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A B S T R A C T   

This study aims to develop a traffic model for heterogeneous vehicle movement, which introduces 
the vehicle’s heterogeneity by considering the internal mass effect. We explore the behavioral 
characteristics of the flow field generated by the proposed model and provide a comparative 
analysis of the conventional model. A linear stability condition is deduced to showcase the 
model’s capacity to neutralize flow. Nonlinear analysis is employed to derive the modified 
Korteweg-de Vries (mKdV) equation and its corresponding analytical solution, enabling the 
observation of traffic flow behavior in proximity to the neutral stability condition. A numerical 
simulation is then conducted, considering cyclic boundary conditions. The results indicate that 
the mass effect tends to absorb traffic jams provided no time delay is imposed.   

1. Introduction 

Modern civilization now has more needs for mass transport networks as a result of the economy’s rapid growth. Many researchers 
have proposed various traffic models to reveal the underlying fundamental mechanisms. These models can commonly be categorized 
into two distinct types [1]. The first type is known as the macroscopic or continuum model, which likens traffic flow to a compressible 
fluid and is investigated using fluid dynamics principles [2,3,4,5,6,7,8,9]. Conversely, the second type is the microscopic or 
ultra-discrete model, which delves into the interactions between individual vehicles as well as their relationship with the road 
infrastructure [10–13]. In general, microscopic rather than macroscopic models are given more consideration in this field, and the 
car-following model is their research hotspot. The car-following model assumes a lead vehicle followed by a subsequent one within a 
designated single lane, maintaining a minimum space and time gap between them [14–20]. To better mimic actual traffic flow, several 
improved car-following model variants have been proposed, including gas kinetic, hydrodynamic lattice, optimum velocity (OV), 
generalized force (GF), and full velocity difference (FVD) models [21–27]. 

All vehicles are supposed to maintain the same driving behavior in most car-following traffic models, yet the actual situations are 
difficult to represent. In actual traffic scenarios, the car-following behaviors exhibit heterogeneity due to varying conditions of drivers 
or vehicles [28–38]. One of the most typical examples is that vehicles vary in size. Lighter vehicles, like compact cars, have a low mass, 
resulting in low inertia, enabling them to accelerate or decelerate easily. Consequently, drivers of such vehicles frequently alter their 
driving behavior to optimize traffic efficiency. In contrast, heavier vehicles, such as trucks, have a greater mass, leading to higher 
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inertia and making it difficult to accelerate or decelerate quickly. To maintain safety, drivers of heavy vehicles tend to preserve their 
driving behavior. The distinctions in driving behavior are widespread in traffic flow systems and have far-reaching effects, which has 
motivated us to improve conventional car-following models by considering this factor. 

The driver needs reaction time from receiving environmental stimuli to responding to the actual driving process. It may also take a 
mechanical response time for a vehicle to adjust to the expected speed after the driver’s operation. Time delay caused by these two 
cases in the traffic flow system has been considered by Chandler et al. [39] and incorporated into the OV model by Bando and her 
colleagues [40]. In line with these pioneering studies, many researchers have accounted for the time delay effect in the traffic flow 
models. They clarified that this impacts traffic flow systems’ stability [41–45]. Because of this, the proposed model also considers the 
time delay effect to explore its impact on heterogeneous traffic flow systems besides the effect of mass as mentioned. 

Based on the above, this study improved the conventional car-following model by incorporating the mass effect factor (Mf ) to 
account for the vehicle’s mass effect. To achieve this, vehicles are divided into three types according to the Mf value for simplicity: 
heavy mass vehicle (HV), medium mass vehicle (MV), and light mass vehicle (LV). We study the traffic flow by varying the proportions 
of these three types of vehicles with or without time delay considerations. 

The subsequent sections of this paper are structured as follows: Section 2 presents an overview of conventional traffic flow models. 
Section 3 provides a detailed explanation of the proposed model. In Section 4, a linear stability analysis of the model is conducted, 
while its nonlinear analysis is discussed in Section 5. The numerical simulation results are presented in Section 6. Finally, Section 7 
outlines the main findings obtained from this study. 

2. Background of car-following models 

In 1995, a groundbreaking model called the OV model was proposed by Bando et al. [46], bringing about a remarkable 
advancement in the field of traffic flow analysis. The OV model’s dynamic equation can be described in Eq. (1): 

dvn(t)
dt

= a[V[Δxn(t)] − vn(t)] (1) 

The velocity of vehicle n at time t is denoted as vn(t), while its position is represented by xn(t). The sensitivity effect factor of the 
driver is indicated by a. The headway between vehicle n + 1 and vehicle n at time t is calculated as Δxn = xn+1 − xn. The optimal 
velocity function, denoted as V(•), is adopted in the following manner: 

V(Δxn(t)) =
vmax

2
[tanh(Δxn(t) − hc)+ tanh(hc)], (2) 

While the OV model successfully simulates certain aspects of traffic flow, such as the propagation of traffic jams and stop-and-go 
waves, it falls short of accurately replicating realistic acceleration and deceleration. To address this limitation, Helbing and Tilch [47] 
introduced the GF model, an improved car-following model that takes into account negative speed differences. The GF model’s 
governing equation is presented in Eq. (3): 

dvn(t)
dt

= a[V[Δxn(t)] − vn(t)] + λΔvn(t)H(− vn(t)), (3) 

The GF model incorporates the Heaviside function H, where λ represents the sensitivity effect factor (distinct from a). At time t, the 
velocity difference Δvn(t) between vehicle n + 1 and vehicle n is defined as the disparity between their velocities, vn+1 and vn. The 
results indicate that the GF model demonstrates a closer alignment with the observed field data compared to the OV model. 

Based on the GF model, Jiang et al. [48] conducted a study in 2001 and revealed the significant impact of both positive and negative 
velocity differences on traffic flow stability. Furthermore, they proposed the Full Velocity Difference (FVD) model to address this issue: 

dvn(t)
dt

= a[V[Δxn(t)] − vn(t)] + λΔvn(t), (4) 

The FVD model described in Eq. (4) has been considered the standard form of the car-following model because of its conciseness 
and practicality. We also consider it a benchmark, and the next section will discuss the details. 

3. Proposed model 

Following the FVD model, we proposed a heterogeneous vehicular mass (HVM) model by considering the vehicle’s mass and time 
delay effects. Its dynamics equation is as follows: 

dvn(t)
dt

= a[V[Δxn(t − τ)] − vn(t)] + λΔvn(t), (5) 

The dynamics equation incorporates a time delay factor, denoted as τ, which encompasses the time delay effect originating from the 
response time of vehicles’ mechanical operation and drivers’ reaction to stimuli. The mass effect of the vehicle is manifested through 
the adoption of the optimal velocity function, represented as follows: 

V(Δxn(t)) =
vmax

2
[
tanh

(
Mf (Δxn(t) − hc)

)
+ tanh(hc)

]
, (6) 
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where Mf denotes the mass effect factor, vmax represents the maximum velocity, and hc denotes the safety distance. Due to the non- 
existence of a vehicle with negative or no mass in real life, the value of Mf should be positive. Vehicles have heavy mass when 0 <

Mf < 1, limiting them to changing their driving behavior frequently. When Mf > 1, the vehicles’ light mass allows them to accelerate 
or decelerate quickly. When Mf = 1, Eq. (6) conforms to the optimal velocity function Eq. (2) adopted the OV model, which means only 
medium mass vehicles are considered. To simplify the analysis, we assign fixed values of 0.75, 1.00, and 1.50 to Mf for HV, MV, and LV, 
respectively. A comparison between their respective OV function diagrams and the conventional OV model illustrated in Fig. 1. 

One notable observation from Fig. 1 is that the velocity curve of LV exhibits the steepest slope when the headway falls within a 
reasonable range. In comparison, MV demonstrates a relatively smaller slope, while HV exhibits the smallest slope. The result indicates 
that under the same headway from the preceding vehicle, the lighter LV can adjust its velocity to the expected value more quickly due 
to its smaller inertia, while the heavier MV and HV require more time to adjust their velocities due to their larger inertia. This phe-
nomenon is consistent with our assumptions and also conforms to reality. 

It should be mentioned that although our model deals with heterogeneous traffic flow systems, in which heavy mass, medium mass, 
and light mass vehicles coexist simultaneously. But for theoretical analysis, we restrict our model to a homogeneous microscopic 
perspective in the following Linear Stability Analysis and Nonlinear Analysis sections. In the Numerical Simulations section, we return to 
the heterogeneous microscopic model and investigate several typical mixed traffic flows composed of different mass vehicles. 

4. Linear stability analysis 

To determine the stability of the steady flow state in the HVM model outlined in Eq. (5) along with Eq. (6), a linear stability analysis 
is performed. In this analysis, we make the assumption that all vehicles move in a linear formation, maintaining a consistent headway 
represented as b, while adhering to the optimal velocity denoted as V(b). Consequently, in the case of uniform traffic flow, the solution 
for Eq. (5) can be expressed as follows: 

x0
n(t) = b • n + V(b) • t and b = L

/
N, (7)  

where N represents the number of vehicles and L corresponds to the road length. 
Let us present a perturbed solution for the case of yn(t), which is a slight deviation from the steady-state solution x0

n(t): 

xn(t) = x0
n(t) + yn(t), (8) 

By substituting Eqs. (7) and (8) into Eq. (5), we derive the linearized form of the model as follows: 

dvn(t)
dt

= a
[

V
′

(b)Δyn(t − τ) − dyn(t)
dt

]

+ λ
dΔyn(t)

dt
, (9)  

Where Δyn(t) = yn+1(t) − yn(t) and V′

(b) =
dV(Δxn)

dΔxn

⃒
⃒
⃒
Δxn=b

. By expanding yn(t)∝exp(ikn + zt), the following equation of z is obtained from 

Eq. (9). 

z2 = a
[
V ′

(b)e− zτ ( eik − 1
)
− z
]
+ λz

(
eik − 1

)
, (10) 

Suppose that z = z1(ik)+ z2(ik)2
+ ⋯. Substituting this expression into Eq. (10), we can determine the first- and second-order 

components of ik are as in Eq. (11): 

Fig. 1. The optimal velocity profiles for different vehicle types are determined based on their mass effect factors Mf : 0.75 for heavy mass vehicles 
(HV), 1.00 for medium mass vehicles (MV), and 1.50 for light mass vehicles (LV), along with the conventional OV function. 
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Fig. 2. Headway-sensitivity phase diagrams (b, a) with λ = 0.1. In Panel (a), a comparison is made between the results obtained from the FVD 
model and the HVM model. The mass effect factor Mf is held constant at 1.00, while the time delay effect τ varies across values of 0.0, 0.1, 0.2, and 
0.5. Panels (b) to (e) illustrate the comparison of results obtained from the HVM model with different values of Mf , while the time delay effect τ is 
fixed at 0.0, 0.1, 0.2, and 0.3, respectively. 
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z1 =V ′

(b), z2 =V ′

(b)
[

1
2
+

λ
a
− V ′

(b)
(

τ+ 1
a

)]

, (11) 

Assume the condition presented in Eq. (12) is met, in such case, even a minor disturbance input will cause the traffic flow to become 
unstable. 

a <
2[V ′

(b) − λ]
1 − 2τV ′

(b)
, (12) 

Therefore, the proposed model’s linear stability condition can be stated as follows: 

a=
2[V ′

(b) − λ]
1 − 2τV ′

(b)
. (13) 

It is worth pointing out that although the linear stability condition of our proposed model given by Eq. (6) is formally consistent 
with the previous time-delay models, the V′

(•) in them are completely different because we have adopted a different optimal velocity 
function V(•). 

Fig. 2 illustrates the proposed model’s flow stability states per the neutral stability condition described in Eq. (13). Fig. 2 (a) 
confirms that increasing time delay would destroy stability. At the limit, the proposed model fully recovers the conventional FVD 
model assuming τ = 0. It is conceivable that any delay, be it due to the response time of a vehicle’s mechanical operation or the driver’s 
reaction, ultimately contributes to undesirable disturbances to the overall dynamic traffic flow system. The comparison of panels (b) to 
(e) in Fig. 2 supports this observation, where a more significant time delay leads to a substantial increase in unstable regions. Referring 
to Fig. 2 (b), it can be seen that the stability region expands as Mf decreases. This is due to the infrequency of acceleration or 
deceleration in vehicles with heavier mass, thus a smaller Mf value promotes flow field stabilization. 

5. Nonlinear analysis 

We utilize the reductive perturbation method outlined in Refs. [49,50] to obtain the modified Korteweg-de Vries (mKdV) equation, 
capable of representing the density wave of kink-antikink near the critical point in the HVM model. 

Firstly, we rewrite Eq. (5) into the form of headway: 

d2(Δxn(t))
dt2 = a

[

{V[Δxn+1(t − τ)] − V[Δxn(t − τ)]} − dΔxn(t)
dt

]

+ λ
[

dΔxn+1(t)
dt

−
dΔxn(t)

dt

]

, (14) 

In the unstable traffic flow region, we introduced a small positive parameter ε in proximity to the critical point (ac,hc), defining the 
slow-scale variables X and T [51,52]. Consequently, these variables undergo the following transformation: 

X = ε(n+ bt) and T = ε3t with 0< ε ≪ 1, (15)  

where b represents a predetermined constant, the expression for the headway can be stated as follows: 

Δxn(t)= hc + εR(X,T), (16) 

The nonlinear partial differential equation, which arises from the expansion of Eq. (14) to the fifth order of ε with the inclusion of 
Eq. (15) and Eq. (16), can be expressed as follows: 

ε2[b− V
′

(hc)]∂XR+ ε3
[

b2 − λb
a

−
(1 − 2bτ)

2
V ′

(hc)

]

∂2
XR+ ε4

[

∂T R −

(
(bτ)3

+ (1 − bτ)3

6
V ′

(hc)+
λb2

a

)

∂3
XR −

1
2
V ′′′

(hc)∂XR3

]

+ ε5

[(
λ − 2b

a
− τV

′

(hc)

)

∂2
XR+

(
(bτ)4

− (1 − bτ)4

24
V

′

(hc) −
λb3

a

)

∂4
XR+

(2bτ − 1)
4

V
′′′

(hc)∂2
XR3

]

= 0,

(17)  

where V′

(hc) =
dV(Δxn(t− τ))

dΔxn(t− τ)

⃒
⃒
⃒
Δxn(t− τ)=b 

and V′′′

(hc) =
d3V(Δxn(t− τ))
d(Δxn(t− τ))3

⃒
⃒
⃒
Δxn(t− τ)=b

. 

Table 1 
The effect factors gi of the proposed model.  

g1 =
(bτ)3

+ (1 − bτ)3

6
V′

(hc)+
λb2

a 

g2 = −
1
2
V′′′

(hc)

g3 =
λ − 2b

a
− τV′

(hc)

g4 =
(bτ)4

− (1 − bτ)4

24
V′

(hc) −
λb3

a 

g5 =
(2bτ − 1)

4
V′′′

(hc)
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Suppose ac = a(1+ε2) and b = V′ near the critical point (ac, hc) , if we neglect the second- and third-order terms of ε in Eq. (17), we 
obtain Eq. (18) in the following manner: 

ε4( ∂T R − g1∂3
XR+ g2∂XR3)+ ε5( g3∂2

XR + g4∂2
XR3 + g5∂4

XR
)
= 0, (18) 

The values of gi can be found in Table 1. 
We obtain the modified Korteweg-de Vries (mKdV) equation with higher-order correction through the application of the subse-

quent transformations: 

T =
1
g1

T
′ and R =

̅̅̅̅̅
g1

g2

√

R
′

, (19) 

Therefore, we derive the standard mKdV equation incorporating additional terms of higher-order corrections. 

∂T ′ R′

− ∂3
XR′ 3

+ ∂XR′ 3
+ εM[R′

] = 0, (20)  

where M[R′

] = 1
g1

[
g3∂2

XR′

+ g4∂4
XR′

+
g1g5
g2

∂2
XR′ 3

]
. 

By neglecting the perturbed term O(ε) from Eq. (20), the kink–antikink wave solution of the mKdV equation is obtained, given by 
the following expression: 

R′

0(X,T
′

) =
̅̅̅
c

√
tanh

[ ̅̅̅
c
2

√

(X − cT
′

)

]

, (21) 

The amplitude, c, of the kink-antikink solutions of the mKdV equation in Eq. (21) is a free parameter. The condition for choosing a 
particular member of the continuous family of mKdV solitons [51,52] is provided by the perturbed term O(ε) in Eq. (20). For the 
kink-antikink solutions, by applying the solvability condition described in Eq. (22), we can determine the value of c: 

(
R′

0,M[R′

]
)
=

∫ ∞

− ∞
dXR′

0 M
[
R′

0

]
= 0, (22)  

where M[R′

0] = M[R′

]. Thus, the propagation velocity c for the kink–antikink soliton solution is determined as shown in Eq. (23): 

c=
5g2g3

2g2g4 − 3g1g5
, (23) 

Therefore, by inserting Eq. (19) into Eq. (21), we derived the expression for the kink–antikink wave solution of the mKdV equation, 
which can be written as presented in Eq. (24): 

R(X, T)=
̅̅̅̅̅̅̅
g1c
g2

√

tanh
[ ̅̅̅

c
2

√

(X − cg1T)
]

(24) 

Hence, the ordinary form for the kink-antikink wave solution of the headway outlined in Eq. (14) can be expressed as shown in Eq. 
(25): 

Δxn = hc +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g1c
g2

(ac

a
− 1
)√

tanh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c
2

(ac

a
− 1
)√ [

n+
(

1 − cg1

(ac

a
− 1
)

t
)]

. (25) 

Thus, we derived the amplitude A of the kink–antikink soliton solution as presented in Eq. (26): 

A=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g1c
g2

(ac

a
− 1
)√

. (26) 

The presence of the coexisting flow phase is characterized by the kink–antikink wave solution. In the scenario of low traffic density, 
the free-flow phase can be represented by Δxn = hc + A, while the congested flow phase is indicated by Δxn = hc − A under higher 
traffic density. 

6. Numerical simulations 

In a real traffic flow system, vehicles are heterogeneous, unlike previous models, which presume that a vehicle’s car-following 
behavior is the same. The most advantageous point of the present model is that each of the vehicles has one of three different mass 
effects, which implies that the proposed model can reproduce a mixed flow situation if HV, MV, and LV coexist. 

We conduct several numerical simulations with the initial perturbations under periodic (cyclic) boundary conditions as shown in 
Eq. (27) to validate the theoretical results [53]: 
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Fig. 3. Comparison of the spatiotemporal diagrams between the FVD and HVM models without a time delay effect. Panel (a) refers to the posi-
tion–time spatiotemporal diagrams of FVD, and panels (b)–(d) refer to that of the HVM model in which the proportions of heavy mass vehicles (HV), 
medium mass vehicles (MV), and light mass vehicles (LV) are (b) 25%, 50%, 25%; (c) 35%, 30%, 35%; (d) 50%, 0%, 50%, respectively. Panels (e) 
and (f) refer to the spatiotemporal structure of velocity using the FVD and HVM models. The HVM model presumes that the proportions of HV, MV, 
and LV are 35%, 30%, and 35%. 
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δxn(0) = Δxn(1) = Δx0 =
L
N
, for n ∕=

N
2
,
N
2
+ 1

Δxn(0) = Δx0 + 0.5, for n =
N
2

Δxn(0) = Δx0 − 0.5, for n =
N
2
+ 1

(27)  

where Δx0 denotes the average headway. Other parameters are assumed as follows: the total number of vehicles was N = 100, the 
road length was L = 200, the sensitivity was a = 1 and b = L/N. The vehicles’ order, either HV, MV, or LV, is presumed random, 
whereas the fractions of those three classes are systematically varied in a series of simulations. 

Without considering the time delay effect, panels (a) to (d) in Fig. 3 compare the spatiotemporal diagrams between the conven-
tional FVD model and the proposed model. To make the figure as representative as possible, the diagrams are taken between the time 
steps of t = 99,000 to t = 100,000, where the whole traffic system is inclined to stabilize after sufficient time evolution. The proportions 
of HV, MV, and LV in the proposed model are fixed as (25%, 50%, 25%), (35%, 30%, 35%), and (50%, 0%, 50%) in Fig. 3 (b) to (d), 
respectively. Note that the fraction of HV is kept the same as that of LV to compare it with a homogeneous traffic flow system using the 
conventional FVD. Fig. 3 (a), produced using the FVD, exhibits several heavy traffic jam areas. However, the phenomenon predicted by 
the HVM model is entirely different. As shown in panels (b) to (d) in Fig. 3, although the vehicle’s trajectories oscillate, the traffic jam 
areas disappear. The spatiotemporal velocity structures using those two models show this difference more explicitly. One can observe 
that the FVD model was agitated with stop-and-go waves in Fig. 3 (e), whereas in Fig. 3 (f), the HVM model yields a stable and middle- 
velocity extent. 

Fig. 4 presents the comparisons concerning the spatiotemporal diagrams between the conventional FVD model and the proposed 
model, where the time delay effect is further implemented to the mass effect. The fractions of the HV, MV, and LV in the HVM model 
were fixed at (35%, 30%, 35%), whereas the time delay factor: τ, was varied as 0.1 (top row), 0.2 (second row), and 0.5 (bottom row), 
respectively. The other parameters are set similar to those in Fig. 3. Note that the HVM model with a time delay would inevitably suffer 
from traffic jams, unlike that without a time delay (Fig. 3). With time delay increase, especially in the case of τ = 0.5, the HVM model 
produces spatially-frequent stop-and-go waves (panel (f) in Fig. 4) vis-à-vis what the FVD model predict (panel (e) in Fig. 4). Inter-
estingly, amid two neighboring stop-and-go waves, the HVM model shows slight meandering trajectories of freely running vehicles 
(panels (b), (d), and (f) in Fig. 4). Whereas the FVD (panels (a), (c), and (e) in Fig. 4) does not show such a tendency. The such visual 
difference is attributed to whether heterogeneity or homogeneity is considered in a traffic flow field. 

7. Conclusion and discussion 

Based on the FVD model, this paper proposed an improved car-following model called the HVM model, which can highlight the 
mass and time delay effects. We introduced the mass effect factor (Mf ) into an OV function and divided vehicles into three classes 
according to their mass effect factor value to reproduce a mixed flow system that might be more realistic than the predictions of 
conventional homogeneous models. 

According to the linear stability analysis, it was confirmed that the stability of the proposed model is positively correlated with the 
magnitude of the mass effect and inversely correlated with the impact of time delay. The nonlinear analysis drew the analytical so-
lution as a soliton wave using the KdV–Burgers equation. The numerical results illustrate the difference between the HVM and the 
predictions of the conventional FVD model. This implies that the HVM could reproduce a more realistic traffic flow field because a 
mixed heterogeneous flow is implemented, unlike the FVD. 

It is worth noting that although our numerical simulation reproduces a heterogeneous traffic flow composed of different mass 
vehicles, our linear stability analysis and nonlinear analysis are still based on a homogeneous microscopic model. If we extend it to the 
heterogeneous macroscopic model, we will be able to theoretically analyze the heterogeneous traffic flow composed of different mass 
vehicles, which is one of our subsequent works. 
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Fig. 4. Comparison of the spatiotemporal diagrams between the FVD and HVM models with the time delay effect τ. Panels (a)–(f) compare the 
position-time spatiotemporal diagrams of the FVD and HVM model, in which the proportions of HV, MV, and LV are 35%, 30%, and 35%. The time 
delay effect τ varies with 0.1 ((a) and (b)), 0.2((c) and (d)) and 0.5 ((e) and (f)). Panels (g) and (h) refer to the spatiotemporal velocity structure 
using the FVD and HVM models with a time delay effect τ of 0.2. The HVM model presumes that the proportions of HV, MV, and LV are 35%, 30%, 
and 35%. 

Z. Si et al.                                                                                                                                                                                                               



Heliyon 9 (2023) e16731

10

Data availability statement 

No data was used for the research described in the article. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This study was partially supported by Grant-in-Aid for Scientific Research from JSPS, Japan, KAKENHI (Grant No. JP 19KK0262, JP 
20H02314 and JP 20K21062) awarded to Professor Tanimoto. We would like to express our gratitude to them. 

References 

[1] J. Tanimoto, Evolutionary Games with Sociophysics, 2018. 
[2] T. Nagatani, Modified KdV equation for jamming transition in the continuum models of traffic, Phys. A Stat. Mech. Its Appl. 261 (1998) 599–607, https://doi. 

org/10.1016/S0378-4371(98)00347-1. 
[3] M.A. Hossain, J. Tanimoto, The “backward-looking” effect in the continuum model considering a new backward equilibrium velocity function, Nonlinear 

Dynam. 106 (2021) 2061–2072, https://doi.org/10.1007/s11071-021-06894-2. 
[4] H.K. Lee, H.W. Lee, D. Kim, Macroscopic traffic models from microscopic car-following models, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. 

Top. 64 (2001) 12, https://doi.org/10.1103/PhysRevE.64.056126. 
[5] R. Jiang, Q.S. Wu, Z.J. Zhu, A new continuum model for traffic flow and numerical tests, Transp. Res. Part B Methodol. 36 (2002) 405–419, https://doi.org/ 

10.1016/S0191-2615(01)00010-8. 
[6] C. Zhai, W. Wu, Y. Xiao, Non-lane-discipline-based continuum model considering the effect of lateral gaps and electronic throttle dynamics, Chin. J. Phys. 

(2023), https://doi.org/10.1016/j.cjph.2023.03.013. 
[7] C. Zhai, W. Wu, A continuum model considering the uncertain velocity of preceding vehicles on gradient highways, Phys. A Stat. Mech. Its Appl. 588 (2022), 

126561, https://doi.org/10.1016/j.physa.2021.126561. 
[8] C. Zhai, W. Wu, A continuous traffic flow model considering predictive headway variation and preceding vehicle’s taillight effect, Phys. A Stat. Mech. Its Appl. 

584 (2021), 126364, https://doi.org/10.1016/j.physa.2021.126364. 
[9] C. Zhai, W. Wu, Analysis of drivers’ characteristics on continuum model with traffic jerk effect, Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 (2018) 

3381–3392, https://doi.org/10.1016/j.physleta.2018.09.029. 
[10] T. Tang, Y. Wang, X. Yang, Y. Wu, A new car-following model accounting for varying road condition, Nonlinear Dynam. 70 (2012) 1397–1405, https://doi.org/ 

10.1007/s11071-012-0542-8. 
[11] M.A. Hossain, K.M.A. Kabir, J. Tanimoto, Improved car-following model considering modified backward optimal velocity and velocity difference with 

backward-looking effect, J. Appl. Math. Phys. 9 (2021) 242–259, https://doi.org/10.4236/jamp.2021.92018. 
[12] H.X. Ge, S.Q. Dai, L.Y. Dong, Y. Xue, Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system 

application, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 70 (2004) 6, https://doi.org/10.1103/PhysRevE.70.066134. 
[13] T. Tang, W. Shi, H. Shang, Y. Wang, A new car-following model with consideration of inter-vehicle communication, Nonlinear Dynam. 76 (2014) 2017–2023, 

https://doi.org/10.1007/s11071-014-1265-9. 
[14] G.F. Newell, Nonlinear effects in the dynamics of car following, Oper. Res. 9 (1961) 209–229, https://doi.org/10.1287/opre.9.2.209. 
[15] M.A. Hossain, J. Tanimoto, A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect, Phys. A 

Stat. Mech. Its Appl. 585 (2022), 126437, https://doi.org/10.1016/j.physa.2021.126437. 
[16] L. Yu, Z.K. Shi, T. Li, A new car-following model with two delays, Phys. Lett. Sect. A Gen. At. Solid State Phys. 378 (2014) 348–357, https://doi.org/10.1016/j. 

physleta.2013.11.030. 
[17] H.X. Ge, Y. Cui, K.Q. Zhu, R.J. Cheng, The control method for the lattice hydrodynamic model, Commun. Nonlinear Sci. Numer. Simul. 22 (2015) 903–908, 

https://doi.org/10.1016/j.cnsns.2014.09.014. 
[18] C. Zhai, W. Wu, A new car-following model considering driver’s characteristics and traffic jerk, Nonlinear Dynam. 93 (2018) 2185–2199, https://doi.org/ 

10.1007/s11071-018-4318-7. 
[19] C. Zhai, W. Wu, Self-delayed feedback car-following control with the velocity uncertainty of preceding vehicles on gradient roads, Nonlinear Dynam. 106 (2021) 

3379–3400, https://doi.org/10.1007/s11071-021-06970-7. 
[20] C. Zhai, W. Wu, Y. Xiao, Cooperative car-following control with electronic throttle and perceived headway errors on gyroidal roads, Appl. Math. Model. 108 

(2022) 770–786, https://doi.org/10.1016/j.apm.2022.04.010. 
[21] K. Nagel, M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. 2 (1992) 2221–2229, https://doi.org/10.1051/jp1:1992277. 
[22] E. Fukuda, J. Tanimoto, Y. Iwamura, K. Nakamura, A. Mitsuhiro, Field measurement analysis to validate lane-changing behavior in a cellular automaton model, 

Phys. Rev. E. 94 (2016) 1–7, https://doi.org/10.1103/PhysRevE.94.052209. 
[23] H.X. Ge, P.J. Zheng, S.M. Lo, R.J. Cheng, TDGL equation in lattice hydrodynamic model considering driver’s physical delay, Nonlinear Dynam. 76 (2014) 

441–445, https://doi.org/10.1007/s11071-013-1137-8. 
[24] R. Jiang, M. Bin Hu, H.M. Zhang, Z.Y. Gao, B. Jia, Q.S. Wu, On some experimental features of car-following behavior and how to model them, Transp. Res. Part B 

Methodol. 80 (2015) 338–354, https://doi.org/10.1016/j.trb.2015.08.003. 
[25] C. Zhai, W. Wu, An extended multi-phase lattice model with consideration of optimal current changes with memory, Cluster Comput. 22 (2019) 7447–7457, 

https://doi.org/10.1007/s10586-018-1773-3. 
[26] C. Zhai, W. Wu, Y. Xiao, Q. Luo, Y. Zhang, Modeling bidirectional pedestrian flow with the perceived uncertainty of preceding pedestrian information, Phys. A 

Stat. Mech. Its Appl. 597 (2022), 127205, https://doi.org/10.1016/j.physa.2022.127205. 
[27] C. Zhai, W. Wu, Designing continuous delay feedback control for lattice hydrodynamic model under cyber-attacks and connected vehicle environment, 

Commun. Nonlinear Sci. Numer. Simul. 95 (2021), 105667, https://doi.org/10.1016/j.cnsns.2020.105667. 
[28] D. Yang, P. Jin, Y. Pu, B. Ran, Stability analysis of the mixed traffic flow of cars and trucks using heterogeneous optimal velocity car-following model, Phys. A 

Stat. Mech. Its Appl. 395 (2014) 371–383, https://doi.org/10.1016/j.physa.2013.10.017. 
[29] Z. Yao, R. Hu, Y. Wang, Y. Jiang, B. Ran, Y. Chen, Stability analysis and the fundamental diagram for mixed connected automated and human-driven vehicles, 

Phys. A Stat. Mech. Its Appl. 533 (2019), 121931, https://doi.org/10.1016/j.physa.2019.121931. 
[30] Z. Yao, Y. Wu, Y. Wang, B. Zhao, Y. Jiang, Analysis of the impact of maximum platoon size of CAVs on mixed traffic flow: an analytical and simulation method, 

Transport. Res. C Emerg. Technol. 147 (2023), 103989, https://doi.org/10.1016/j.trc.2022.103989. 
[31] J. Wang, F. Sun, H. Ge, Effect of the driver’s desire for smooth driving on the car-following model, Phys. A Stat. Mech. Its Appl. 512 (2018) 96–108, https://doi. 

org/10.1016/j.physa.2018.08.025. 

Z. Si et al.                                                                                                                                                                                                               

http://refhub.elsevier.com/S2405-8440(23)03938-5/sref1
https://doi.org/10.1016/S0378-4371(98)00347-1
https://doi.org/10.1016/S0378-4371(98)00347-1
https://doi.org/10.1007/s11071-021-06894-2
https://doi.org/10.1103/PhysRevE.64.056126
https://doi.org/10.1016/S0191-2615(01)00010-8
https://doi.org/10.1016/S0191-2615(01)00010-8
https://doi.org/10.1016/j.cjph.2023.03.013
https://doi.org/10.1016/j.physa.2021.126561
https://doi.org/10.1016/j.physa.2021.126364
https://doi.org/10.1016/j.physleta.2018.09.029
https://doi.org/10.1007/s11071-012-0542-8
https://doi.org/10.1007/s11071-012-0542-8
https://doi.org/10.4236/jamp.2021.92018
https://doi.org/10.1103/PhysRevE.70.066134
https://doi.org/10.1007/s11071-014-1265-9
https://doi.org/10.1287/opre.9.2.209
https://doi.org/10.1016/j.physa.2021.126437
https://doi.org/10.1016/j.physleta.2013.11.030
https://doi.org/10.1016/j.physleta.2013.11.030
https://doi.org/10.1016/j.cnsns.2014.09.014
https://doi.org/10.1007/s11071-018-4318-7
https://doi.org/10.1007/s11071-018-4318-7
https://doi.org/10.1007/s11071-021-06970-7
https://doi.org/10.1016/j.apm.2022.04.010
https://doi.org/10.1051/jp1:1992277
https://doi.org/10.1103/PhysRevE.94.052209
https://doi.org/10.1007/s11071-013-1137-8
https://doi.org/10.1016/j.trb.2015.08.003
https://doi.org/10.1007/s10586-018-1773-3
https://doi.org/10.1016/j.physa.2022.127205
https://doi.org/10.1016/j.cnsns.2020.105667
https://doi.org/10.1016/j.physa.2013.10.017
https://doi.org/10.1016/j.physa.2019.121931
https://doi.org/10.1016/j.trc.2022.103989
https://doi.org/10.1016/j.physa.2018.08.025
https://doi.org/10.1016/j.physa.2018.08.025


Heliyon 9 (2023) e16731

11

[32] F. Sun, J. Wang, R. Cheng, H. Ge, An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds, 
Phys. Lett. Sect. A Gen. At. Solid State Phys. 382 (2018) 489–498, https://doi.org/10.1016/j.physleta.2017.12.037. 

[33] L. Huang, C. Zhai, H. Wang, R. Zhang, Z. Qiu, J. Wu, Cooperative Adaptive Cruise Control and exhaust emission evaluation under heterogeneous connected 
vehicle network environment in urban city, J. Environ. Manag. 256 (2020), 109975, https://doi.org/10.1016/j.jenvman.2019.109975. 

[34] Z. Yao, R. Hu, Y. Jiang, T. Xu, Stability and safety evaluation of mixed traffic flow with connected automated vehicles on expressways, J. Saf. Res. 75 (2020) 
262–274, https://doi.org/10.1016/j.jsr.2020.09.012. 

[35] Z. Yao, T. Xu, Y. Jiang, R. Hu, Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction 
time, Phys. A Stat. Mech. Its Appl. 561 (2021), 125218, https://doi.org/10.1016/j.physa.2020.125218. 

[36] Z. Yao, Q. Gu, Y. Jiang, B. Ran, Fundamental diagram and stability of mixed traffic flow considering platoon size and intensity of connected automated vehicles, 
Phys. A Stat. Mech. Its Appl. 604 (2022), 127857, https://doi.org/10.1016/j.physa.2022.127857. 

[37] Y. Jiang, S. Sun, F. Zhu, Y. Wu, Z. Yao, A mixed capacity analysis and lane management model considering platoon size and intensity of CAVs, Phys. A Stat. 
Mech. Its Appl. 615 (2023), 128557, https://doi.org/10.1016/j.physa.2023.128557. 

[38] R. Luo, Q. Gu, T. Xu, H. Hao, Z. Yao, Analysis of linear internal stability for mixed traffic flow of connected and automated vehicles considering multiple 
influencing factors, Phys. A Stat. Mech. Its Appl. 597 (2022), 127211, https://doi.org/10.1016/j.physa.2022.127211. 

[39] R.E. Chandler, R. Herman, E.W. Montroll, Traffic dynamics: studies in car following, Oper. Res. 6 (1958) 165–184, https://doi.org/10.1287/opre.6.2.165. 
[40] M. Bando, K. Hasebe, K. Nakanishi, A. Nakayama, Analysis of optimal velocity model with explicit delay, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. 

Interdiscip. Top. 58 (1998) 5429–5435, https://doi.org/10.1103/PhysRevE.58.5429. 
[41] G. Orosz, B. Krauskopf, R.E. Wilson, Bifurcations and multiple traffic jams in a car-following model with reaction-time delay, Phys. Nonlinear Phenom. 211 

(2005) 277–293, https://doi.org/10.1016/j.physd.2005.09.004. 
[42] D. Ngoduy, Linear stability of a generalized multi-anticipative car following model with time delays, Commun. Nonlinear Sci. Numer. Simul. 22 (2015) 

420–426, https://doi.org/10.1016/j.cnsns.2014.08.019. 
[43] D. Sun, D. Chen, M. Zhao, W. Liu, L. Zheng, Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi- 

time delays, Phys. A Stat. Mech. Its Appl. 501 (2018) 293–307, https://doi.org/10.1016/j.physa.2018.02.179. 
[44] G. Ma, M. Ma, S. Liang, Y. Wang, Y. Zhang, An improved car-following model accounting for the time-delayed velocity difference and backward looking effect, 

Commun. Nonlinear Sci. Numer. Simul. 85 (2020), https://doi.org/10.1016/j.cnsns.2020.105221. 
[45] Y. Jin, M. Xu, Stability analysis in a car-following model with reaction-time delay and delayed feedback control, Phys. A Stat. Mech. Its Appl. 459 (2016) 

107–116, https://doi.org/10.1016/j.physa.2016.04.038. 
[46] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E. 51 (1995) 

1035–1042, https://doi.org/10.1103/PhysRevE.51.1035. 
[47] D. Helbing, B. Tilch, Generalized force model of traffic dynamics, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 58 (1998) 133–138, 

https://doi.org/10.1103/PhysRevE.58.133. 
[48] R. Jiang, Q. Wu, Z. Zhu, Full velocity difference model for a car-following theory, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 64 (2001) 

4, https://doi.org/10.1103/PhysRevE.64.017101. 
[49] T.S. Komatsu, S.I. Sasa, Kink soliton characterizing traffic congestion, Phys. Rev. E. 52 (1995) 5574–5582, https://doi.org/10.1103/PhysRevE.52.5574. 
[50] H.X. Ge, R.J. Cheng, S.Q. Dai, KdV and kink-antikink solitons in car-following models, Phys. A Stat. Mech. Its Appl. 357 (2005) 466–476, https://doi.org/ 

10.1016/j.physa.2005.03.059. 
[51] T. Nagatani, Thermodynamic theory for the jamming transition in traffic flow, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 58 (1998) 

4271–4276, https://doi.org/10.1103/PhysRevE.58.4271. 
[52] T. Nagatani, Density waves in traffic flow, Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 61 (2000) 3564–3570, https://doi.org/10.1103/ 

PhysRevE.61.3564. 
[53] K. Hussain, F. Ismail, N. Senu, Solving directly special fourth-order ordinary differential equations using Runge-Kutta type method, J. Comput. Appl. Math. 306 

(2016) 179–199, https://doi.org/10.1016/j.cam.2016.04.002. 

Z. Si et al.                                                                                                                                                                                                               

https://doi.org/10.1016/j.physleta.2017.12.037
https://doi.org/10.1016/j.jenvman.2019.109975
https://doi.org/10.1016/j.jsr.2020.09.012
https://doi.org/10.1016/j.physa.2020.125218
https://doi.org/10.1016/j.physa.2022.127857
https://doi.org/10.1016/j.physa.2023.128557
https://doi.org/10.1016/j.physa.2022.127211
https://doi.org/10.1287/opre.6.2.165
https://doi.org/10.1103/PhysRevE.58.5429
https://doi.org/10.1016/j.physd.2005.09.004
https://doi.org/10.1016/j.cnsns.2014.08.019
https://doi.org/10.1016/j.physa.2018.02.179
https://doi.org/10.1016/j.cnsns.2020.105221
https://doi.org/10.1016/j.physa.2016.04.038
https://doi.org/10.1103/PhysRevE.51.1035
https://doi.org/10.1103/PhysRevE.58.133
https://doi.org/10.1103/PhysRevE.64.017101
https://doi.org/10.1103/PhysRevE.52.5574
https://doi.org/10.1016/j.physa.2005.03.059
https://doi.org/10.1016/j.physa.2005.03.059
https://doi.org/10.1103/PhysRevE.58.4271
https://doi.org/10.1103/PhysRevE.61.3564
https://doi.org/10.1103/PhysRevE.61.3564
https://doi.org/10.1016/j.cam.2016.04.002

	An improved microscopic traffic model for heterogeneous vehicles using the vehicle’s mass effect
	1 Introduction
	2 Background of car-following models
	3 Proposed model
	4 Linear stability analysis
	5 Nonlinear analysis
	6 Numerical simulations
	7 Conclusion and discussion
	Author contribution statement
	Data availability statement
	Declaration of competing interest
	Acknowledgments
	References


