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Abstract

Determining the distribution of adaptive mutations available to natural selection is a difficult task. These are rare events and most of

themare lost by chance. Sometheoretical workspropose that the distributionofnewlyarisingbeneficialmutations shouldbeclose to

exponential. Empirical data are scarce and do not always support an exponential distribution. Analysis of the dynamics of adaptation

in asexual populations of microorganisms has revealed that these can be summarized by two effective parameters, the effective

mutation rate, Ue, and the effective selection coefficient of a beneficial mutation, Se. Here, we show that these effective parameters

will not always reflect the rate and mean effect of beneficial mutations, especially when the distribution of arising mutations has high

variance, and the mutation rate is high. We propose a method to estimate the distribution of arising beneficial mutations, which is

motivated by a common experimental setup. The method, which we call One Biallelic Marker Approximate Bayesian Computation,

makes use of experimental data consisting of periodic measures of neutral marker frequencies and mean population fitness. Using

simulations,wefindthat thismethodallows thediscriminationof theshapeof thedistributionofarisingmutationsandthat itprovides

reasonable estimates of their rates and mean effects in ranges of the parameter space that may be of biological relevance.

Key words: experimental evolution, mutation rate, distribution of fitness effects, parameter estimation.

Introduction

At what rate do beneficial mutations arise and what are their

fitness effects? These are two of the most important questions

regarding adaptation of organisms to novel environments

(Kimura and Ohta 1974; Lang et al. 2011). Reflecting its im-

portance, estimating genomic mutation rates of new benefi-

cial alleles (U) and uncovering the mean effects of those

beneficial mutations (E(S)) have been the subject of many

studies (Rozen et al. 2002; Perfeito et al. 2007; Sawyer et al.

2007; MacLean and Buckling 2009; Bataillon et al. 2011; Estes

et al. 2011; Sousa et al. 2012). Experimental evolution in

clonal populations presents some advantages in determining

these parameters, but some difficulties still arise, even in these

controlled and relatively simple environments. One of these

difficulties is being able to assay all the beneficial mutations.

Different distributions of fitness effects are important to the

adaptive process: the distribution of newly arising mutations,

the distribution of contending mutations, which escape initial

stochastic loss, and the distribution of mutations that survive

competition with other mutations (clonal interference) and are

able to actually fix, contributing to long-term adaptation (see

Gordo et al. [2011] for a review). The greatest difficulty is to

uncover the distribution of arising mutations, because they

may easily be lost before reaching detectable frequencies.

Despite this difficulty, determining the distribution that char-

acterizes arising mutations, f(S), is important, because it is this

distribution that determines the nature of adaptation (Rozen

et al. 2002; Perfeito et al. 2007; Orr 2010; Sousa et al. 2012).

For this reason, some studies have tried to determine this dis-

tribution in viruses (Sanjuán et al. 2004; Rokyta et al. 2008), in

bacteria (Kassen and Bataillon 2006; Stevens and Sebert

2011), and in other organisms (Desai et al. 2007; Schoustra

et al. 2009; Burke et al. 2010; Orozco-terWengel et al. 2012).

Experimental support for an exponential distribution of arising

beneficial mutations has been obtained (Kassen and Bataillon

2006; MacLean and Buckling 2009), but this has not always

been the case in all organisms and environments (Barrett et al.

2006; Rokyta et al. 2008; Bataillon et al. 2011; Gordo et al.

2011; Mcdonald et al. 2011). From the mutations that arise,

those that end up outcompeting other beneficial mutations

will drive long-term adaptation (Gerrish and Lenski 1998;
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Good et al. 2012). The difference between the distributions of

arising, contending, and fixed mutations is expected to

depend on the effective population size (Crow and Kimura

1970), the mutation rate (Charlesworth et al. 1993), and the

level of maladaptation, with increasingly adapted organisms

having access to increasingly lower amount of beneficial mu-

tations (Fisher 1930).

The biggest challenge in determining f(S) lies in the rarity of

beneficial mutations. In principle, this distribution can be de-

termined directly by measuring fitness effects of extremely

large samples of mutants (Lind et al. 2010; Hietpas et al.

2011). It can also be inferred from sequence data collected

from natural populations (Nielsen 2005; Eyre-Walker and

Keightley 2007; Jensen, Thornton, Andolfatto 2008; Jensen,

Thornton, Aquadro 2008; Schneider et al. 2011). Indeed,

scans for signatures of positive selection across the genome

of different species, including our own, have been performed

(Biswas and Akey 2006; Hancock and Di Rienzo 2008; Cutter

and Choi 2010; Enard et al. 2010; Grossman et al. 2013).

Disentangling the signature of selection from that caused by

a complex demography is difficult (Grossman et al. 2010;

Sinha et al. 2011), and checking the performance of different

methods under departures from model assumptions is there-

fore an important task (Keightley and Eyre-Walker 2010).

Recent advances have been made in developing methods

for estimating selection coefficients from time series data of

allele frequencies (Bollback et al. 2008; Malaspinas et al. 2012;

Mathieson and McVean 2013) and also in disentangling alleles

under positive selection from passenger mutations (Illingworth

and Mustonen 2011). In the context of experimentally evolved

populations, where typically the experimenter imposes a par-

ticular demographic regime, one method that has been used

proposes to study beneficial mutations through assaying the

evolutionary dynamics of neutral markers in asexual popula-

tions (Imhof and Schlotterer 2001; Hegreness et al. 2006).

The basic principle underlying this method relies on the

“hitchhiking effect” of a neutral allele with mutations that

give an advantage to the organism (Maynard-Smith and

Haigh 1974). This same principle is at the heart of methods

to detect positive selection across the genome of sexually

reproducing organisms (Thornton et al. 2007). In experimen-

tally evolved populations, the frequency of a neutral allele can

be easily measured (e.g., by using neutral fluorescent mar-

kers), and inferring evolutionary parameters from neutral

marker dynamics can thus be performed under certain theo-

retical assumptions (Dykhuizen and Hartl 1983; Hegreness

et al. 2006; Barrick et al. 2010; Illingworth and Mustonen

2012). A simple and quite elegant method was proposed by

Hegreness et al. (2006): Using simulations, they showed that a

simple population genetics model, where all beneficial muta-

tions have the same effect, is able to reproduce the dynamics

of a commonly used marker system involving one locus with

two neutral markers. The dynamics can therefore be summa-

rized by two parameters that theoretically represent the

evolutionary process: the effective mutation rate (Ue) and

the effective selection coefficient (Se). Barrick et al. extended

this method and determined the values of Ue and Se in differ-

ent strains of Escherichia coli (Barrick et al. 2010; Woods et al.

2011). Although it may be useful to be able to summarize the

process under a single mutational effect, far more realistic

distributions of fitness effects can also explain the data.

Recently, Illingworth and Mustonen (2012) proposed a new

method to estimate the distribution of haplotype fitnesses in

experimentally evolving populations. When tested against

simulated data under the assumption of an exponential distri-

bution of arising beneficial mutations, the method is able to

retrieve the correct distribution of haplotype fitnesses for

values U below 10�6. It is, however, not known how the

method performs for other distributions of arising beneficial

mutations and for larger values of U. Moreover, this method

estimates the distribution of haplotype fitnesses segregating in

populations and not the distribution of beneficial arising mu-

tations. Here, we ask two questions: how do the effective

parameters compare with the more biologically meaningful

parameters U and E(S)? and, because frequency dynamics

appear insufficient to distinguish between different distribu-

tions (Hegreness et al. 2006), is there a reasonable set of data

that can be obtained, which allows the determination of the

distribution of arising beneficial mutations?

We address both these questions from a theoretical per-

spective, taking a commonly used experimental setup to study

the adaptation of asexual populations in controlled environ-

ments as a motivation. This setup simply involves tracking a

marker locus with two neutral alleles. We show that the ef-

fective evolutionary parameters can provide good estimates of

U and of the mean effect of beneficial mutations only when

the distribution of effects of arising mutations has limited var-

iance. However, when the variance is increased (e.g., if arising

mutations follow an exponential distribution), we find that Ue

can underestimate the true value U, whereas Se can overesti-

mate the true value of E(S). We propose a new method based

upon measurements of both the frequency of neutral markers

and mean population fitness, at periodic time intervals. This

method, which was motivated by typical experimental setups

easily applied to experimental evolution, is theoretically ex-

pected to estimate the mutation rate reasonably well and

allows distributions of arising beneficial mutations with differ-

ent shapes to be distinguished.

Materials and Methods

Model of Adaptation to Simulate Evolutionary Dynamics

We assume a clonal population reproducing according to the

Wright–Fisher model, where periodic bottlenecks occur (with

a period of Tbot). The population is initially isogenic, with the

exception of a neutral marker, which is biallelic and has a

frequency f0¼0.5 for one of the alleles. The initial population

One Biallelic Marker ABC GBE
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size is N0. Generations are discrete and the population doubles

each generation for t< Tbot. With period Tbot, the population

size is reduced by random sampling to N0. This assumed de-

mography, involving periodic bottlenecks where the number

of individuals is fixed, is typical of most experimental setups,

where daily passages of a sample of the population are per-

formed, and population numbers are experimentally con-

trolled. At each generation, mutations occur at a rate U per

genome, following a Poisson distribution. All mutations are

beneficial, and the effects of each mutation (S) are drawn

from a continuous distribution f(S). We allow for variation of

the selective effects of arising mutations, assuming a Gamma

distribution, with shape and scale parameters, a and b, re-

spectively, implying a mean E(S)¼ ab. Similar to other studies

that previously proposed to estimate the distribution of arising

deleterious mutations (Keightley 1998; Eyre-Walker and

Keightley 2007), we have assumed a Gamma distribution be-

cause it can have a wide range of shapes. Multiplicative fitness

is assumed, so that the effects of mutations do not depend on

the genetic background where they arise. This is obviously an

oversimplification, because the distribution can change along

the adaptive walk (Martin and Lenormand 2006; Sousa et al.

2012), but we consider a short-term evolution scenario where

U and f(S) may be assumed constant. Genetic drift is modeled

by sampling, from a multinomial distribution, classes of indi-

viduals with the same fitness. The frequency dynamics of the

neutral marker (f(t)), as well as the mean population fitness

(w(t)), are followed. This model of adaptation is used to pro-

duce a set of simulated evolutionary dynamics, from which

evolutionary parameters are estimated using different meth-

ods: a method developed by Hegreness et al. (and extended

by Barrick et al.) and a new method that we propose here that

simultaneously tries to estimate U and f(S) (see later).

The range of parameters chosen to produce simulated data

with the described model was made in accordance with cur-

rent estimates in different systems but mostly in microorgan-

isms. U is currently estimated to achieve values between 10�4

and 10�9, depending on the environment and genetic back-

ground (Drake et al. 1998; Perfeito et al. 2007; Lang et al.

2011; Denver et al. 2012). An effective population size

Ne¼ 105 was assumed (corresponding to bottlenecks with a

period tbot¼5 generations) for all simulations except when

indicated differently.

Generating Pseudo-Observed Data

Pseudo-observed data sets were generated under the model

of adaptation described earlier, with a specific value of the

mutation rate U and a specific Gamma distribution (with pa-

rameters a and b) with mean E(S). These data sets represent

biological data that can be acquired in an experiment. The

new method proposed here with the goal of estimating f(S)

and U requires the periodic measure of the frequency of the

neutral markers and the mean population fitness (every 50

generations for a 300-generation experiment). These appear

reasonable to obtain experimentally and require experimental

work that is typical in evolution experiments performed in

controlled environments: In addition to assaying the frequency

of the markers (as already is typically done [Woods et al.

2011]), fitness has to be measured by performing either a

direct competitive fitness assay against the ancestral strain

or a measurement of the population growth rate at different

times along the experiment (Gordo et al. 2011). Furthermore,

the choice of studying 100 replicate populations reflects the

100- or 96-well plate experimental setup that is commonly

used (Lemonnier et al. 2008; Kvitek and Sherlock 2011). These

plates are affordable by most laboratories, and, with a multi-

channel pipette, several passages can be performed in little

time, space, and at low cost, particularly when studying mi-

crobial populations. Regarding the markers, many strains

expressing different fluorescent alleles are available, which

makes the acquisition of frequency data a relatively easy

task. This can be performed using flow cytometry or another

fluorescence reader. Competitive fitness measurements (Elena

and Lenski 2003) can also be easily performed using a similar

setup.

The pseudo-observed data therefore consist of the marker

frequencies and the fitnesses at periodic time points of the

experiments (ti) for n independently evolved populations.

Different pseudo-observed data sets assuming different distri-

butions of S were generated to test the two different meth-

ods: Barrick et al. method (which requires the marker

frequencies only), to compare Ue with U and Se with E(S),

and the One Biallelic Marker Approximate Bayesian

Computation (ABC, which requires both the marker frequen-

cies and the fitnesses) to assess its ability to estimate U, a, and

b (see later).

Estimation of U and E(S) by Ue and Se Based upon the
Dynamics of the First Significant Deviation of f(t)

For a given set of pseudo-observed data, we obtained the

effective parameters Ue and Se and compared them with the

biologically meaningful values of U and E(S). To obtain Ue

and Se, we followed Barrick et al. A large set of simulated

evolutionary dynamics under the assumption that all benefi-

cial mutations have the same value of S was generated. This

simulated data consist of sets of 100 replicate populations

evolved under different parameter combinations of U and S.

The range of log10(U) was [�8; �3.95], with increments of

0.15, and the range of S was [0.01; 0.18], with increments of

0.01. This simulated data are the input of Barrick et al. (2010)

method to obtain Ue and Se. For each simulation, it consists

of the logarithm of the ratio of the two subpopulation

frequencies (Rf¼ f(ti)/(1� f(ti)) at several time points, ti,

(ln(Rf(ti))), where ti¼5� i. We then use this input in the

program marker_divergence_fit.pl, whose output is fed

into the program marker_divergence_significance.pl, both
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available at http://barricklab.org/twiki/bin/view/Lab/ToolsMar

kerDivergence, to obtain Ue and Se. The first program sum-

marizes the evolutionary dynamics (both in the simulated

data sets and in the pseudo-observed data) in two statistics:

te and ae. The first is the time, te, where a significant devi-

ation of ln(Rf(te)) from ln(Rf(t¼ 0)) occurs. The second is the

rate of change of ln(Rf(t)) with time, that is, te sets the time

of divergence of marker frequency and ae the rate of diver-

gence. Each replicate population is summarized by a single

value of te and ae, and the n replicate populations (charac-

terized by a given combination (U, S)) result in a distribution

of T(te) and A(ae). These distributions are then compared,

using the second program, to the distributions of te and ae

that summarize the pseudo-observed data To(te) and Ao(ae)

using a two-dimensional Kolmogorov–Smirnov to test the fit

between the simulated data and the pseudo-observed data.

The combination (U, S) that gives rise to the highest P value is

taken as Ue and Se, even when the hypothesis that the dis-

tributions are different cannot be rejected.

This procedure was done to obtain the results in figure 1

and supplementary figures S1 and S4, Supplementary Mate-

rial online, where 20 independent replicates of each pseudo-

observed data set (under the same U, a, and b) were

performed, and the average of Ue and Se obtained for each

pseudo-observed data set is presented.

New Estimation Method Based upon the Dynamics of
Frequency and Fitness

We propose a new method, the One Biallelic Marker ABC

(fig. 2), which aims to infer the distribution of arising muta-

tions. The pseudo-observed data used to infer the perfor-

mance of the method are generated under the model of

adaptation explained before, but the method now analyses

the distributions, along time intervals (ti), of both marker fre-

quency (f(ti)) and fitness (w(ti)), where ti¼ i�50 generations

(i¼ 0–6) are measured for 100 replicate populations evolving

under a given U, a, and b. A large data set with 1 million

simulated evolutionary dynamics is produced, each with a set

of 100 replicate populations evolving under a specific combi-

nation of parameters U, a, and b. For each of the simulations,

each parameter is randomly chosen from the following distri-

butions: log10(U)�Uniform [�9; �4]; a�Uniform [0.5; 15];

and log10(b)�Uniform [�4; �0.08]. Both the pseudo-ob-

served data and the simulated data are summarized as the

distribution of the values of j0.5� f(ti)j represented as a his-

togram, with five binned classes, for the marker frequency at

different time points (ti), and of the distribution of fitness

effects at the same time points, w(ti), represented as a histo-

gram with six binned classes. This results in 11 summary sta-

tistic values for each of the six time points used in the analysis

(table in fig. 2).
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FIG. 1.—Performance of the single S model, according to the highest scoring estimates for pseudo-observed data with f(S) as Gamma distributions of

different variances. (A) Ratios of estimates of U over real parameter U. (B) Ratios of estimates of S over the mean effect of S. The box plots of 20 independent

estimation processes are shown, with the median indicated as a bar. Asterisks indicate cases where none of the 20 independent replicates was fitted

significantly.
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FIG. 2.—Schematic description of the One Biallelic Marker ABC. Data are obtained from an evolution experiment (here called pseudo-observed data), at

specific time points, involving replicate adaptations to a common environment (an example of 20 replicate populations is shown). For each time point, the

data are condensed to summary statistics, for marker frequency and mean population fitness, which are histograms with the frequency of populations that

fall in different bins (5 for frequency data and 6 for fitness data) at every 50 generations (Gen.). The choice of the bin for the frequency statistics is dictated by

Moura de Sousa et al. GBE
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Summary statistics from pseudo-observed and simulated

data are compared using an ABC method (Beaumont et al.

2002) implemented in R (Csilléry et al. 2012) (package down-

loaded from and available at http://cran.r-project.org/web/

packages/abc/index.html). ABC approaches have previously

been used, for example, to determine rates of selective

sweeps using sequence data from populations of Drosophila

melanogaster (Jensen, Thornton, Andolfatto 2008). The

inputs of the ABC method are the summary statistics of the

100 replicate populations that compose the pseudo-observed

data (S(y0)) and the previously described 1 million simulations

(S(yi)). The ABC method computes the posterior probability

distribution of a multivariate parameter, y (composed of a

combination of U, a, and b). A value for this parameter, yi,

is sampled from the prior distributions, and the summary sta-

tistics computed from simulated data S(yi) are compared with

those of the pseudo-observed data S(y0) using the Euclidian

distance d. If d is below a given threshold, the parameter value

yi is accepted. The threshold (tolerance) chosen was 0.5%,

which corresponds to the proportion of accepted simulations.

The estimation of the posterior probability distribution for y
can be improved by different regression-based methods avail-

able in the ABC R package (Csilléry et al. 2012): local linear

regression and neural networks. We used the neural network

method, which performs a dimensionality reduction in the

summary statistics, and is suggested to be appropriate for

use with high dimensionality (Csilléry et al. 2012). Through

this procedure, we obtain estimates for U, a, and b, outputted

as posterior distributions for each parameter. For each com-

bination of parameters (U, a, and b), 20 independent pseudo-

observed data sets were considered to produce the statistics

presented in the results. A scheme with the different steps

described here is represented in figure 2.

Effect of Variation in Initial Frequency of Marker and
Presence of Deleterious Mutations

We tested the effect of small variations in the initial frequency

of each of the initial subpopulations (supplementary fig. S3,

Supplementary Material online) as they may occur in any ex-

perimental setup. We also tested how the estimates would be

affected by the occurrence of deleterious mutations (supple-

mentary fig. S2, Supplementary Material online). For the first

scenario, we generated pseudo-observed data sets under the

same assumptions of the adaptation model described earlier

except that the initial frequency of the neutral marker

f(t¼ 0)¼ 0.5 + e, where e is drawn from a Uniform distribu-

tion, e�Uniform [�0.03; 0.03] (supplementary fig. S3, Sup-

plementary Material online). For testing the effect of

deleterious mutations, we generated pseudo-observed data

sets assuming that, in addition to beneficial mutations, dele-

terious mutations can also occur at a rate of 10�3 and each

having a selection coefficient Sdel¼ 2%. Multiplicative fitness

FIG. 2.—Continued

the module of the difference between the initial and current frequency of the subpopulations, so that this value is, at most, 0.5 (for marker frequencies of 1

or 0). A large simulated data set is built against which the experimental data are compared. The priors chosen to produce the simulated data set, which

consist in 1 million simulations, are shown. Each simulated data (obtained with a given value of U, a, and b) are then classified according to the same

summary statistics as calculated for the observed data—called Summary stats (Priors) and Summary stats (Experimental), respectively. Using ABC inference,

these summary statistics are compared and the ones closest to the experimental data chosen. The 5,000 top-ranked values (0.5%) of each of the parameters

are shown as the posterior distribution where the median value is highlighted in red.
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FIG. 3.—Theoretical distributions of beneficial selective coefficients assumed to produce pseudo-observed data. (A) Gamma distribution with shape

parameter a¼ 1 (exponential distribution), for different scale (b) parameters. (B) Gamma distribution with shape parameter a¼ 10, for different scale (b)

parameters.
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was also assumed (supplementary fig. S2, Supplementary

Material online). All other assumptions were kept the same.

Pseudo-observed data sets for both cases were generated

with a Gamma distribution of fitness effects with a¼ 1.

Results

Comparison of Effective Parameters Ue and Se with U
and the Average Effect of Beneficial Mutations

To determine whether the effective parameters Ue and Se are

good estimates of U and S, we generated pseudo-observed

data for a given value of U and with fitness effects drawn from

a Gamma distribution with different shape and scale param-

eters (fig. 3). For populations with Ne¼ 105, the estimated

values of the effective parameters are shown in figure 1,

where we also have included results for the case where

pseudo-observed data were generated under a model

where all beneficial mutations have the same effect, because

this is the case where the estimates are expected to perform

best. Figure 1A shows that Ue provides a good estimate of U

for Gamma distributions with shape parameter bigger than 1.

This is observed in the cases where U is low (<10�6), but when

U¼ 10�5 and E(S)¼0.02, Ue underestimates U by a quarter

of its real value. Larger biases can be seen for the exponential

distribution (a¼1), particularly under high mutation rates

(>10�7), where clonal interference may be more pronounced.

We find that when the distribution of S is exponential with

mean 2% and the mutation rate is 10�5 (parameters that

have been estimated in some bacteria evolution experiments

[Perfeito et al. 2007]), Ue considerably underestimates the real

value of U by an order of magnitude. This also happens when

the mean effect of beneficial mutations is 6%. The underes-

timation becomes smaller when either the mutation rate or

the variance in S decreases. As expected, Ue provides an

accurate estimate of U when S is constant (except for the

case where a high value of the mutation rate is considered).

Figure 1B shows that Se overestimates E(S) two to four times

for a mutation rate higher 10�6, with a¼1. For a¼ 10, this

overestimation is small (<1.5-fold). Importantly, however,

most of these values for Se seem to provide an estimate of

the order of magnitude of the mean effect of beneficial mu-

tations. To test whether the bias in Ue and Se increases with

clonal interference, we also studied populations with in-

creased effective population size (Ne¼ 106). Indeed, we find

that both Ue (supplementary fig. S1A, Supplementary Material

online) and Se (albeit to a lesser extent) (supplementary fig.

S1B, Supplementary Material online) show larger deviations

from U and E(S), which can be up to a 50-fold underestimates

of U and a 6-fold overestimates of E(S). In sum, higher levels of

clonal interference (more pronounced in larger populations

and with higher values of the mutation rate) lead to larger

biases in Ue and Se. These biases are dependent upon the

underlying distribution of beneficial mutations.

Estimation of the Distribution of Arising Beneficial Effects

To go beyond the mean effect of beneficial mutations and to

try to estimate the distribution of arising beneficial mutations,

we developed a new method, which we call One Biallelic

Marker ABC. To test its performance in retrieving the evolu-

tionary parameters U, a, and b, we explored different sets of

pseudo-observed data with combinations of parameter values

that seem reasonable given the current literature (Perfeito

et al. 2007; Lang et al. 2011; Denver et al. 2012).

In figure 4, we show the ability of the One Biallelic Marker

ABC method to estimate U, a, and b, when the distribution of

arising mutations is exponential. This is the most commonly

assumed distribution in theoretical studies of the adaptive pro-

cess (Betancourt and Bollback 2006; Orr 2010). Figure 4A

shows that the One Biallelic Marker ABC method provides

estimates of U within an order of magnitude, for all cases

tested. The worst performance lies in retrieving U for both

high values of E(S) (5% and 10%) and high U (3�10�5),

but even in these cases, the estimated value allows for a cor-

rect estimate of the order of magnitude of U. For the inter-

mediate value of the mutation rate studied (U¼3�10�6),

the method provides an accurate estimate of U. Figure 4B

and C provide the results for the estimates of the shape and

scale parameters of f(S). As shown in figure 4B, the estimate

of the shape parameter a is close to 1 or 2, for the majority of

the cases considered. Exceptions occur for the high mutation

rate and the larger b values, which have a very high variance.

Estimation of b, shown in figure 4C, is remarkably good,

across the parameter range studied, being always below

2-fold the real value of b.

We also studied the case where the distribution of arising

beneficial mutations has a different shape, specifically a¼10

(fig. 3). As shown in figure 5A, the estimated values of U are

very close to the real ones in this case, rarely exceeding two

times the real U values, although it can be either over or

underestimated, depending upon the average selective

effect. The two parameters characterizing the distribution of

arising mutations are also remarkably close to the real values.

Figure 5B shows that a is always estimated to be close to its

true value (between 7 and 12), irrespectively of the value of U.

Importantly, this estimate of a allows us to detect that the

distribution of arising mutations is not exponential. The

method, therefore, has power to reliably distinguish between

distributions of effects with distinct shapes. In figure 5C, the

performance of the estimates regarding the b parameter of

the distribution of effects is shown. b is well estimated, never

exceeding twice the real value.

To further assess the power of the method in distinguishing

distributions with different shapes, we studied intermediate

values of a, between 0.75 and 10. In figure 6, we show that

the One Biallelic Marker ABC method is able to discriminate

not only between the two limiting cases in our simulations but

also between intermediate a values. The method fails to
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distinguish the shape of the distribution of arising mutations

when 0.75<a< 2, especially when U is large. In these cases,

a is overestimated (by about 2-fold). When a> 2, estimates of

a consistent with the true value are obtained. When a¼4,

rejection of an exponential distribution is obtained. Overall,

the method provides a reliable distinction between different

shapes of the distribution of arising mutations, although dis-

tinguishing between a values lower than 2 remains difficult.

Discussion

To estimate the parameters that describe the dynamics of

adaptation, we need powerful methods. Beneficial mutations

are essential in driving adaptation and their statistical proper-

ties remain an open question (Orr 2010). Although methods

developed to tackle this subject may never perfectly capture

the complete nature of the evolutionary process, they can

provide reasonable estimates regarding the strength of the

forces involved in the process (Thornton et al. 2007;

Keightley and Eyre-Walker 2010).

A simple theoretical approach assumes that all mutations

have the same fitness effect and has been shown to have

predictive power in explaining certain patterns of data ob-

tained in experimentally evolved populations (Hegreness

et al. 2006). Notwithstanding, several direct measurements

of mutation effects point to the existence of considerable var-

iation (Kassen and Bataillon 2006), which motivates the de-

velopment of new methods that try to infer the underlying

distribution of arising beneficial effects.

Regarding the estimated effective evolutionary parameters

studied here, it seems clear that the relation with the real

parameters is dependent on the actual distribution of effects
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of arising mutations: exponential-like distributions of benefi-

cial effects result in values of Ue below the true mutation rate

and values of Se above the true mean effect of mutations,

with the difference being reduced when the distribution of

effects decrease in variance. Nevertheless, assuming a fixed

value for S has been a commonly used method to infer the

evolutionary parameters from experimental data, for example,

in studies that address how evolvability is dependent upon the

genetic background. In one such study, Barrick et al. (2010)

isolated eight clones of E. coli with different mutations in the

rpoB gene, encoding the b subunit of RNA polymerase. As

these mutations are generally deleterious in environments

without antibiotics, and they can cause a wide range of fitness

defects (Trindade et al. 2010), the authors estimated Ue and Se

to determine the evolvability of different (but related) geno-

types. The two neutral markers dynamics were used to esti-

mate the evolutionary parameters, and, from these dynamics,

it was inferred that mutants with a higher fitness defect had a

higher evolvability caused by a stronger selective effect of

beneficial mutations. Interestingly, the inferred mutation

rate (through Ue) appears to be independent of the genetic
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background. Because we show here that Ue may be below U

and Se above E(S), some caution is to be taken when drawing

conclusions regarding the relation between evolvability and

fitness effects of such mutations. Similar caveats apply in the

study of Woods et al. (2011). That study involved a long-term

evolution experiment, running for more than 50,000 genera-

tions, where clones sampled at generation 500 were found to

carry mutations in topA and rbs. These were shown to be

beneficial and fixed after generation 1,500, and their carriers

were called “eventual winners.” Other contemporaneous ge-

notypes (with other mutations) were deemed “eventual

losers.” Even though both sets of clones had increased fitness

related to the ancestral, the “eventual losers” also had, coun-

ter intuitively, increased fitness relative to the “eventual win-

ners.” To understand why the “eventual winners” ultimately

won the competition, their evolvability was studied, and U and

E(S) were inferred (through Ue and Se) by assaying neutral

marker dynamics. The authors found that “eventual winners”
had, indeed, the ability to generate beneficial mutations with

stronger effects, compared with the “eventual losers.”
The approach used in both studies to determine evolvability

may provide an overestimate of the mean selective coefficient

in the order of two to three times the real values if the muta-

tion rates are in the order estimated by the authors, or even

more, if the mutation rates are underestimated (fig. 1B). As a

consequence, this could imply that the actual mean selective

coefficients are lower than the one estimated, and small dif-

ferences in evolvability may be difficult to detect.

In general, inferring evolutionary parameters and, more

specifically, the distribution of arising mutations, from data

of evolving populations is a difficult task. Experimentally,

one way to gain further insight into the distribution of effects

is to use more than two neutral markers, which can bring

more power (Perfeito et al. 2007). Theoretically, we can

expect that new and improved methods are likely to

emerge. Recently, Zhang et al. (2012) extended the previous

model by Hegreness et al. to incorporate a continuous initial

growth phase, dividing it in 50 time intervals, and developing

an analytical model to find the distributions of estimators for U

and S. Similar to the previous work, however, only the initial

dynamics are considered (the first significant deviation), and

the method does not consider the occurrence of clonal inter-

ference. Illingworth and Mustonen (2012), on the other hand,

developed a maximum likelihood method where the marker

dynamics over the total amount of time followed is used. The

method determines the minimum number of mutations that

best describe the dynamics and allows inferring the distribu-

tion of haplotype fitnesses that are segregating. Although the

performance of the method is quite good under certain con-

ditions, it is not clear how it will perform under a wide range of

mutation rates.

Here, we propose a new theoretical approach that is ex-

pected to contribute to improved insight regarding the distri-

bution of arising beneficial mutation effects. Using ABC, we

propose a set of summary statistics to be used under a simple

experimental setup, where distributions of marker frequencies

and the mean fitness of the population are recorded at peri-

odic time intervals. These statistics allow a reasonable estima-

tion of the distribution of arising mutations and of the

mutation rate, provided that we accept that such a distribu-

tion may be well approximated by a Gamma. Combining the

parameters of the Gamma distribution (a and b, it is also

possible to estimate the mean effect of arising beneficial mu-

tations (E(S)). Figure 7 shows the estimates of E(S) given by the

method when a¼ 1 or a¼10. Under an exponential distri-

bution of fitness effects (fig. 7A), which is commonly

assumed, the mean effect can be overestimated up to 5- or

6-fold, for large values of the mutation rate. For a¼10, the

estimate E(S) is very accurate, reflecting its real value for every

condition tested (fig. 7B).

The One Biallelic ABC method seems to allow distinguish-

ing between distributions with different shapes and scales.

The underlying model used makes several assumptions,

which could be violated in a real experiment. In particular, it

assumes that the initial population is composed of two equally

sized subpopulations, each with a different marker, and it also

assumes that no deleterious mutations occur. To test the ro-

bustness of the approach in the face of these assumptions, we

performed new simulations where pseudo-observed data

were generated. In one case, the initial marker frequency

was allowed to deviate from its expectation of 0.5 (supple-

mentary fig. S3, Supplementary Material online). In the other

case, deleterious mutations were allowed to occur with rates

and effects typical of those inferred from mutation accumu-

lation experiments with bacteria (Kibota and Lynch 1996;

Trindade et al. 2010) (supplementary fig. S2, Supplementary

Material online). In both these cases, the inference of the

values of U, a, and b was similar to those obtained before.

We performed the analysis of a method, which assumes a

common experimental setup with only one neutral locus with

two alleles and fitness measurements at periodic time inter-

vals. In principle, this setup can be extended to follow variation

of one locus with more alleles or neutral variation at more loci.

The method could then be extended, and a thorough study of

the best summary statistics would be needed to ask what

would be the minimal set of data required to reasonably es-

timate the rate and distribution of arising beneficial mutations.

We have also tested the effect of considering a smaller

number of populations to determine whether the approaches

can provide reasonable estimates when applied to data that

have been obtained in studies involving experimental evolu-

tion with fewer replicates. Supplementary figure S4, Supple-

mentary Material online, shows the comparison of Ue with U

and Se with E(S) when the number of replicate populations is

10, which corresponds to the approximate size of previously

published experiments (Hegreness et al. 2006; Barrick et al.

2010; Woods et al. 2011). We observed similar biases to those

found when considering 100 replicate evolved populations.
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Regarding the One Biallelic Marker ABC approach, we can

observe that even with these reduced number of populations,

reasonable estimates of U can be obtained; the estimated

values of a tend to produce an overestimation, which can

be up to 15-fold, whereas the estimates of b are close to

the real ones (supplementary fig. S5, Supplementary Material

online).

The One Biallelic Marker ABC method, as the alternatives

discussed earlier, displays certain limitations in its perfor-

mance, which are particularly apparent when dealing with

very intense clonal interference, for which a system with

more markers would be desirable. It is a method that tries

to estimate the distribution without limiting the number of

mutations in a given genetic background and taking into ac-

count the dynamics of the entire process of adaptation. For a

wide spectrum of mutation rates, we are able to estimate the

parameters of the underlying distribution of beneficial muta-

tions. The One Biallelic Marker ABC method was tested over a

range of distributions of beneficial selective coefficients and

beneficial mutation rates, including high mutation rates,

which are typically not studied in the analysis of other meth-

ods. This gives us a fairly good degree of confidence that, in

applying the method to real biological data from adaptation

experiments of clonal populations using the two-marker

methodology, we are able to gain information on the distri-

bution of beneficial arising mutations.

Supplementary Material

Supplementary figures S1–S5 are available at Genome Biology

and Evolution online (http://www.gbe.oxfordjournals.org/).

Acknowledgments

The authors thank Lilia Perfeito, Ana-Hermina Ghenu, Lindi

Wahl, the Gordo’s Laboratory members, two anonymous ref-

erees, and the editor for their comments and suggestions. This

work was supported by the European Research Council under

the European Community’s Seventh Framework Programme

(FP7/2007-2013)/ERC grant agreement no. 260421 –

ECOADAPT; the scholarship provided by Fundação Calouste

Gulbenkian (FCG) and Fundação para a Ciência e Tecnologia

(FCT) to J.A.M.S.; the salary support of LAO/ITQB and FCT to

I.G.; and Conselho Nacional de Desenvolvimento Cientı́fico e

Tecnológico (CNPq), Fundação de Amparo à Ciência e
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Csilléry K, François O, Blum MGB. 2012. ABC: an R package for approx-

imate Bayesian computation (ABC). Methods Ecol Evol. 3:475–479.

Cutter AD, Choi JY. 2010. Natural selection shapes nucleotide polymor-

phism across the genome of the nematode Caenorhabditis briggsae.

Genome Res. 20:1103–1111.

Denver DR, et al. 2012. Variation in base-substitution mutation in exper-

imental and natural lineages of Caenorhabditis nematodes. Genome

Biol Evol. 4:513–522.

Desai MM, Fisher DS, Murray AW. 2007. The speed of evolution and

maintenance of variation in asexual populations. Curr Biol. 17:

385–394.

Drake JW, Charlesworth B, Charlesworth D, Crow JF. 1998. Rates of

spontaneous mutation. Genetics 148:1667–1686.

Dykhuizen DE, Hartl DL. 1983. Selection in chemostats. Microbiol Rev. 47:

150–168.

Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the

dynamics and genetic bases of adaptation. Nat Rev Genet. 4:457–469.

Enard D, Depaulis F, Roest Crollius H. 2010. Human and non-human pri-

mate genomes share hotspots of positive selection. PLoS Genet. 6:

e1000840.

Estes S, Phillips PC, Denver DR. 2011. Fitness recovery and compensatory

evolution in natural mutant lines of C. elegans. Evolution 65:

2335–2344.

Eyre-Walker A, Keightley PD. 2007. The distribution of fitness effects of

new mutations. Nat Rev Genet. 8:610–618.

Fisher RA. 1930. The genetical theory of natural selection. Oxford: The

Clarendon Press.

Gerrish PJ, Lenski RE. 1998. The fate of competing beneficial mutations in

an asexual population. Genetica 102–103:127–144.

Good BH, et al. 2012. Distribution of fixed beneficial mutations and the

rate of adaptation in asexual populations. Proc Natl Acad Sci U S A.

109:4950–4955.

Gordo I, Perfeito L, Sousa A. 2011. Fitness effects of mutations in bacteria.

J Mol Microbiol Biotechnol. 21:20–35.

Grossman SR, et al. 2010. A composite of multiple signals distin-

guishes causal variants in regions of positive selection. Science 327:

883–886.

Grossman SR, et al. 2013. Identifying recent adaptations in large-scale

genomic data. Cell 152:703–713.

Hancock AM, Di Rienzo A. 2008. Detecting the genetic signature of nat-

ural selection in human populations: models, methods, and data.

Annu Rev Anthropol. 37:197–217.

Hegreness M, Shoresh N, Hartl D, Kishony R. 2006. An equivalence prin-

ciple for the incorporation of favorable mutations in asexual popula-

tions. Science 311:1615–1617.

Hietpas RT, Jensen JD, Bolon DNA. 2011. From the cover: experimental

illumination of a fitness landscape. Proc Natl Acad Sci U S A. 108:

7896–7901.

Illingworth CJ, Mustonen V. 2011. Distinguishing driver and passenger

mutations in an evolutionary history categorized by interference.

Genetics 189:989–1000.

Illingworth CJ, Mustonen V. 2012. A method to infer positive selection

from marker dynamics in an asexual population. Bioinformatics 28:

831–837.

Imhof M, Schlotterer C. 2001. Fitness effects of advantageous mutations

in evolving Escherichia coli populations. Proc Natl Acad Sci U S A. 98:

1113–1117.

Jensen JD, Thornton KR, Andolfatto P. 2008. An approximate Bayesian

estimator suggests strong, recurrent selective sweeps in Drosophila.

PLoS Genet. 4:e1000198.

Jensen JD, Thornton KR, Aquadro CF. 2008. Inferring selection in partially

sequenced regions. Mol Biol Evol. 25:438–446.

Kassen R, Bataillon T. 2006. Distribution of fitness effects among beneficial

mutations before selection in experimental populations of bacteria.

Nat Genet. 38:484–488.

Keightley PD. 1998. Inference of genome-wide mutation rates and distri-

butions of mutation effects for fitness traits: a simulation study.

Genetics 150:1283–1293.

Keightley PD, Eyre-Walker A. 2010. What can we learn about the distri-

bution of fitness effects of new mutations from DNA sequence data?

Philos Trans R Soc Lond B Biol Sci. 365:1187–1193.

Kibota TT, Lynch M. 1996. Estimate of the genomic mutation rate dele-

terious to overall fitness in E. coli. Nature 381:694–696.

Kimura M, Ohta T. 1974. On some principles governing molecular evolu-

tion. Proc Natl Acad Sci U S A. 71:2848–2852.

Kvitek DJ, Sherlock G. 2011. Reciprocal sign epistasis between frequently

experimentally evolved adaptive mutations causes a rugged fitness

landscape. PLoS Genet. 7:e1002056.

Lang GI, Botstein D, Desai MM. 2011. Genetic variation and the fate of

beneficial mutations in asexual populations. Genetics 188:647–661.

Lemonnier M, et al. 2008. The evolution of contact-dependent inhibi-

tion in non-growing populations of Escherichia coli. Proc Biol Sci.

275:3–10.

Lind PA, Berg OG, Andersson DI. 2010. Mutational robustness of ribo-

somal protein genes. Science 330:825–827.

MacLean RC, Buckling A. 2009. The distribution of fitness effects of ben-

eficial mutations in Pseudomonas aeruginosa. PLoS Genet. 5:

e1000406.

Malaspinas AS, Malaspinas O, Evans SN, Slatkin M. 2012. Estimating allele

age and selection coefficient from time-serial data. Genetics 192:

599–607.

Martin G, Lenormand T. 2006. The fitness effect of mutations across en-

vironments: a survey in light of fitness landscape models. Evolution 60:

2413–2427.

Mathieson I, McVean G. 2013. Estimating selection coefficients in spatially

structured populations from time series data of allele frequencies.

Genetics 193:973–984.

Maynard-Smith J, Haigh J. 1974. The hitch-hiking effect of a favourable

gene. Genet Res. 23:23–35.

Mcdonald MJ, Cooper TF, Beaumont HJE, Rainey PB. 2011. The distribu-

tion of fitness effects of new beneficial mutations in Pseudomonas

fluorescens. Biol Lett. 7:98–100.

Nielsen R. 2005. Molecular signatures of natural selection. Annu Rev

Genet. 39:197–218.

Orozco-terWengel P, et al. 2012. Adaptation of Drosophila to a novel

laboratory environment reveals temporally heterogeneous trajectories

of selected alleles. Mol Ecol. 21:4931–4941.

Orr HA. 2010. The population genetics of beneficial mutations. Philos

Trans R Soc Lond B Biol Sci. 365:1195–1201.

One Biallelic Marker ABC GBE

Genome Biol. Evol. 5(5):794–806. doi:10.1093/gbe/evt045 Advance Access publication March 29, 2013 805



[2.5.2013–11:35am] [794–806] Paper: OP-GBEV130045

Perfeito L, Fernandes L, Mota C, Gordo I. 2007. Adaptive mutations in

bacteria: high rate and small effects. Science 317:813–815.

Rokyta DR, et al. 2008. Beneficial fitness effects are not exponential for

two viruses. J Mol Evol. 67:368–376.

Rozen DE, de Visser JAGM, Gerrish PJ. 2002. Fitness effects of fixed

beneficial mutations in microbial populations. Curr Biol. 12:

1040–1045.

Sanjuán R, Moya A, Elena SF. 2004. The distribution of fitness effects

caused by single-nucleotide substitutions in an RNA virus. Proc Natl

Acad Sci U S A. 101:8396–8401.

Sawyer SA, Parsch J, Zhang Z, Hartl DL. 2007. Prevalence of positive se-

lection among nearly neutral amino acid replacements in Drosophila.

Proc Natl Acad Sci U S A. 104:6504–6510.

Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD. 2011. A

method for inferring the rate of occurrence and fitness effects of ad-

vantageous mutations. Genetics 189:1427–1437.

Schoustra SE, Bataillon T, Gifford DR, Kassen R. 2009. The properties of

adaptive walks in evolving populations of fungus. PLoS Biol. 7:

e1000250.

Sinha P, et al. 2011. On detecting selective sweeps using single genomes.

Front Genet. 2:1–5.
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