 receptor (Accession ID: P43220), is a G-protein coupled receptor located on the cell surface.

The one-to-all curves show that both D-SCRIPT and PIPR assign low interaction probabilities between 
lixisenatide and the GLP1 receptor. The target proteins rank poorly along the curves. In fact, the probabilities of 
interaction are well below 0.5, thus no interactions are predicted to occur. In the case of D-SCRIPT, 16 proteins 
are predicted to interact with lixisenatide, none of them being the GLP1 receptor. In fact, D-SCRIPT predicts 
a 0.4% chance of an interaction between lixisenatide and the GLP1 receptor. PIPR predicts an interaction with 
higher probability, though it still fails to meet the 0.5 threshold while assigning higher scores to over 500 non-
target proteins on the cell’s surface in both the optimistic and pessimistic scenarios. SPRINT, when “trained” in 
the optimistic scenario, accurately ranks the GLP1 receptor as first on the one-to-all curve while assigning much 
lower scores to other off-target proteins.

Only SPRINT makes credible predictions under the assumption that lixisenatide interacts specifically with 
the GLP1 receptor, and only in the optimistic case, i.e. when the interaction between (pro)-glucagon (Accession 
ID: P01275) and the GLP1 receptor is included in the training data. In fact, alignment shows that lixisenatide, 
though not derived from human glucagon, aligns to a certain degree with a portion of it (98–141), part of which 

Figure 4.   Distribution of changes in rank and score. The one-to-all curves were regenerated for each peptide by 
mutating each non-Gly residue to Gly to evaluate (A) the absolute change in rank on the one-to-all curve and 
(B) the change in score. As a reminder, SPRINT scores are unbounded, while PIPR and D-SCRIPT scores are 
probabilities that range from 0 to 1.
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(98–128) is normally cleaved to yield the GLP1 peptide (Fig. 6). This suggests that SPRINT can effectively be lev-
eraged to screen peptide analogs that are somewhat similar, but not identical to endogenously expressed proteins.

Assessing peptide fitness for de novo design remains challenging.  All predictors, including 
SPRINT, generally failed to rank targets highly on the one-to-all curve in the more challenging de novo screen-
ing scenario, i.e. where interactions involving proteins with high similarity with to the therapeutic peptides were 
excluded from the training data.

In a limited number of cases, SPRINT assigns better ranks to peptides in the pessimistic scenario. Such was 
the case for carperitide, a peptide marketed by Daiichi Sankyo for the treatment of acute heart failure. Both in 
the presence and absence of training interactions involving the α-atrial natriuretic peptide, of which carperitide 
is a recombinant version, SPRINT ranked the intended target highly on the one-to-all curves (Fig. 7), albeit with 
a lower score than in the optimistic scenario (+). In these curves, all three best-ranked proteins are isoforms of 
the atrial natriuretic peptide receptor. We observed similar results for nesiritide, which is also a recombinant 
version of a natriuretic peptide.

SPRINT and the GLP receptors
Given that the Glucagon-like peptide receptors 1 and 2 share high similarity, we expected both of them to rank 
similarly on the one-to-all curves of GLP1R and GLP2R agonists. We observed, using SPRINT (+), that GLP1R 
was ranked first for all GLP receptor-targeting peptides (Fig. 8). This was the case even for Teduglutide which is 

Figure 5.   One-to-all curves for lixisenatide. The one-to-all curves generated using the predicted interaction 
scores of the three predictors are shown here. The true target protein is highlighted in red, while the black dots 
represent off-target proteins. One-to-all curves generated with predictors trained in the optimistic scenario are 
indicated with a (+).

Figure 6.   Alignment between lixisenatide and pro-glucagon. Results of the alignment between lixisenatide 
and pro-glucagon generated with Clustal Omega31. The highlighted region corresponds to the endogenously 
expressed GLP1 peptide.
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a glucagon-like peptide 2 analog. In all cases, GLP2R is outranked by Glucagon receptor and the Gastric inhibi-
tory polypeptide receptor with which it aligns well (identity > 40%).

We also applied SPRINT to a novel chimeric peptide built from GLP-2 that replaces the C-terminus end of 
the peptide with that of GLP-1 (residues 20-33) published in 202032. The authors demonstrated that the peptide 
activate the GLP1R and GLP2R roughly equally. In spite of this, SPRINT (+) ranked GLP1R 2nd, and GLP2R 

Figure 7.   One-to-all curves for carperitide. The one-to-all curves generated using the predicted interaction 
scores of the three predictors are shown here. The true target protein is highlighted in red, while the black dots 
represent off-target proteins. One-to-all curves generated with predictors trained in the optimistic scenario are 
indicated with a (+).

Figure 8.   One-to-all curves of the peptides targeting a GLP receptor. Exenatide, liraglutide and lixsenatide 
target the GLP-1 receptor while teduglutide was developed to target the GLP-2 receptor. The curves were 
generated with SPRINT (+).
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13th, though with an appreciable difference in score of 116.4 (Fig. 9). However, it is worth pointing out that 
both receptors ranks highly and are well above the knee of the one-to-all curve. Oddly, GLP1R is outranked 
by a Tumor necrosis factor ligand (accession id: P48023) that shares limited identity (23%) with GLP1R. In all 
cases, the one-to-all curve suggests that this chimeric peptide may be less specific than the other GLP analogs 
assessed in the current study.

Discussion
The ability to rapidly and inexpensively screen peptides in silico as potential therapeutics targeting a specific 
protein is highly desirable, but remains challenging. This can be partially attributed to the relative scarcity of 
validated peptide-protein interactions. Given that most PPI predictors are trained using long proteins, we antici-
pated that these methods would perform poorly when deployed for the task of predicting interactions involving 
shorter peptides (< 50 amino acids).

The case for similarity‑based methods.  D-SCRIPT and PIPR, both deep learning methods, mostly 
failed to produce realistic one-to-all curves. However, SPRINT produced reasonably good one-to-all curves 
that ranked known targets better than non-targets, particularly when all available protein–protein interactions 
were used to make predictions. This suggests that SPRINT may be suitable as a tool to screen peptides in cases 
where an endogenous interactor is known for the target protein. This explains why curves for GLP analogs pro-
duced more realistic results than other peptides such as peptides targeting the calcitonin receptor (calcitonin 
and pramlintide). The interaction data used for the experiments does not contain proteins with high similarity 
to calcitonin, whereas it did contain interactions involving glucagon and GLP receptors. This further highlights 
the importance of the training data. Deep learning methods, in contrast, are generally not suitable. We reason 
that SPRINT outperforms the competing methods because of its prediction mechanism. Deep learning methods 
make predictions based on both the global and local properties of protein sequences which are captured in an 
embedding. This is in contrast with SPRINT, whose predictions rely on small, local protein regions of similarity 
that are roughly the length of a peptide ( ∼ 20 amino acids). The fact SPRINT uses what essentially amounts to 
short peptides as evidence to support their predictions makes SPRINT and other similarity-based PPI predictors 
(eg. PIPE16) uniquely suited for such tasks. We also found that point mutations in the peptide sequence could 
be detected by SPRINT, though they could also be detected by PIPR. This is interesting, as it implies that the 
methods may have sufficiently high resolution to tune peptides at the residue scale, though more work would be 
needed to determine how useful it is in practice.

Sequence‑based methods achieve limited success in de novo design tasks.  Unsurprisingly, we 
found that assessing the quality of peptides that have little to no high-similarity regions to proteins in the train-
ing dataset of interacting proteins is challenging. In fact, SPRINT is sensitive to small changes in the training 
data, as top-ranking peptide-target pairs often dropped to the bottom of the one-to-all curve when one or two 
key interactions were removed from the training data (pessimistic scenario). For this reason, applying SPRINT 
to screen de novo peptides for potential interactions with a target is likely to be unsuccessful, depending on 
the training data. However, SPRINT assigned high ranks to the target (natriuretic peptide receptor A) for both 
carperitide and nesiritide, even in the absence of their endogenous equivalent in the training data under the pes-
simistic scenario. Our data do not support the generalization of this result to other peptides, especially consider-
ing that carperitide and nesiritide target the same receptor.

Rank on the one‑to‑all curve is a key metric.  SPRINT produces an unbounded sum of the number of 
regions of similarity between query proteins and proteins in the training set of interacting proteins, weighted by 
the similarity as scored with a substitution matrix. That raw sum corresponds to the prediction score, and the 

Figure 9.   One-to-all curve of a chimeric peptide with roughly equal affinity for GLP1R and GLP2R. The one-
to-all curve of the chimeric peptide GLP-2/GLP-1(20-33) generated with SPRINT (+).
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threshold separating non-interacting pairs from interacting pairs is arbitrary. Normally, a reasonable threshold 
could be determined through cross-validation for normal protein–protein interaction tasks. We believe the rank 
along the one-to-all curve to be just important than the raw score of a target, especially in the context of peptide 
engineering. A low predicted interaction score may be due to limited similarity to regions in known interacting 
proteins. However, for peptide engineering tasks, such a cross-validation experiment is not possible, since no a 
novel peptide would have no known and validated interactions. Thus it may be worth validating a high-ranking 
peptide in vitro, even if the raw interaction score is low. More work will be needed to develop a peptide fitness 
metric that incorporates both the rank of the target protein along the one-to-all curve, and the predicted score 
and other features derivable from the curve. The curves generated for GLP receptor agonists with SPRINT also 
support the idea that rank is just as, if not more, insightful than the prediction score. We saw that although Tedu-
glutide targets GLP2R and GLP1R was ranked higher, GLP2R still ranked very high on the one-to-all curve. We 
observed similar results for a chimeric peptide demonstrated to activate the GLP1R and GLP2R roughly equally. 
It is worth noting that the prediction scores are meant to reflect the degree of confidence in an interaction, not 
the binding affinity, which is a different task.

Tackling the challenges associated with de novo peptide design.  While general-purpose methods 
like SPRINT show some potential in a purely in silico context for design of peptide analogs, we believe that 
incorporating target-specific training data obtained experimentally could increase the applicability of similar-
ity-based PPI prediction methods for de novo peptide engineering tasks. For example, sparsely sampling the 
peptide space ( ∼ 1000 peptides) and testing for interactions with the target protein using peptide arrays could 
supplement the initial training data and drastically improve the predictions. In fact, one group found that sparse 
sampling of the peptide space for target-specific peptides could provide the training data necessary to train a 
simple neural network that could predict with reasonable accuracy whether a peptide would bind to that specific 
target33. Using predictors like SPRINT in an adaptive fashion could also significantly enhance their applicability 
in peptide engineering task. For instance, peptides optimized in silico could periodically be tested experimen-
tally for binding to the target. Hits could then be incorporated in the training data in an iterative fashion and 
improve the quality of the predictions in future iterations.

Limitations.  At the time of writing this paper, few peptides marketed for therapeutic use met the criteria for 
inclusion in this study. Furthermore, the peptides included in this study targeted only a small set of receptors. 
Therefore, more work will be needed to determine whether these results hold up when applied to a more diverse 
set of protein targets.

In addition, given the extremely rapid pace of discovery in deep learning, it is not unreasonable to expect that 
deep learning methods outperforming similarity based methods may be developed in the near future. We are 
aware of two novel methods published while this article was undergoing review. CAMP is a novel deep learn-
ing method that has shown promise in assessing not only protein–peptide interaction probabilities, but also in 
identifying the peptide residues that underpin the interaction using convolutional networks and a self-attention 
mechanism34. Mutual Information Maximization Meta-Learning is another approach relying on meta-learning 
and information theory that optimizes peptide bioactivity35. In fact, the growing interest in computational 
therapeutic peptide screening may require us to regularly benchmark emerging methods.

Concluding remarks.  In summary, our work shows that similarity-based PPI predictors are currently more 
suitable than deep learning methods to evaluate the potential of peptide therapeutics. We also showed that 
deploying such methods for analog peptide engineering is more likely to be successful than for engineering 
peptides de novo, i.e. against targets for which no interactors are known. We anticipate that more specialized 
protein–peptide interaction predictors will become available as more data becomes available, but believe that 
existing methods can already be integrated in peptide engineering pipelines. Finally, we believe that adaptive use 
of existing sequence-based PPI prediction methods holds great potential.
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