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Abstract: The rapid development in the field of transcriptomics provides remarkable biomedical
insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted
to identify the agents against influenza A virus (IAV) infection through dissecting gene expression
changes in response to disease or compounds’ perturbations. Two compounds, nifurtimox and
chrysin, were identified by a modified Kolmogorov–Smirnov test statistic based on the transcriptional
signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their
activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 µM
against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions
in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based
analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds
was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR)
on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting
multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity
for decelerating drug-resistant variant emergence.

Keywords: influenza A virus; clinical transcriptome; transcriptome signature reversion; nifurtimox;
chrysin; network-based topological separation calculation; drug combination

1. Introduction

Influenza, also referred to as “flu”, is a contagious respiratory illness caused by
influenza A or B virus infection, which also causes severe seasonal epidemics worldwide,
with 3–5 million severe cases and 290,000–650,000 deaths annually [1]. The efficacy of
influenza vaccines is approximately 40–70% due to antigenic mutation caused by egg
adaptation and diversification of genes in endemic strains [2]. Six regiments have been
used for anti-influenza therapy through targeting three viral proteins: matrix-2 (M2) proton
channel, neuraminidase (NA), and cap-dependent endonuclease (CEN) [3]. However, the
emergence of drug-resistant variants is the major challenge for using virus-targeted drugs,
as adamantanes were eliminated for anti-influenza clinical therapy and neuraminidase-
inhibitor-resistant viruses were also reported [4–6], resulting in urgent demand for novel
anti-influenza agents’ development.

The classical drug discovery strategy depends on arduous phenotypic screening of
compound libraries or natural extracts, which is time-consuming with high cost. The
rapid development of the transcriptome database provides new biomedical insights for
drug discovery through dissecting host gene expression fluctuations in response to disease
and compounds’ perturbations [7], which is later being called transcriptome signature
reversion (TSR). The Gene Expression Omnibus (GEO) [8], ArrayExpress (AE) [9], and the
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Connectivity Map (CMap) [10] are the well-established and recognized databases storing
big data of transcriptomic datasets widely utilized in TSR [11]. To date, the approach of
TSR has been implemented to explore candidates for Alzheimer’s disease [12], spontaneous
preterm birth [13], cancer [14], aging [15], etc.

In this study, the transcription signatures reflecting clinical signs and symptoms of
influenza infection were extracted from 81 patients’ transcriptomic data of two independent
clinical studies and were used for compound screening by TSR on the CMap platform. Con-
sequently, nifurtimox and chrysin were identified as IAV inhibitors, and their mechanisms
and synergistic effect against IAV infection were also disclosed.

2. Results
2.1. Identification of IAV-Infection-Related Informative Genes

By searching keywords “influenza” and “Homo sapiens” in GEO, 312 transcriptional
datasets were found (accessed on 31 May 2020), composed of 230 microarray datasets and
82 datasets of high-throughput sequencing. To access the gene expression signatures of
clinical subjects, two independent datasets, GSE111368 and GSE68310, were employed for
this study due to the sample size (number of clinical subjects > 40) and the well-designed
control groups (Table 1).

Table 1. Description of the datasets used in this study.

GEO
Accession

No.

Number of
Patients

Number of
Controls Time Points

Number of
Patients Used
in This Study

Number of
Controls Used
in This Study

Time Point of
Patients’
Samples

Used in This
Study

GSE111368
[16,17] 109 130

T1 (recruitment);
T2 (approximately 48 h

after T1);
T3 (at least 4 weeks after

T1) [16,17]

40 130 T1
(recruitment)

GSE68310
[18,19] 133 128

Before illness;
0, 2, 4, 6, and 21 days later
after illness onset (winter);

next spring [18,19]

41 41
0 days later

after
illness onset

Briefly, GSE111368 contains human whole-blood transcriptional microarray profiles
for 13,698 genes of 109 influenza-virus-infected patients and 130 healthy subjects with
18,974 probes [16,17]. The data of time point T1 of the 40 patients who were only infected
with IAV with symptom severity level 1 were included for signature extraction in this
study, and the data of the 130 healthy subjects were used as the control (Tables S1 and S2).
GSE68310 includes 133 subjects with influenza-like illness transcriptional microarray data,
detecting 30,467 genes with 47,254 probes [18,19]. A total of 41 among the 133 subjects
confirmed to be solely infected with IAV at the site, along with their healthy-state transcrip-
tomic data before infection, were chosen for this research (Tables S1 and S3). To achieve
the gene signatures, which represented the host characteristics in the disease state, differ-
entially expressed genes (DEGs) of IAV-infected patients were identified by analyzing the
expression data of patients using linear models for microarray data (Limma). The genes
with a p value less than 0.05 and a fold change greater than 1.5 (upregulation) or less than
0.5 (downregulation) were retained as DEGs. The two DEG lists extracted from the two
datasets were combined into one list of 784 DEGs and are presented in Table S4.

Since both pathogenesis and host immune responses during IAV infection would
induce changes in host gene expression, and the latter immune responses are favorable to
IAV clearance and host resistance to virus infection, the orientation of some DEGs should
be adjusted before TSR to provide the more accurate and rational information for drug
discovery. In this study, orientation adjustment of DEGs was performed according to the
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current research about host defense responses and related pathway exploration through
protein–protein interaction (PPI) network analysis (Figure 1). Firstly, host factors verified
in vivo about their crucial roles during influenza virus infection were collected from the
reviews retrieved in PubMed with keywords “influenza” and “host factors”, “immunity”,
or “pathogenesis”. In consequence, 158 genes influencing the severity of infection or the
influenza virus clearance and verified in vivo by either gene knockout or monoclonal anti-
body neutralizing experiments were summarized (blue circle in Figure 1A and Table S5),
and their direction was determined according to the original reports (Table S5) [20–149].
After this, 1926 key host factors influencing influenza virus infection and verified in vivo
by clustered regularly interspaced short palindromic repeats (CRISPR) or RNA interfer-
ence (RNAi) assays were collected (pink circle in Figure 1A and Table S6) from 12 pieces
of literature [150–161]. As 113 of 784 DEGs were overlapping the host factors summa-
rized above (28 genes and 85 genes verified in vivo and in vitro, respectively) (Table S7
[30,31,42,48,50,52,59,65,67–69,72–74,82,84,89,90,94,95,98,104,119,121,124,126,127,138,150–154,156–161]),
their orientation was determined accordingly (Figure 1A). A PPI network analysis was then
proceeded on the 784 DEGs. As a result, 169 (red and green nodes in Figure 1B, Table S8) of
the remaining 671 DEGs had interactions with the 113 orientation-determined genes (blue
nodes in Figure 1B), and the direction of 22 (red nodes in Figure 1B, Table S8) of the 169
genes was determined through pathway exploration according to their relationships with
the member(s) of the 113 genes as being upstream or antagonistic in the pattern recognition
receptor signaling pathway (Figure 1C), cytokine signaling through the JAK-STAT pathway
(Figure 1D) and protein translation cascade pathway (Figure 1E), or being the common
components of the specific proteins MHC class I molecules in the MHC I pathway (Fig-
ure 1F) (Table S8). Beside the 113 and 22 direction-determined genes, the direction of the
649 in 784 DEGs remained as the direction induced by IAV infection in patients, as shown
in Table S4. The final list of the 784 informative genes (genes and their direction, Table S9)
derived from IAV-infected patients was used for further analysis in this study. The reverse
regulation of any informative gene will favor tissue damage reduction or the elimination of
the virus during IAV infection.

2.2. Compound Screening by TSR with CMap

As described above, the informative genes represented the signatures of clinical
symptoms of IAV infection and were used for an inversely correlated compound screening,
given that the compounds reversely regulating differential gene expression of the disease
could potentially be used for therapy [13]. CMap provides pattern-matching algorithms
modified from the Kolmogorov–Smirnov test statistic that calculates the connectivity
between a drug-perturbed expression profile and the input gene expression profile, which
is applied for prioritizing agents from 1309 compounds of FDA-approved drugs and
nondrug bioactive compounds with their enrichment scores and p-values [10]. The probes
of 486 informative genes (Table S10) detected in CMap were obtained to query the CMap
database for negative enrichments of small molecules, the compounds with a p value < 0.05
were arranged in ascending order of the enrichment score, and the top 50 compounds
are listed in Table S11. The anti-influenza activities of 10 of the 50 compounds were
reported in previous research (Table S11) [162–169]. After excluding compounds that are
commercially unavailable, unsuitable for a final use as antivirals, such as anesthetics, or
highly toxic, and excluding compounds that were reported to have anti-influenza-virus
activities, 19 compounds remained in the list for further examination (Tables 2 and S11). The
complete flow scheme of the compound list generation through the clinical transcriptome
reversal paradigm is shown in Figure 2.
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Figure 1. Direction adjustment of DEGs according to current research about host defense responses
and pathway exploration through PPI network analysis. (A) A total of 113 DEGs were reported to be
involved in IAV infection, in which 28 DEGs were verified in vivo and 85 DEGs were determined
in vitro. Direction of the 113 DEGs was determined according to the original reports. (B) Among
784 DEGs, 169 genes (green and red nodes) had interactions with the 113 genes (blue nodes) in the PPI
network and the direction of 22 (red nodes) of the 169 genes was verified according to the pathways
demonstrated in (C–F). (C) Pattern recognition receptor signaling pathway. (D) Cytokine signaling
through the JAK-STAT pathway. (E) Protein translation cascade pathway. (F) MHC class I pathway.
The PPI network (B) was constructed with STRING database and visualized using Cytoscape. The
pathway schematics (C–F) were created with or adapted from templates in BioRender, and genes
with red and green pentagrams represent up- and downregulation, respectively.
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Figure 2. Flow scheme of the compound list generation by clinical transcriptome reversal paradigm.

Table 2. Anti-A/Puerto Rico/8/1934 (H1N1) activities of the 19 compounds at the concentration of
30 µM in vitro.

Compounds Enrichment Score p Value Infectivity (%) ± SD

Nipecotic Acid −0.833 0.00141 99.2 ± 1.9
Difenidol −0.783 0.02097 101.0 ± 0.3

Metaraminol −0.781 0.00477 99.5 ± 1.4
Cetirizine −0.751 0.00774 96.6 ± 2.6

Aztreonam −0.747 0.00198 99.2 ± 1.3
Chrysin −0.739 0.03656 28.0 ± 6.0

Sulfinpyrazone −0.737 0.00957 93.2 ± 4.1
Propylthiouracil −0.724 0.01176 97.2 ± 2.5
Pentoxyverine −0.721 0.01239 100.5 ± 0.2

Betahistine −0.718 0.01281 98.0 ± 0.7
Ketorolac −0.716 0.01323 57.5 ± 11.4

Proxyphylline −0.710 0.01466 98.6 ± 0.8
Pyrazinamide −0.706 0.01546 99.2 ± 1.0
Levonorgestrel −0.693 0.00209 100.9 ± 6.5
Glibenclamide −0.683 0.02216 84.0 ± 6.2

Delsoline −0.669 0.02707 98.9 ± 0.8
Pyrantel −0.656 0.01164 83.1 ± 20.7

Pronetalol −0.653 0.03364 97.8 ± 0.7
Nifurtimox −0.646 0.03728 0.0 ± 12.7
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2.3. Identification of Nifurtimox and Chrysin with Activities against IAV Infection

The effects of the 19 compounds with a final concentration of 30 µM on the cyto-
pathic effect (CPE) of A549 cells caused by A/Puerto Rico/8/1934 (H1N1) virus infection
(MOI: 0.02) were tested. Among the 19 compounds, nifurtimox and chrysin exerted activi-
ties of reducing virus infectivity by more than 50%, as the virus infectivity was reduced
to 0.0% or 28.0% after treatment with 30 µM nifurtimox or chrysin relative to the vehicle
control (Table 2). Further validation suggested nifurtimox and chrysin displayed inhibitory
activities, with EC50s of 11.4 and 19.1 µM, respectively (Figure 3), exhibiting greater po-
tency than the positive drug ribavirin (EC50 = 40.3 µM). The two compounds also exhibited
anti-IAV activities on A/Jiangxi Donghu/312/2006 (H3N2) infection, with EC50s of 9.1
and 14.6 µM, indicating that both could reduce cellular morphological changes and cell
death caused by IAV infection. Moreover, the inhibitory activities of nifurtimox and chrysin
on A/Puerto Rico/8/1934 (H1N1) virus replication were confirmed by quantification of
virion RNA and the hemagglutinin (HA) protein in the supernatant at 24 h post-infection
(Figure 4).

Figure 3. The activities of nifurtimox and chrysin against IAV infection. (A) The chemical structures
of nifurtimox and chrysin. (B) The activities of nifurtimox and chrysin against CPE in A549 cells
infected with A/Puerto Rico/8/1934 (H1N1) (MOI = 0.02) or A/Jiangxi Donghu/312/2006 (H3N2)
(MOI = 0.02). EC50, 95% CI, SI, and CC50 are summarized in the table. The data are represented
as the mean ± SD (n = 4). EC50 and 95% confidence intervals were calculated by using GraphPad
Prism. EC50: half maximal effective concentration; SI: selectivity index; CC50: half maximal cytotoxic
concentration.
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Figure 4. The inhibitory activities of nifurtimox and chrysin on virus generation. Virus titer reduction
was detected by quantification of virion RNA (A) and HA (B–D) in supernatant of A549 cells infected
with A/Puerto Rico/8/1934 (H1N1) (MOI = 0.02). The data are represented as the mean ± SD (n = 3
for virion RNA detection and n = 2 for HA detection). Statistical significance was assessed using
t-test, * p < 0.05. EC50 and 95% confidence intervals were calculated by GraphPad Prism software.
EC50: half maximal effective concentration.

2.4. Multiple Informative Genes Reversed by Chrysin and Nifurtimox Played Crucial Roles in the
Two Compounds’ Anti-IAV Activities

To explore the mechanisms of IAV infection inhibition by chrysin and nifurtimox, the
gene expression profiles of A549 with 30 µM chrysin or nifurtimox treatment were assessed
through RNA sequencing (RNA-seq) (GEO accession: GSE193541). The data were analyzed
using the DESeq2 R package [170], and the genes with a p value < 0.05 and fold change > 1.5
or fold change < 0.5 fell under the DEG lists of the two compounds (Table S12). This showed
that 28 DEGs (23 genes by chrysin and 5 genes by nifurtimox; Figure 5, highlighted genes
in Table S12) matched the informative genes in the opposite regulatory direction (direction
of informative genes identified as leading to increased IAV replication or pathology in
IAV infection is shown in Table S9). Among the 28 genes, 12 genes have been reported as
pivotal elements involved in either the host defense against IAV infection or IAV clearance
by previous studies (Table 3), exhibiting their importance in controlling IAV infection.
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Figure 5. The informative genes reversely regulated by chrysin or nifurtimox. (A) The PPI network of
the informative genes, and genes reversed by chrysin and nifurtimox are highlighted. (B,C) Heatmap
of the expression fold change of the genes reversed by chrysin and nifurtimox. The graph depicts the
fold change of the genes in chrysin (B) and nifurtimox-treated (C) A549 cells (right panel) and the
IAV-infected patients (left panel). The PPI network was constructed with STRING database, and the
results were visualized using Cytoscape software.

Table 3. Summary of the 11 informative genes reversed by chrysin and 1 gene reversed by nifurtimox
involved in IAV infection processes according to previous reports.

Gene Symbol Gene Name Main Events Involved in IAV Infection References

Genes
reversed

by chrysin

CAMP Cathelicidin antimicrobial peptide Having a direct effect on virus particles [171]

LAMP3 Lysosomal-associated membrane
protein 3 Having a direct effect on virus particles [172]

ISG15 ISG15 ubiquitin-like modifier Disturbing life cycle of IAV infection;
Participating in innate immune response [173]

TLR7 Toll-like receptor 7 Participating in innate immune response [174]
IRF7 Interferon regulatory factor 7 Participating in innate immune response [67]
IL1B Interleukin 1 beta Participating in innate immune response [59]

IRAK3 Interleukin 1 receptor associated
kinase 3 Participating in innate immune response [175]

PIK3CG Phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit gamma Participating in innate immune response [176]

C5 Complement C5 Participating in innate immune response [177]
CHI3L1 Chitinase 3 like 1 Participating in adapted immune response [178]

ID3 Inhibitor of DNA binding 3 Participating in adapted immune response [179]

Genes
reversed by
nifurtimox

MMP9 Matrix metallopeptidase 9 Participating in adapted immune response [180]
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Firstly, there are three informative genes, CAMP, LAMP3, and ISG15, encoding proteins
that could destroy viral particles or directly interrupt the life cycle of IAV infection. CAMP
(93.6-fold upregulated by chrysin) encodes cathelicidin LL-37, a cationic antimicrobial
peptide disrupting viral membranes and neutralizing IAV through binding to the virus
directly [171]. LAMP3 (2.8-fold downregulated by chrysin), located within the lumen of
the lysosomes, participates in early post-entry stages of IAV infection via facilitating viral
ribonucleoprotein trafficking out from the lysosome, and knockdown of LAMP3 leads to
a reduction in viral NP production [172]. ISG15 (2.1-fold upregulated by chrysin) could
covalently bind to newly synthesized proteins in a ubiquitin-like fashion and was reported
to interfere with IAV budding by ISGylating the tumor susceptibility gene 101 protein,
inhibiting the transportation of IAV HA to the cell surface [173].

Besides destroying viral particles and disturbing the life cycle of IAV, host immune
defense also plays an important role in inhibiting IAV infection. The host’s innate immune
response is the first line of defense against IAV infection. A total of 7 of the 12 informative
genes reversed by chrysin or nifurtimox, TLR7, IRF7, ISG15, IL1B, PIK3CG, IRAK3, and C5,
are involved in the innate immune response. Pattern recognition receptors (PRRs) are a
class of receptors that detect invading pathogens [181]. TLR7, a retinoic-acid-inducible gene
I (RIG-I) protein, and melanoma-differentiation-associated protein (MDA5) are PRR mem-
bers; they can be activated by viral RNA within IAV-infected cells [174,181,182], followed
by signal transduction of transcription factors IRF3/IRF7 and nuclear factor-κB (NF-κB),
resulting in the production of type I interferons (IFNs), ISG proteins, and proinflammatory
cytokines (including IL-1β) for effective innate immune response development [183,184],
i.e., the TLR7 signaling pathway and RIG-I/MDA5 signaling pathway are activated. In this
study, four genes in these pathways, TLR7, IRF7, ISG15, and IL1B, were upregulated during
this process, which were also upregulated with chrysin treatment by 73.7-, 2.0-, 2.1-, and
10.2-fold, respectively (Figure 5B). PI3Kγ, encoded by PIK3CG (upregulated by 48.1-fold
with chrysin), was also reported to participate in the RIG-I/MDA5 signaling pathway
and facilitate the phosphorylation of IRF3 to promote efficient IFNs production [176,185].
Another gene, IRAK3, is involved in the TLR7 signaling pathway, and its expression is
induced by TLR stimulation [175]. As a negative regulator of TLR signaling in airway
epithelial cells, IRAK3 plays a vital role in the regulation of airway inflammation and innate
immune homeostasis [175,186]. Due to TLR7′s 73.7-fold upregulation with chrysin treat-
ment, IRAK3 showed a 67.8-fold expression. In summary, TLR7, IRF7, ISG15, IL-1β, PI3Kγ,
and IRAK3 participate in the innate-immune-response-related TLR7 signaling pathway and
RIG-I/MDA5 signaling pathway, which were also regulated by chrysin treatment, implying
that chrysin may protect cells from IAV infection through regulating the TLR7 signaling
pathway and RIG-I/MDA5 signaling pathway. In addition, complement C5, encoded by
the C5 gene and causing epithelial damage and lung injury during IAV infection through
neutrophil recruitment [177,187], was downregulated by 2.0-fold with chrysin treatment,
which may result in reduced pathogenesis caused by IAV.

The adaptive immune response is the second line for defense against IAV infection.
Proteins encoded by 3 of the 12 informative genes regulated by chrysin or nifurtimox
genes, ID3, CHI3L1, and MMP9, participate in this process. ID3 (3.2-fold upregulated by
chrysin) and CHI3L1 (446.9-fold upregulated by chrysin) play critical roles in Th1 cell
differentiation [179] and antigen-induced sensitization [178], respectively. MMP-9 cleaves
various proteins to regulate inflammatory and injury responses and is downregulated
11.8-fold with nifurtimox treatment (Figure 5C). It was reported that the knockout of MMP9
induced a more effective adaptive immune response to IAV, including higher Th1-like
CD4+ and CD8+ T cell subsets, lower T regulatory cell counts, and higher lung interferon-γ
levels [180]. Downregulation of MMP9 by nifurtimox played an important role in its
blocking of IAV infection.

Among the other 16 of the 28 informative genes (Figure 5), synthesis of cytochrome
C oxidase 2 (SCO2) and DnaJ heat shock protein family (Hsp40) member A1 (DNAJA1)
were reported to induce replication and affect cell viability during H1N1 infection in vitro
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when they were knocked down in siRNA screening [153], and were upregulated by chrysin
and nifurtimox, respectively, which may restrict the replication of influenza A viruses.
Lymphocyte antigen 96 (LY96) and the CD14 molecule (CD14) are upstream to IRF7 in
the pattern recognition receptor (PRR) signaling pathway and, thus, their gene expression
upregulation by chrysin treatment would be in favor of enhancing innate immunity by IRF7
described above. Among the rest of the 12 reversed informative genes, 11 genes have no
experimental evidence with influenza infection and pathogenesis, and the other gene, zinc
finger CCCH-type domain-containing-like (LOC441155), has no clear molecular function.
Their roles and functionalities in influenza virus infection could be developed as a future
research direction. Since all the 28 genes were differentially expressed after IAV infection
in patients to reflect the pathogenesis characteristic, overall reversal of the expression of
these genes by chrysin and nifurtimox could exhibit the anti-IAV potential and ameliorate
the severity of the disease. These findings suggested that the two compounds exerted
anti-IAV activities through regulating multiple informative genes reflecting the clinical
characteristics of IAV infection, posing an advantage over single-targeted agents due to
being less prone to the emergence of drug-resistant virus.

2.5. Chrysin and Nifurtimox Exerted Their Anti-IAV Effects through Regulating Multiple Pathways

As is shown in Figure 5A, the 28 reversed genes are dispersedly distributed in the
PPI network of informative genes, indicating that these genes were involved in different
pathways with other functionally related genes. To further understand the mechanisms
of the two compounds at the pathway level, pathway enrichment analyses of DEGs of
nifurtimox and chrysin treatment and a comparative enrichment analysis between DEGs of
the compounds and informative genes were performed.

The top 10 enriched pathway clusters of chrysin (Table S13) mainly fall under two
categories, which are immune system processes (leukocyte differentiation, regulation of cy-
tokine production, chemotaxis, neutrophil degranulation, phagosome, regulation of immune
effector process) and cell responses to stimuli (regulation of defense response, mitogen-
activated protein kinase (MAPK) cascade, apoptotic signaling pathway) (Figure 6A). In the
immune system process category, leukocytes, including neutrophils, release cytokines and
granule contents that assist the clearance of IAV and antigen presentation [188,189]. Direct
inactivation of the influenza virus and protein modification are caused by the effector
protein myeloperoxidase in the neutrophil degranulated fluid [190,191]. In the cell response
to stimulus category, the MAPK pathway is reported to be associated with host immune
response during IAV infection, cytokine production, and cell apoptosis. Researchers have
achieved great progress in targeting the MAPK pathways as a potential therapy against
IAV infections [192,193]. Viral proteins of IAV could prevent host cell apoptosis and leave
sufficient time for viral survival and replication. Thus, regulating the apoptotic signaling
pathway is another potential strategy to treat IAV infection [194]. These results indicated
that chrysin might regulate the immune system process and cell response to a stimulus
to exert an anti-IAV effect. In this study, chrysin DEGs were also significantly enriched
in the autophagy pathway, with a p value of 10−11, which was consistent with the recent
report of chrysin inhibiting IAV replication by inhibiting autophagy in the early stages of
infection [195].

The top 10 enriched pathway clusters of nifurtimox (Table S13) mainly focused on three
categories (Figure 6B), which were lipid metabolism (cholesterol biosynthesis pathway,
cellular response to lipids, glucocorticoid receptor pathway, isoprenoid metabolic process),
inflammation (mast cell cytokine production, signaling by interleukins), and apoptosis
(p53 signaling pathway). As an enveloped virus, the replication of IAV highly relies on the
host lipid metabolism systems [196], and cholesterol is an important component of the IAV
envelope and participates in the IAV entry and budding process [197]. In addition, lipid
metabolism also has an indirect impact on IAV infection through regulating the immune
system [198]. Influenza virus infection could induce the production of glucocorticoid,
which controls the immune response and, thus, reduces the inflammatory response and
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lethal immunopathology [199]. In the inflammation category, mast cells and interleukins
are associated with the severity of influenza virus infection and pathogenesis [200,201].
In the apoptosis category, p53 deficiency was reported to suppress interferon signaling
and enhance the replication of IAV [202]. The regulatory effect of nifurtimox on lipid
metabolism, inflammation, and apoptosis processes may contribute to its anti-IAV activity.

Figure 6. The enrichment analysis of DEGs in chrysin- and nifurtimox-treated A549 cells.
(A) The enrichment analysis of DEGs of chrysin. (B) The enrichment analysis of DEGs of nifurtimox.
(C) The interactive network of enriched terms for chrysin (red) and IAV (blue). (D) The interactive
network of enriched terms for nifurtimox (yellow) and IAV (blue). The enrichment analysis was
performed by Metascape online with GO Biological Processes, KEGG Pathway, Reactome Gene Sets,
and WikiPathways ontology sources. The size of the node represents the number of input genes
belonging to that term.

The comparative analysis of enriched pathways was performed between DEGs of
the two compounds and informative genes from IAV-infected patients to obtain the co-
regulated pathway clusters by the compound and IAV infection (Figure 6C,D and Table S14).
Both chrysin and nifurtimox participated in regulating multiple IAV infection-related
pathways, including the response to a virus, the viral life cycle, the regulation of the innate
immune response, influenza A, and the response to a bacterium. The comparative analysis
of enriched pathways supplemented more information on the mechanism of nifurtimox
and chrysin, suggesting again that the two compounds exerted anti-IAV effects through
integrated regulation of multiple targets and pathways.

2.6. Combination of Nifurtimox and Chrysin Exhibited a Synergistic Effect against IAV Infection

Drug combinations, providing the potential of increased therapeutic efficacy and
reduced toxicity, significantly optimize the treatment of complex diseases. As nifurtimox
and chrysin regulated different IAV informative genes and multiple pathways, it was
important to evaluate the effect of their combination. Primarily, the relationship between the
significantly reversed genes by nifurtimox and chrysin was calculated by a “complementary
exposure” pattern in the human protein–protein interactome network to predict the efficacy
of their combination [203,204]. As shown in the complementary exposure of the nifurtimox–
chrysin–influenza configuration (Figure 7A), a separation score of 0.19 was obtained,
indicating that the genes reversed by nifurtimox and chrysin were separated topologically,
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and the synergistic potential of the two-drug combination was implicated. To verify the
efficacy of nifurtimox and chrysin combination on IAV infection, relative virus titer of
A/Puerto Rico/8/1934 (H1N1) in the supernatant was determined with the treatment of
either nifurtimox or chrysin alone and their combinations (Figure 7B). The combination
effect of nifurtimox and chrysin was evaluated quantitatively by two vital parameters, the
combination index (CI) and dose-reduction index (DRI, folds of the dose reduction for each
compound in the drug combination achieving the same effect compared with the doses
of each compound alone) according to Chou–Talalay [205,206]. As shown in Figure 7C,
a strong synergistic effect of nifurtimox and chrysin combination was detected, with CI
values of 0.4 at both EC50 and EC90, DRI values of 29.3 and 2.5 at EC50, and 192.4 and 2.3 at
EC90, respectively, which confirmed the strong synergistic effect of nifurtimox and chrysin
combination for inhibiting IAV infection.

Figure 7. Nifurtimox and chrysin showed a synergistic effect against A/Puerto Rico/8/1934 (H1N1)
infection. (A) Genes reversely regulated by nifurtimox and chrysin are in a complementary exposure
pattern. Drug combination effect was calculated by using a network-based method captured by
a “complementary exposure” pattern: the corresponding reversed regulated proteins by chrysin
and nifurtimox were separated topologically in the human interactome network. “Separation > 0”:
synergistic potential. (B) The inhibitory effects of nifurtimox (in red), chrysin (in green), and their
combination (in black) on virus generation in supernatant of A549 cells infected with A/Puerto
Rico/8/1934 (H1N1) at an MOI of 0.02. The curves were generated by GraphPad Prism software.
The data are represented as the mean ± SD (n = 2). (C) Quantitation of synergism of chrysin and
nifurtimox combination against A/Puerto Rico/8/1934 (H1N1) infection in vitro. The CI and DRI
values were calculated by using CompuSyn software. CI: Combination index, CI < 1 indicates
synergism. DRI: dose-reduction index. DRI >1 indicates favorable dose reduction for each drug in
the combination.
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3. Discussion

The recurrent emergence of drug-resistant IAVs and arduous phenotypic screening
pipeline impel the development of strategies to cope with the challenge of anti-influenza
drug discovery. In this study, we utilized an advanced transcriptome signature reversion
strategy on clinical data to discover IAV infection inhibitors. This drug discovery strategy
of reversely matching the profile of differential gene expression of the disease with those
of compounds has been used in complex diseases for drug discovery [12–15]. Compared
with diseases such as neurological diseases or aging-related diseases, infectious diseases
could induce host responses involved in pathogen clearance and host resistance to infection,
which should not be reversed during drug treatment. Considering the particularity of
infectious disease, the gene direction was adjusted in this study according to host factors
reported previously to improve the accuracy of the outcome.

The TSR strategy was utilized in this study to discover IAV infection inhibitors. The
classical drug discovery process often starts with target identification and validation,
followed by high-throughput screening (HTS) or small molecular design based on receptors
and ligands to acquire hit compounds. Subsequently, the hit compounds undergo round-
by-round structural optimization to obtain candidate drugs, which might be approved
as drugs if they eventually pass preclinical studies and clinical trials. Typical hit rates
from experimental HTS can range between 0.01% and 0.14% [207], and the whole drug
development process demands a great amount of time and cost. The TSR strategy was
constructed based on the rapid development of omics technologies and application of
omics data, of which the major advantage is that the compounds drawing the disease state
back to normal were considered as potential active therapeutic agents. In this study, the
TSR strategy allowed the prioritization of compounds for antiviral assays and displayed
a highly efficient performance in drug screening, as 10 of the 45 commercially available
molecules in the top 50 compounds (Table S11) were reported to have anti-influenza
activities in previous research [162–169], giving a hit rate higher than 22%, and, for the
19 tested compounds, nifurtimox and chrysin were identified as IAV infection inhibitors,
giving a total hit rate of 27%. The high efficiency confirmed the reliability and feasibility of
this strategy. In addition, nifurtimox, approved for African trypanosomiasis and Chagas
disease (CD) treatment [208], was first identified as an IAV inhibitor in our study, which
was compliant with the principle of drug repurposing and could presumably reduce the
consumption of time and money in its anti-IAV drug development due to most of the
preclinical testing, safety assessment, and formulation development of nifurtimox having
been completed [209,210]. Besides the profitability described above, while classical drug
discovery against viral infections mainly focuses on targeting unique viral components
or enzymes and the corresponding drugs, which are referred to as direct-acting antivirals
(DAAs), are often challenged by the rapid emergence of drug-resistant viruses [211], the TSR
strategy provides opportunities for discovering antivirals targeting host factors. For IAV
infection, this host-directed antiviral drug discovery would be less prone to the emergence
of drug-resistant variants and provide more effective therapies with the consideration
of regulating host responses. Besides the TSR strategy, several approaches are used to
prioritize compounds for active compound screening assay in drug development, such as
virtual screening, which has developed for about 20 years, relying on progress of structural
biology and pharmacophore modeling, and has a hit rate of 12.9% [212,213]. Other methods
based on pathway or network mapping [214] or drug–drug similarity in transcriptomic
signature [215] and chemical structures [216] also provide innovative ideas and directions
for drug development.

By using this TSR strategy, the two active compounds were obtained in this study.
Nifurtimox, marketed under the brand name Lampit, is an approved oral drug against
African trypanosomiasis and CD [208], with two possible mechanisms: one is the for-
mation of nitro radical anions and the other is involved in the production of superoxide
anion [217]. The safety profile of nifurtimox was evaluated in 53 patients with CD, and the
data presented a high safety of nifurtimox in vivo, which provided a basis for its clinical
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application in anti-IAV infection [209]. Chrysin is a natural flavonoid ingredient of honey
and propolis, and its activities have been investigated in a variety of diseases, such as
cancer [218], skin diseases [219], neurodegenerative diseases [220], and eye diseases [221].
Our study disclosed the activity of chrysin against IAV infection, which was confirmed by
another article published five months before our submission [195].

The results showed that chrysin and nifurtimox directly reversed 23 and 5 IAV-
infection-related informative genes, respectively, indicating that the two compounds may
exert an anti-IAV infection effect through targeting multiple host factors. As nifurtimox
and chrysin reversely regulated different host factors and participated in multiple path-
ways in the IAV infection course, the effect of their combination aroused our interest. By
network analysis of genes reversed by nifurtimox and chrysin, their complementary ex-
posure pattern among the IAV-infection-related informative genes implied a synergistic
effect of their combination, which was confirmed by bioassay. The synergistic effect of the
multiple host-factor-targeted compounds’ combination provides a more efficient therapy
for IAV infection.

The utilization of clinical datasets is an additional feature for this study, which is
dedicated to discovering host-directed antivirals through reversing informative genes
implicated in IAV infection symptoms and pathogenesis. It is known that human-based
research provides more relevance and predictive value for understanding human pathology
and outcomes of diseases, while animal models or in vitro models are less relevant to
human disease due to species differences or a lack of inherent complexity within the
living organism [222,223]. In this study, the IAV infection signatures were extracted from
transcriptomic datasets of human disease-state specimens, rather than animal or in vitro
assay data, making the screened compounds more likely to target the clinical symptom-
related characteristics.

Taken together, this study identified nifurtimox and chrysin as IAV infection inhibitors,
providing two lead compounds with distinct chemical scaffolds. It also highlighted the
strategy of clinical transcriptome signature reversion for discovering infectious disease
drugs that exert activities by intervening multiple host factors and multiple pathways
during disease development. These findings provide a new perspective for infectious
disease drug development and a pilot framework upon which future studies can build.

4. Materials and Methods
4.1. Acquirement of Clinical Database

By using “influenza” as the key word searching in GEO database, and filtered with
“Homo sapiens”, “expression profiling by array”, or “expression profiling by high- through-
put sequencing”, GSE111368 and GSE68310 were the 2 datasets comprising over 30 patients
confirmed with influenza A infection. The series matrix files of GSE111368 and GSE68310
were downloaded [224] in .txt format. The data of 40 patients infected with IAV accom-
panied with slight illness (no substantial respiratory compromise, with blood oxygen
saturation of >93% while the patient was breathing room air) and the 130 healthy subjects
extracted from GSE111368 were accredited to the experimental group and the control group,
respectively (Tables S1 and S2). In GSE68310, the data of 41 patients only infected with IAV
were used in this study, with the expression data of the first visit as the experimental group
and their healthy status extracted as the control group (Tables S1 and S3).

4.2. Identification of Informative Genes

As both GSE111368 and GSE68310 were detected by the GPL10558 platform [225],
the probe annotation table of GPL10558 was downloaded in .txt format. The probe IDs
in the extracted data matrixes were annotated as gene symbols, and the gene expression
values of multiple probes with the same gene symbol were averaged for the expression
level of that gene. The annotated and averaged data matrixes were input into R Statistical
Software (version 3.6.1, Vienna, Austria) [226] individually, followed by Limma analysis
(version 3.6.2) [227] to obtain two DEG lists with the threshold p value < 0.05 and fold



Int. J. Mol. Sci. 2022, 23, 2372 15 of 27

change >1.5 for upregulation or fold change < 0.5 for downregulation. The two lists
combined with 784 DEGs in total (Table S4) (additional details and the code are available at
https://github.com/YijingXin0/code (accessed on 13 January 2022)).

4.3. Compound Screening by Transcriptome Reversal Paradigm with CMap

For transcriptome signature reversal compounds screening, the informative genes
(Table S9) were converted into probe IDs (Table S10) by Microsoft Excel (version 16.0,
Microsoft, Redmond, WA, USA) according to Affymetrix Human Genome U133A Array
probe annotation table in .txt format [228], and then queried at CMap (build 02) [10]. The
permuted compounds are listed in Table S15, and the top 50 compounds (p < 0.05) in
ascending order of the enrichment score are listed in Table S11.

4.4. Cells, Viruses, and Reagents

The A549 cell line was from the American Type Culture Collection and cultured in
Dulbecco’s modified Eagle’s medium (DMEM; ThermoFisher, Waltham, MA, USA, Cat.
No. 11965092) supplemented with 10% fetal bovine serum (FBS; ThermoFisher, Waltham,
MA, USA, Cat. No. A3161002C), 100 IU/mL penicillin, and 100 µg/mL streptomycin.
F-12K medium for cytopathic effect assay was purchased from ThermoFisher (Waltham,
MA, USA, Cat. No. 21127022). Influenza virus (A/Puerto Rico/8/1934, H1N1) was kindly
provided by Prof. Jianwei Wang (Institute of Pathogen Biology, Chinese Academy of
Medical Sciences, Beijing, China). TPCK-treated trypsin and bovine serum albumin (BSA)
were both from Sigma-Aldrich (Burlington, MA, USA, Cat. No. T1426 and A1933). All
compounds (purity > 95%) used in this study were purchased from TargetMol (Boston,
MA, USA), dissolved in dimethylsulfoxide (DMSO, Sigma-Aldrich, Burlington, MA, USA,
Cat. No. D8418), and stored at −20 ◦C.

4.5. Cell Viability Assay

The cell viability assay was performed as described previously [229,230]. Briefly, A549
cells, 9 × 103 cells/well in a 96-well plate, were treated with the compounds at 30 µM for
48 h. The cell viability was measured by the CellTiter-Glo® Assay (Promega, Madison,
WI, USA, Cat. No. G7571) according to the manufacturer’s protocol. The assay was
performed in triplicate, and cells treated with the same amount of DMSO (1‰) served as
the vehicle control.

4.6. Cytopathic Effect Assay

A549 cells (4 × 104 cells/well) were seeded into 96-well plates and incubated for
24 h. The medium was then removed, and cells were infected with A/PuertoRico/8/1934
(H1N1) viruses or A/Jiangxi Donghu/312/2006 (H3N2) viruses at an MOI of 0.02 diluted
in F-12K medium containing 2 µg/mL TPCK-treated trypsin for 1 h. After supernatant
was removed and rinsed with PBS, the infected cells were incubated in F-12K medium
(Invitrogen, Waltham, MA, USA) supplemented with 0.12% BSA and 0.5 µg/mL TPCK-
treated trypsin. Forty-eight hours post-infection, the cytopathic effect was measured by
the CellTiter-Glo® Assay (Promega, Madison, WI, USA, Cat. No. G7571) according to the
manufacturer’s protocol. The tested compounds were added 20 h before infection until the
detection of cytopathic effect. The assay was performed in quadruplicate, and the same
volume of DMSO (1‰, v/v) was set as the vehicle control and mock-infected cells as the
negative control.

4.7. Virion RNA Detection Assay

A549 cells were infected with A/PuertoRico/8/1934(H1N1) virus at an MOI of 0.02,
and the compounds were added as described in the section for cytopathic effect assay. The
supernatant was collected 24 h post-infection. Virion RNA in the supernatant was extracted
with viral RNA isolation kit (Macherey-Nagel, Düren, Germany, Cat. No. 740984.50)
as per the manufacturer’s protocol and was reverse transcribed using a cDNA synthe-
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sis kit (TransGen Biotech, Beijing, China, Cat. No. AT311-02) with reverse transcription
(RT) primer (5′-GAATGGACGAAAAACAAGAATTGC-3′). The RT products were then
used as templates for qPCR with a TransStart Tip Green qPCR Supermix kit (TransGen
Biotech, Beijing, China, Cat. No. AQ142-21); the primer sequences are as follows: Fwd_5′-
GAATGGACGAAAAACAAGAATTGC-3′; Rev_5′-CTCAATATGAGTGCAGACCGTGCT-
3′. The qPCR assay was performed according to the manufacturer’s instructions on
QuantStudio 3 Real-Time PCR system (Applied Biosystems, Waltham, MA, USA). The
Ct values were analyzed using the QuantStudio Design and Analysis software (v1.5.1,
Applied Biosystems, Waltham, MA, USA). The assay was performed for each compound
in three biological replicates and two technical replicates, and the same volume of DMSO
(1‰, v/v) was set as the vehicle control. The relative virus titer was determined based on
an analysis of Ct values and normalized to vehicle control.

4.8. Hemagglutinin Detection Assay

A549 cells were infected with A/PuertoRico/8/1934(H1N1) virus at an MOI of 0.02,
and the compounds were added as described in the section for cytopathic effect assay. The
supernatant was collected 24 h post-infection, and the HA quantity in the supernatant was
measured by the HA ELISA kit (Sino Biological Inc., Beijing, China, Cat. No. SEK11684) as
per the manufacturer’s protocol. The assay was performed for each compound concentra-
tion in duplicate, and the same volume of DMSO (1‰, v/v) was set as the vehicle control
and mock-infected cells as the negative control.

4.9. Total RNA Extraction, RNA Sequencing, and Differentially Expressed Gene Analysis

A549 cells were treated with the compounds at a final concentration of 30 µM for 40 h.
Total RNA was extracted using the TRIzol reagent (ThermoFisher, Waltham, MA, USA,
Cat. No. 15596026) according to the manufacturer’s protocol. RNA quality assessment,
cDNA libraries construction, and RNA sequencing were conducted by OE Biotech Co., Ltd.
(Shanghai, China). Briefly, RNA integrity was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) and three multiplexed libraries for each
group were constructed using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, Santa
Clara, CA, USA). The libraries were sequenced on an Illumina NovaSeq 6000 platform
(Illumina, San Diego, CA, USA) and the adapter trimming of the raw data (raw reads)
in fastq format was processed using Trimmomatic (version 0.36) [231]. The clean reads
were mapped to the human genome (GRCh38) using HISAT2 (version 2.2.1.0) [232]. The
transcriptional profile data were deposited at Gene Expression Omnibus (GEO accession:
GSE193541). Differential expression analysis was performed using the DESeq2 R package
(version 1.26.0) [170]. p value < 0.05 and fold change > 1.5 or fold change < 0.5 were set as
the threshold for determining significantly differential expression (Table S12) (additional
details and the code are available at https://github.com/YijingXin0/code (accessed on 13
January 2022)).

4.10. Network-Based Analysis of Drug Combinations

The complementary exposure model [203,204,233] was used for drug–drug combina-
tion analysis based on the topological separation of the two sets of drug targets in human
protein–protein interactions, and separation was determined by formula shown below:

SAB = dAB −
dAA + dBB

2
, (1)

which compares the mean shortest distances within the targets of two drugs, dAA and dBB,
to the mean shorted distance dAB between A–B target pairs in the human interactome network.

4.11. Drug Combination Assay

The two compounds were combined at a constant ratio (molar concentration of chrysin:
nifurtimox = 8:15) for seven concentrations via 2-fold serial dilutions, and efficacy of drug
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combination was evaluated via quantification of HA described in HA detection assay. The
combination index (CI) and dose reduction index (DRI) were calculated using the median
effect equation [205] by CompuSyn software (version 1.0, Paramus, NJ, USA), as described
previously [206].

4.12. Bioinformatics Analysis

Pathway enrichment analysis was carried out by Metascape online (http://metascape.
org (accessed on 13 January 2022)) according to GO Biological Processes, KEGG Pathway,
Reactome Gene Sets, and WikiPathways ontology sources [234], with the threshold set
as: p < 0.01, a minimum count of 3, and the enrichment factor > 1.5 for all pathway
enrichment analyses in this study. The PPI network was constructed with STRING database
(http://string-db.org/ (accessed on 13 January 2022)) and visualized using Cytoscape
(version 3.8.2, San Diego, CA, USA) [235]. R packages pheatmap (version 1.0.8) [236]
and RColorBrewer (version 1.1-2) [237] were used to generate heatmaps, and ggplot2
(version 3.3.2) [238] was used to plot the bubble diagrams.

4.13. Statistical Analysis

The mean values and standard deviations (SDs) were calculated using Microsoft Excel
(version 16.0, Microsoft, Redmond, WA, USA); the half maximal effective concentration
(EC50) values were calculated using the GraphPad Prism software (version 7.00, San Diego,
CA, USA).

4.14. Code Availability

All the code for the data analysis associated with the current submission is available
at https://github.com/YijingXin0/code (accessed on 13 January 2022).
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