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Abstract

In a machine learning setting, this study aims to compare the prognostic utility of

connectomic, brain structural, and clinical/demographic predictors of individual

change in symptom severity in individuals with schizophrenia. Symptom severity at

baseline and 1-year follow-up was assessed in 30 individuals with a schizophrenia-

spectrum disorder using the Brief Psychiatric Rating Scale. Structural and functional

neuroimaging was acquired in all individuals at baseline. Machine learning classifiers

were trained to predict whether individuals improved or worsened with respect to

positive, negative, and overall symptom severity. Classifiers were trained using vari-

ous combinations of predictors, including regional cortical thickness and gray matter

volume, static and dynamic resting-state connectivity, and/or baseline clinical and

demographic variables. Relative change in overall symptom severity between baseline

and 1-year follow-up varied markedly among individuals (interquartile range: 55%).

Dynamic resting-state connectivity measured within the default-mode network was
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the most accurate single predictor of change in positive (accuracy: 87%), negative

(83%), and overall symptom severity (77%) at follow-up. Incorporating predictors

based on regional cortical thickness, gray matter volume, and baseline clinical vari-

ables did not markedly improve prediction accuracy and the prognostic utility of

these predictors in isolation was moderate (<70%). Worsening negative symptoms at

1-year follow-up were predicted by hyper-connectivity and hypo-dynamism within

the default-mode network at baseline assessment, while hypo-connectivity and

hyper-dynamism predicted worsening positive symptoms. Given the modest sample

size investigated, we recommend giving precedence to the relative ranking of the pre-

dictors investigated in this study, rather than the prediction accuracy estimates.

K E YWORD S

default mode network, dynamic functional connectivity, outcome prediction, schizophrenia,

symptoms

1 | INTRODUCTION

While many individuals with schizophrenia can achieve varying

degrees of remission, the risk of relapse, recurrence and worsening of

symptoms remains significant, particularly after treatment discontinu-

ation (Emsley, Chiliza, Asmal, & Harvey, 2013). Relapse may indicate

disease progression (Lieberman et al., 1993), and in many cases, is

accompanied by brain changes (Cropley & Pantelis, 2014) or serious

consequences, including extreme despair and increased risk of suicide

(Pompili et al., 2007). Predicting relapse events and illness course is

therefore critical to enable early and targeted initiation of appropriate

treatments to individuals with a high risk of relapse. Moreover, indi-

viduals predicted to follow a favorable illness course may be spared

unnecessary treatment and associated side-effects (Arana, 2000;

Bruijnzeel, Suryadevara, & Tandon, 2014; Cha & McIntyre, 2012;

Fusar-Poli et al., 2013; Vita, De Peri, Deste, & Sacchetti, 2012).

Predicting individual illness course, particularly the likelihood of

specific relapse events, is very challenging. Different variables have

been identified as predictors of outcome in the past, including:

(a) demographics such as age of onset and sex (Eggers & Bunk, 1997;

Fleischhaker et al., 2005; Hafner, Maurer, Loffler, & Riecher-Rossler,

1993; Kydd & Werry, 1982) and family history of psychiatric illness

(Fleischhaker et al., 2005); (b) cognitive measures such as IQ (Werry &

McClellan, 1992; Werry, Mcclellan, & Chard, 1991) and processing

speed (Milev, Ho, Arndt, & Andreasen, 2005; Puig et al., 2014;

Remschmidt & Theisen, 2012); (c) baseline clinical symptoms (Maziade

et al., 1996; Meng et al., 2006; Milev et al., 2005); (d) biological

markers such as baseline antioxidant status (Fraguas et al., 2012;

Martínez-Cengotitabengoa et al., 2014) and neuroimaging markers

(Greenstein, Wolfe, Gochman, Rapoport, & Gogtay, 2008; Khodayari-

Rostamabad, Hasey, MacCrimmon, Reilly, & de Bruin, 2010;

Koutsouleris et al., 2018). The most accurate predictors of relapse and

worsening of symptoms include nonadherence with medication

(Robinson et al., 1999), poor premorbid adjustment, and substance

abuse (Alvarez-Jimenez et al., 2012), yet these predictors are

unreliable in some cases, potentially difficult to ascertain and at most

explain a three to fourfold increase in relapse risk. While biomarker

discovery in schizophrenia remains a key research area (Singh &

Rose, 2009), which specific types of variables are most useful in

predicting outcome remains unclear (Díaz-Caneja et al., 2015;

Menezes & Milovan, 2000). Accurate, objective and reliable predictors

of long-term illness outcome are therefore needed to enable individu-

alized prognostication and treatment.

Functional and structural neuroimaging is a promising candidate

for such a predictor that has received significant attention. Several

recent studies demonstrate the prognostic utility of training machine

learning algorithms to recognize features derived from an individual's

neuroimaging data that predict transition to psychosis (Koutsouleris

et al., 2009, 2012, 2015; Ramyead et al., 2016), illness course

(Kambeitz-Ilankovic et al., 2016; Koutsouleris et al., 2018; Mourao-

Miranda et al., 2012), treatment response (Khodayari-Rostamabad

et al., 2010; Koutsouleris, Wobrock, et al., 2018), relapse

(Nieuwenhuis et al., 2017), and resilience (de Wit et al., 2016). These

studies have sought to compute individual prognostications at follow-

ups ranging between 1 and 7 years, primarily using anatomical fea-

tures derived from structural neuroimaging, such as regional cortical

thickness estimates or measures of gray matter volume. Prediction

accuracies typically range between 60 and 90% (Janssen, Mour~ao-

Miranda, & Schnack, 2018).

More recently, the prognostic capability of resting-state func-

tional connectivity inferred from functional MRI has emerged in the

context of predicting antipsychotic treatment response in individuals

experiencing a first episode of psychosis (Cao et al., 2018; Sarpal

et al., 2016). However, it remains unclear whether resting-state

connectivity enables improved prognostication in a machine learning

setting compared to classic neuroimaging measures indexing cortical

structure and morphology, such as cortical thickness and gray matter

volume, and/or demographic and clinical variables. Furthermore, the

dynamic properties of resting-state connectivity particularly warrant

investigation as candidate predictors of illness outcome. When
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compared to classic time-averaged resting-state functional connectiv-

ity approaches, dynamic measures of connectivity yield enhanced sen-

sitivity to disease-related effects (Damaraju et al., 2014) and improved

diagnostic accuracy (Kottaram et al., 2018).

Schizophrenia is associated with widespread reductions in resting-

state connectivity strength (Bluhm et al., 2007; Fornito, Zalesky, &

Breakspear, 2015; Fox & Greicius, 2010; Ganella et al., 2017; Liu

et al., 2008; Salvador et al., 2007; Zalesky, Fornito, & Bullmore, 2010),

which are associated with the severity of specific symptom dimensions

(Hare et al., 2018; Repovs, Csernansky, & Barch, 2011; Rotarska-

Jagiela et al., 2010; Venkataraman, Whitford, Westin, Golland, &

Kubicki, 2012). In particular, the default-mode network, involved in

interoceptive functions (Andrews-Hanna, Smallwood, & Spreng, 2014;

Buckner, Andrews-Hanna, & Schacter, 2008; Raichle et al., 2001), has

been consistently shown to exhibit aberrant connectivity in schizo-

phrenia (Bluhm et al., 2007; Hu et al., 2017; Jafri, Pearlson, Stevens, &

Calhoun, 2008; Liemburg et al., 2012; Liu et al., 2012; Shim

et al., 2010; Skudlarski et al., 2010; Whitfield-Gabrieli et al., 2009;

Zhou et al., 2007). Assessing the temporal variations in functional

connectivity revealed periods of both hypo and hyper-connectivity

with the default-mode network (Damaraju et al., 2014; Kottaram

et al., 2018) and reduced dynamism in patients (Kottaram et al., 2019;

Miller et al., 2016).

In the present study, we aim to predict individual illness outcomes

(i.e., worsening or improvement in symptoms) at 1-year follow-up in a

cohort of individuals with schizophrenia. We train a simple (linear)

machine learning algorithm to predict individual outcomes based on

baseline measures of: (a) static and dynamic resting-state connectivity

(functional neuroimaging), (b) cortical thickness and gray matter vol-

ume (structural neuroimaging), and/or (c) clinical and demographic

variables. We aim to determine which of these measures, or combina-

tions thereof, provide the most accurate prediction of illness outcome.

We hypothesized that dynamic measures of resting-state connectivity

within the default-mode network would provide the most accurate

and objective predictors of outcome. Our hypothesis is motivated

by recent studies that suggest aberrant switching and connectivity

dynamics within the default-mode network are core pathophysiologi-

cal features of schizophrenia (Damaraju et al., 2014; Du et al., 2016;

Kottaram et al., 2018, 2019; Miller et al., 2016; Rashid et al., 2016).

This emerging literature led us to specifically target the default-mode

network as a predictor, particularly given that: (a) the default-mode

network shows the highest levels of activation during rest (Buckner

et al., 2008; Raichle et al., 2001); (b) while wide-spread connectivity

disruptions have been reported in schizophrenia, the most consistent

and robust abnormalities have been reported in this network (Bluhm

et al., 2007; Hu et al., 2017; Jafri et al., 2008; Liemburg et al., 2012;

Liu et al., 2012; Shim et al., 2010; Skudlarski et al., 2010; Whitfield-

Gabrieli et al., 2009; Zhou et al., 2007); (c) from a methodological per-

spective, the default-mode network can be more easily and robustly

detected compared to other networks (Raichle & Snyder, 2007). This

is the first study to evaluate the prognostic capability of dynamic mea-

sures in resting-state connectivity. Given our modest sample size in

the context of machine learning (N = 30), we consider this study

preliminary and emphasize that our primary goal is to compare and

rank the predictive power of various neuroimaging and clinical

variables. This study can inform the choice of predictors (i.e., static

vis-a-vis dynamic, functional vis-a-vis structural neuroimaging) investi-

gated in future studies, which should be conducted in larger cohorts

that are preferably acquired across multiple sites.

2 | METHODS

2.1 | Participants

Individuals with schizophrenia (N = 30; age = 27.3 ± 8.6 years; 10

females) were recruited through Orygen Youth Health clinical sites in

Victoria, Australia. All participants had a schizophrenia-spectrum dis-

order. More specifically, 11 individuals had an established diagnosis of

schizophrenia based on DSM-IV, while the remaining 19 individuals

had recently experienced a first psychotic episode but were without

an established diagnosis. All individuals were prescribed antipsychotic

medications at the time of recruitment, image acquisition and follow-

up assessment. Exclusion criteria included a history of neurological

disease or significant brain injury, a documented history of develop-

mental delay or intellectual disability and presence of any contraindi-

cations to MRI. All individuals provided written informed consent

prior to participation. The study was approved by the Melbourne

Health Human Research Ethics Committee (MHREC ID 2012.069).

Baseline and follow-up assessments of symptom severity, behav-

ior and cognitive ability were completed for all individuals. Baseline

assessments were performed within 1 week of image acquisition.

Follow-up assessments were performed after an interval of approxi-

mately 1 year (372 ± 12.7 days). Positive and negative symptoms

were assessed using the Brief Psychiatric Rating Scale (BPRS; Ander-

sen et al., 1989) and general cognitive ability was assessed using the

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1955).

Additional assessments were administered but not analyzed in this

study. Table 1 shows summary statistics at baseline and follow-up.

While group-averaged ratings of symptom severity did not signifi-

cantly differ between baseline and follow-up (Table 1), marked het-

erogeneity was evident across individuals (Figure 1).

2.2 | Image acquisition and preprocessing

Functional and structural magnetic resonance imaging (MRI) was per-

formed in all individuals. Acquisition details are provided in Supporting

Information S1. In brief, T1-weighted structural (TR = 1980 ms,

TE = 4.3 ms and voxel resolution of 0.98 mm × 0.98 mm × 1.0 mm)

and resting-state (TR = 2 s, TE = 40 ms and voxel dimensions =

3.3 mm × 3.3 mm × 3 mm, 234 frames over �8 min) images were

acquired on a 3T Siemens scanner.

Preprocessing was primarily performed using FSL 5.0.9 (FMRIB

Software Library, www.fmrib.ox.ac.uk). Each individual's T1-weighted

image was skull-stripped and spatially normalized via nonlinear
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registration to the Montreal Neurological Institute (MNI) 152 template.

Resting-state images were slice-time corrected, realigned to the

mean functional image to correct for motion, coregistered to the

corresponding T1-weighted scan via rigid-body registration and then

warped to the normalized structural image using the previously com-

puted warp transformation. Images were sampled at 2 mm isotropic in

MNI space. Images were then spatially smoothed using a Gaussian

kernel of full width at half maximum of 4 mm. The smoothed images

were further processed with ICA-AROMA (Pruim et al., 2015), an

automated tool for motion artifact removal, which has been shown to

improve both sensitivity and specificity of connectivity analyses

(Parkes, Fulcher, Yücel, & Fornito, 2018; Pruim, Mennes, Buitelaar, &

Beckmann, 2015). Signals from white matter and ventricles were then

regressed from the voxel time courses and the resulting residuals

were used for all subsequent analyses. Finally, any linear trends were

removed from each voxel time course and band pass filtering

(0.01–0.1 Hz) was performed to suppress the effects of physiological

noise (Cordes et al., 2001). Framewise displacement (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012) was computed to quantify the

extent of intrascan head movement (0.11 ± 0.04 mm).

TABLE 1 Demographic, behavioral, and clinical characteristics

Baseline
Follow-up
(1 year)

Baseline vs.

follow-up
comparison

Sex (male/

female)

20/10

Age (years) 27.3 ± 8.6 28.31 ± 8.6

Illness duration

(years)

3 ± 4.6

IQ (WASI) 96 ± 19.2

Education (years) 12.4 ± 3.9

BPRS positive 8.9 ± 5.1 8.2 ± 4.5 p > .1

BPRS negative 5.2 ± 2.3 5.8 ± 2.9 p > .1

BPRS total 42.1 ± 11.6 44.1 ± 12.6 p > .1

Chlorpromazine

equivalent

dosage

(mg/day)

412.9 ± 237.3 411.0 ± 213.5 p > .1

Note: BPRS, Brief Psychiatric Rating Scale; IQ, Intelligence Quotient;

WASI, Wechsler Abbreviated Scale of Intelligence.

F IGURE 1 Relative change in symptom severity from baseline to 1-year follow-up. (a) Relative change in aggregate scores of positive
(red, Δ+) and negative (blue, Δ−) symptom severity (b) Relative change in overall symptom severity ( ΔΣ). Individuals ordered from most improved
(leftmost) to most worsened (rightmost) in overall symptom severity. Symptom severity assessed with the Brief Psychiatry Rating Scale (BPRS).
Binary classifiers were trained to predict individuals that worsened ( Δn > T) or improved ( Δn < T) with respect to symptom severity n ∈ {+, − , Σ},
where cut-off thresholds of T = 0% (Figure 3) and T = 20%(Figure S6) were considered. Black dotted lines in Panels a and b correspond to 20%
threshold
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2.3 | Operationalization of clinical outcome

According to a recently proposed scheme (Dazzi, Shafer, &

Lauriola, 2016), aggregate scores indexing the severity of positive (+),

negative (−), and overall (Σ) symptoms were computed by summing

across relevant BPRS sub-items (positive: 7 BPRS sub-items, negative:

4, total: all sub-items). Further details about sub-item allocation are

provided in Supplementary Table 1. For each individual, clinical out-

come was operationalized as the relative change in symptom severity

between baseline and one-year follow-up. More specifically, if xnt
denotes the value of aggregate score n∈ {+, − ,Σ} at baseline (t = 0)

and follow-up (t = 1), we defined relative change as follows,

Δn =
xn1−xn0
xn0

×100%, n∈ + ,− ,Σf g:

We classified individuals as either improving or worsening with

respect to Δ+, Δ− , and ΔΣ. In particular, worsening of symptoms was

operationalized as Δn > T. Individuals not satisfying this criterion were

deemed to improve (or remain stable). This operationalization allowed

individuals to improve (worsen) with respect to positive symptoms

but worsen (improve) with respect to negative symptoms. While

dichotomizing the outcome measure can reduce statistical power, our

rationale for doing so is to provide a clear and interpretable measure

of outcome that is clinically relevant. Categorizing continuous mea-

sure can aid in making sense of unfamiliar measurement scales and

treatment effects of uncertain implication (Lewis, 2004).

In this study, the cut-off thresholds of T = 0% (main analysis) and

T = 20% (supplementary analyses) were investigated. Figure 1 shows

the relative change in Δ+, Δ− , and ΔΣ for each individual.

2.4 | Resting-state functional connectivity

Resting-state functional connectivity was computed between 18 corti-

cal regions comprising the default mode network (DMN; Figure 2a), as

defined elsewhere (Andrews-Hanna, Reidler, Sepulcre, Poulin, &

Buckner, 2010; Dodell-Feder, DeLisi, & Hooker, 2014; Du et al.,

2016; Kucyi & Davis, 2014). Refer to Supporting Information

(Section S1, Table S2) for MNI coordinates. For each individual, the

processed fMRI data were spatially averaged across the voxels com-

prising each of the 18 regions, yielding a representative time course

F IGURE 2 Schematic of functional connectivity estimation and feature combinations evaluated for individual prediction of change in
symptom severity (a) Cortical regions comprising the default-mode network. Functional connectivity was estimated between all pairs of regions.

(b) Schematic of static and dynamic functional connectivity estimation. For each pair of regions, the Pearson correlation coefficient was computed
across all time (static) or within overlapping windows (dynamic). (c) List of feature combinations evaluated for individual prediction of change in
symptom severity using binary machine learning classifiers. Ticks indicate the presence of a particular class of feature. Feature selection was used
to determine the top-8 features within each feature class. Classifiers were trained on the top-8 features from individual feature classes (eight
features; Rows 1–5), combination of top-8 features from each of the five feature classes (40 features in total, Row 7) as well as the top-8 features
across all feature classes (8 features in total; Row 6). In addition, combinations of the top-8 features from different classes were considered, as
indicated (Rows 8–13). dFC, dynamic FC; FC, functional connectivity; sFC, static FC
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for each region. A schematic of static and dynamic connectivity esti-

mation is shown in Figure 2b and described below.

2.4.1 | Static connectivity

Static resting-state functional connectivity was computed for each

of the (18 × 17) / 2 = 153 unique pairs of DMN regions. To this end,

the Pearson correlation coefficient was computed between the repre-

sentative time courses of each regional pair (Zalesky, Fornito, &

Bullmore, 2012). This was repeated independently for each individual.

2.4.2 | Dynamic functional connectivity

Dynamic functional connectivity was computed for each of the

153 unique pairs of DMN regions. Based on our previous study

(Kottaram et al., 2018), time was first partitioned into overlapping and

contiguous windows of length 20 s, using an overlap of one TR (2 s).

The Pearson correlation coefficient was used to compute functional

connectivity within each window, yielding a time-resolved (dynamic)

measure of connectivity for each regional pair. To reduce the dimen-

sionality of the resulting data, the mean and standard deviation was

computed across the set of windows for each pair of regions

(Kottaram et al., 2018). Therefore, each individual's connectivity

dynamics were characterized in terms of 153 mean values and

153 standard deviations.

2.5 | Gray matter volume and cortical thickness
estimation

Gray matter volume and cortical thickness were estimated regionally

for each individual using T1-weighted structural images and

established software. The Desikan–Killiany atlas (Desikan et al., 2006)

was used to define 35 bilateral cortical regions (70 in total). FreeSurfer

(version 5.3.0, https://surfer.nmr.mgh.harvard.edu/) was then used to

estimate cortical thickness and gray matter volume for each region

(Dale, Fischl, & Sereno, 1999; Fischl & Dale, 2000; Fischl et al., 2002;

Fischl, Sereno, & Dale, 1999). This involved delineating a three-

dimensional cortical surface model for each individual, which was then

inflated and registered to the Desikan-Killiany brain atlas. All gray/

white and gray/pial boundaries were manually examined and

corrected by a trained rater to increase the accuracy of the cortical

estimates.

2.6 | Baseline clinical and demographic variables

Clinical and demographic measures assessed at baseline were investi-

gated as predictors of change in symptom severity at follow-up. A

total of eight baseline variables were considered: aggregate scores

indexing the severity of positive, negative, and overall symptoms

(Section 2.3), illness duration, age of onset of psychosis, sex (binary),

intelligence quotient (IQ; WASI), and medication (chlorpromazine

equivalent dosage, mg/day).

2.7 | Classification

Binary machine learning classifiers were trained to predict individual

improvement (Δn < T) or worsening (Δn > T) with respect to aggregate

scores of positive, negative, and overall symptoms, n ∈ {+, − , Σ}.

Under a leave-one-out cross-validation (LOOCV) framework, separate

classifiers were trained to predict improvement/worsening in each

of the three aggregate scores. Further, classifiers were trained and

evaluated using different combinations of features to determine the

relative predictive power among different classes of features. We

considered five feature classes: (a) cortical thickness (70 regions),

(b) gray matter volume (70 regions), (c) baseline clinical and demo-

graphic variables (eight variables), (d) static connectivity (153 connec-

tions), and (e) dynamic connectivity (153 mean values +153 standard

deviations). Feature selection was used to determine the top-K most

predictive features within each of the five feature classes. A two-

sample t-test was used to perform feature selection within each fea-

ture class using only the training data. This involved assessing the

between-class separability of individual features, ranking all features

based on the t-statistic magnitude and then choosing the top-K fea-

tures. Among all feature classes, the baseline clinical and demographic

variables contained the least number of features (n = 8); hence the

number of features chosen was set to K = 8 in the main analysis. Since

our aim was to compare the predictive power of different feature

classes, no further analysis was performed to optimize the value of K;

however, all analyses were repeated with K = 20 to investigate the

impact of variation in the total number of features used. Importantly,

in each iteration of the LOOCV, features were selected exclusively

based on the training sample (N = 29), leaving the testing sample

(N = 1) aside, thereby avoiding cross-contamination of data. Using a

relatively small set of features (i.e., K = 8) minimized the risk of over-

fitting, although feature selection per se does not eliminate this risk.

To predict the improvement/worsening of each aggregate mea-

sure, 13 different classifiers were trained using different combinations

of features, as listed in Figure 2c. A separate classifier was trained and

evaluated for each of the five feature classes. Furthermore, classifiers

were trained on the top-K features across all feature classes (K fea-

tures in total) as well as the top-K features from each of the five

feature classes (5 × K features in total). In addition, to quantify the

detriment of excluding a particular feature class, classifiers were

trained on the top-K features from 4 of the 5 feature classes (4 × K

features in total). Finally, a classifier was trained using the top-K fea-

tures from all feature classes except the connectivity-based (static

and dynamic) features (3 × K features in total).

Given the modest sample size of the cohort studied, linear

discriminant analysis (LDA) was employed; LDA models the distribu-

tion of features separately for each response class and minimizes over-

fitting, thus being particularly suited to small datasets (Izenman, 2013).
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Classification results can vary with the choice of machine learning

algorithm and for this reason, ancillary analyses were then performed

using other linear (support vector machine, SVM) and nonlinear (deci-

sion trees) classifiers. For each LOOCV analysis, established measures

of classification performance were computed, including prediction

accuracy, specificity, sensitivity, precision, area under the curve (AUC),

and the F-measure were calculated.

The feature selection described above is a univariate approach,

as individual features are ranked independent of other features.

We have also performed the classification experiments using a differ-

ent feature selection method based on principal component analysis

(PCA), which is further described in Supporting Information

(Section S3).

3 | RESULTS

3.1 | Predicting individual change in symptom
severity

Relative change in overall symptom severity between baseline and

1-year follow-up varied markedly among individuals (interquartile

range: 55%; Figure 1), consistent with the heterogeneity in outcomes

that is characteristic of schizophrenia. Some individuals worsened

with respect to positive symptoms but showed an improvement in

negative symptoms, and vice versa. Individuals were classified as

either: (a) worsening or (b) improving (or remaining stable) with

respect to positive (improving: N = 18), negative (improving: N = 19),

and overall symptom severity (improving: N = 12) at 1-year follow-up.

Classifiers were then trained to predict these individual outcomes

using different combinations of features (predictors), with the aim of

determining which of functional neuroimaging (static and dynamic

resting-state connectivity), structural neuroimaging (regional gray mat-

ter volume and cortical thickness) or baseline demographic and clinical

variables, or combinations thereof, provide the most accurate prog-

nostic utility.

Figure 3 shows prediction accuracies for the range of feature

combinations indicated in Figure 2c. Combining features across all

feature classes (i.e., classifiers labeled “All-8 features” in Figure 3a)

yielded the highest accuracies in predicting change in overall symp-

toms. Classification accuracies consistently exceeded 80% when fea-

tures were combined across all feature classes. Remarkably, classifiers

trained using only features associated with dynamic resting-state con-

nectivity yielded accuracies that were comparable to combining fea-

tures across all feature classes. In contrast, the other single-class

classifiers trained using only one feature class yielded poorer

F IGURE 3 Accuracy of predicting improvement in symptom severity at 1-year follow-up using connectivity, structural, and/or clinical
features. Individuals were classified as either worsening or improving/stabilizing based on relative change in positive, negative and overall
symptom severity. Binary classifiers (linear discriminant analysis) were then trained to predict individual outcome using different combinations of
features. (a) Prediction accuracies for classifiers trained using features from only one of the following five feature classes: cortical thickness, gray
matter volume, baseline (BL) clinical, and demographic variables, static resting-state functional connectivity (sFC) and dynamic resting-state
functional connectivity (dFC). A separate classifier was also trained using the top-8 features selected from each of the above five feature classes
as well as the combination of all of them (All—8 features). (b) Prediction accuracies for classifiers trained using 5 (All—40 features),
4 (No Thickness, No Volume, No BL Clin & Dem, No sFC, and No dFC), and 3 (No s and d FC) of the five feature classes. BPRS, Brief Psychiatric
Rating Scale; FC, functional connectivity
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accuracies (<70%, Figure 3a) and often did not yield predictions that

exceeded chance level.

The predictive utility of dynamic resting-state connectivity com-

puted within the default-mode network is further evidenced by the

substantial reduction in prediction accuracies that were apparent

when this feature class was excluded from the classifier combining all

feature classes (Figure 3b). Excluding dynamic resting-state connectiv-

ity resulted in a 10–20% reduction in accuracy, while excluding both

static and dynamic connectivity features resulted in the most substan-

tial accuracy reduction (>30% reduction). In contrast, excluding fea-

tures related to cortical thickness, gray matter volume or baseline

demographic and clinical variables did not affect prediction accuracies

by more than 5% (Figure 3b). Table 2 shows additional measures that

quantify the accuracy of the classifiers trained using dynamic resting-

state connectivity.

Other performance measures evaluated, such as classification

sensitivity (Figure S1), specificity (Figure S2), and AUC (Figure S3)

accord with the above findings, suggesting that our classification

models were not biased to predicting either improving or worsening

outcomes alone. Selecting the top-20 (instead of top-8) features

within each feature class did not markedly alter prediction accuracies

(Figure S4). Compared to LDA (Figure 3), prediction accuracies

decreased when using decision trees (Figure S5) or linear support vec-

tor machines (Figure S6). Despite this decrease, the relative ranking of

features remained consistent, with dynamic resting-state connectivity

consistently providing the most accurate prognostic utility. Further,

increasing the cut-off threshold to T = 20% (instead of T = 0%)

resulted in a marginal reduction (<5%) in the accuracy of predicting

change in overall symptom severity, although prediction of change in

positive and negative symptoms was unaffected. Also, the analysis

with PCA-based feature selection yielded similar results (Figure S8),

consistent with the main analysis reported in Figure 3.

Finally, the variation in prediction accuracy in the case of holding

out larger fractions of data for testing was evaluated. While all ana-

lyses so far employed a LOOCV approach, the held-out sample size

was systematically increased from 1 to 6 and the accuracies are

reported in Figure S8. Only classifiers trained on dFC were considered

in this supplementary analysis, given that this was the best performing

feature class. While the accuracies reduced in general as the test

sample size increased (thus yielding a smaller training sample), the

accuracies remained >70%, despite holding out six samples for

testing.

3.2 | Characteristics of connections predicting
outcome

Having found that dynamic resting-state connectivity computed

within an individual's default-mode network yielded the most accurate

prognostic utility, we next aimed to determine the characteristics and

locations of the specific connections that were most informative with

respect to prediction. We assumed a cut-off threshold of T = 0% in

this section to operationalize improving and worsening subgroups of

individuals with respect to relative change in symptom severity. Given

that feature selection varied between iterations of the cross-

validation process, for this analysis, feature selection was performed

on the full sample without any individual prediction. Instead, the top-

20% of connections associated with the largest effect sizes (two-

sample t-test) were identified with respect to the null hypothesis of

equality between the improving and worsening subgroups. In particu-

lar, a t-test was computed independently for each pair of regions

(i.e., each connection); such that a positive t-statistic indicated that

the worsening group showed increased connectivity at baseline, rela-

tive to the improving group.

Figure 4 shows the location of connections with the largest effect

sizes (top-20%), where positive effect sizes (warm colors) indicate

increased connectivity strength (left column) and increased connectiv-

ity dynamics (standard deviation, right column) in the worsening group

at baseline, relative to the improving group. In contrast, negative

effect sizes (cool colors) indicate increased connectivity strength and

increased connectivity dynamics in the improving group at baseline. It

can be seen that worsening positive symptoms are primarily predicted

by decreased connectivity strength but increased temporal dynamics

among a distributed sub-network spanning the entire DMN (Figure 4,

uppermost row). Notably, connection strengths between ventral

medial prefrontal cortex (vmPFC) and bilateral temporal poles, and

between left temporal pole and right temporal parietal junction (TPJ)

were lower in the worsening group. In addition, connectivity of left

parahippocampal cortex (PHC), left temporal pole and left retro-

splenial cortex to most other regions of DMN were reduced. In con-

trast, worsening negative symptoms are predominantly predicted by

increased strength but decreased dynamics within a separate DMN

sub-network (Figure 4, center row). Connectivity of anterior medial

prefrontal cortex (amPFC) to posterior cingulate cortex (PCC) and

vmPFC to PHC was greater in the worsening group. In addition, left

lateral temporal cortex (LTC) was strongly connected to other regions

in the left hemisphere. The network that predicted worsening of neg-

ative symptoms appears to be largely localized to the left hemisphere,

while the network predicting worsening of positive symptoms com-

prised many bilateral regions.

Figure 4 suggests a marked contrast between predictors of

change in positive versus negative symptom severity. In particular,

TABLE 2 Performance of predicting improvement in symptom
severity at 1-year follow-up for classifiers trained using dynamic
resting-state connectivity

Performance

measure

Positive

symptoms

Negative

symptoms

BPRS

total

Accuracy (%) 86.67 83.33 76.67

Sensitivity (%) 75 81.82 72.22

Specificity (%) 94.44 84.21 83.33

Precision (%) 90 75 86.67

AUC 0.85 0.83 0.78

F-measure (%) 81.82 78.26 78.79

Note: AUC—area under the receiver operating characteristic (ROC) curve.
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worsening positive symptoms (compared to improving positive symp-

toms) were predicted by hypo-connectivity and hyper-dynamism in

baseline resting-state connectivity, while worsening negative symp-

toms (compared to improving negative symptoms) were predicted

by hyper-connectivity and hypo-dynamism. We hypothesize that

hyper-connectivity within the DMN predicted worsening negative

symptoms because increased engagement of this network has been

associated with increased internal, self-related processing (Molnar-

Szakacs & Uddin, 2013; Qin & Northoff, 2011), which is characteristic

of rumination and other internalizing negative symptoms of schizo-

phrenia (see Section 4).

In ancillary analyses, statistical inference was performed using the

network-based statistic (NBS) (Zalesky et al., 2010) to correct for mul-

tiple comparisons (i.e., 153 independent t-tests). This enabled formal

identification of the locations of connections that predicted outcome

with respect to a family-wise error corrected p-value criterion

(p < .05), rather than simply investigating the top-20% as above. The

primary t-statistic threshold for the NBS was chosen as 2 to ensure

that any significant effects exceeded an effects size (Cohen's d) of

approximately 0.3, which is deemed a medium effect, and a total of

5,000 permutations were generated to estimate p-values. This was

repeated for changes in positive, negative and overall symptom sever-

ity. For overall symptom severity, the NBS identified subnetworks of

connections that significantly differentiated the worsening and

improving groups with respect to connectivity strength (p < .05) and

dynamics (p < .05; Figure S7). These subnetworks were highly consis-

tent with the top-20% of connections (Figure 4; bottommost row).

However, no significant effects were found with respect to positive

and negative symptoms (p > .05).

4 | DISCUSSION

Mounting evidence suggests that neuroimaging coupled with machine

learning can provide utility in guiding long-term prognostication in

schizophrenia, and neuropsychiatry more generally; see Janssen and

F IGURE 4 Connections most informative in predicting improvement in symptom severity at 1-year follow-up. Individuals were classified as
either improving or worsening with respect to positive, negative, and overall symptom severity. Two-sample t-tests were performed to identify
which connections differed most in mean connectivity strength (left column) and connectivity dynamics (standard deviation, right column)
between the improving and worsening subgroups. The top-20% of connections according to t-statistic magnitude are shown. Note that t-statistic
magnitude is proportional to effect size. Each sphere represents a region within the default mode network (depicted in Figure 2a). The color and
thickness of each connection represents the t-statistic, as per the color bar. Boxplots represent the distribution of mean connection strength (left
column) or standard deviation of connection strengths (right column), averaged over all regions within the default-mode network. “*” indicates
significant between-group differences (p < .05). The top-20% connections should not be interpreted as significant but are rather visualized here
to identify those connection strengths which lead to high classification accuracies
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colleagues (Janssen et al., 2018) for a comprehensive review.

However, it remains unclear: (a) whether neuroimaging can provide

superior prognostic utility compared to clinical variables such as base-

line symptom ratings; and (b) which neuroimaging modalities, or com-

binations thereof, provide the most accurate prognostic utility. To

address these knowledge gaps, the present study aimed to determine

which of three broad classes of candidate predictors would yield the

most accurate prognostic utility in predicting relative change in

schizophrenia symptom severity at 1-year follow-up.

We found that the dynamics of resting-state functional connec-

tivity within the default-mode network (DMN) provided the most

accurate prediction of whether an individual worsened or improved

with respect to positive, negative and overall symptom severity at

1-year follow-up. Remarkably, while previous studies have reported

prognostic utility of gray matter volume and cortical thickness mea-

sures (Greenstein et al., 2008; Khodayari-Rostamabad et al., 2010;

Koutsouleris, Wobrock, et al., 2018), prediction accuracies showed

minimal improvement when incorporating structural neuroimaging

predictors (regional cortical thickness and gray matter volume), static

resting-state connectivity and/or baseline demographic and clinical

variables. The top-8 selected features from each feature group for

predicting worsening/improvement of positive, negative and overall

symptoms are listed in Tables S3–S5. In particular, for the combina-

tion of all feature groups, the top-8 selected features are mostly those

from dFC. This explains why we did not observe any improvement in

accuracy for the “All-8 features.” However, note that even the classi-

fier trained on the combination of top-8 features from different fea-

ture groups (“All-40 features”) did not provide any significant

improvement in classification accuracies (Figure 3b). Similarly remov-

ing volume, thickness, and baseline clinical and demographic variables

did not affect the classifier performance. In the absence of dynamic

resting-state connectivity information, these predictors alone yielded

moderate-to-poor prognostic utility (<60% accuracy) that often did

not exceed chance-level predictions. A notable exception was static

resting-state connectivity, which yielded modest predication accura-

cies (60–70%). The difference in predictive prognostic powers of sFC

and dFC measures supports the notion that static versus dynamic

connectivity might be capturing different aspects of physiology

(Liegeois, Laumann, Snyder, Zhou, & Yeo, 2017). While regional mea-

sures of brain structure did not substantially improve prediction per-

formance here, further investigation is needed in larger cohorts to

establish whether change in specific symptom dimensions and cogni-

tion is best predicted by structure and function.

Our best performing machine classifiers were able to predict

whether an individual improved or worsened in terms of symptom

severity with accuracies ranging between 75 and90%. However, these

accuracies must be interpreted with caution given the modest sample

size (N = 30), homogeneity of the sample (i.e., all individuals were rec-

ruited from the same clinical service) and general limitations of cross

validation, particularly the risk of unreliable estimates with the LOOCV

procedure used here (Varoquaux, 2018; Varoquaux et al., 2017). We

emphasize that the main goal of the present study was not to provide

precise estimates of prediction accuracy, but rather to rank the relative

predictive power of various connectomic, structural and clinical predic-

tors of individual outcome. If prediction accuracies were overestimated

due to the limited sample size, any potential overestimation was most

likely uniform across all feature classes, and thus the relative ranking

of features (predictors) would remain unchanged.

While this is the first study to utilize connectivity dynamics to pre-

dict outcome, it is important to remark that several recent studies have

investigated the prognostic utility of static resting-state functional con-

nectivity. Most of these studies have considered prediction of response

to antipsychotic medication (Cadena et al., 2018; Cadena, White,

Kraguljac, Reid, & Lahti, 2018; Cao et al., 2018; Kraguljac et al., 2016;

Sarpal et al., 2015). For example, using task-based fMRI data and a

seed-based analysis, Cadena and colleagues (Cadena, White, Kraguljac,

Reid, Jindal, et al., 2018; Cadena, White, Kraguljac, Reid, & Lahti, 2018)

found that connectivity between the anterior cingulate cortex and puta-

men was associated with treatment response over a 6-week duration.

Another study using resting-state data and seed-based analysis found

that the connectivity of striatal regions to other brain regions was cor-

related with changes in symptoms over a 12-week period (Sarpal

et al., 2015). In addition, Cao and colleagues (Cao et al., 2018) reported

that striatal connectivity was a predictor of response to antipsychotic

medication over a period of 10 weeks in a medication-naïve cohort.

We considered a significantly longer follow-up period (1 year) than

these recent studies; and furthermore, all individuals in our study were

prescribed antipsychotic medication at baseline and follow-up. Hence,

our predictions were with respect to relatively long-term change in

symptom severity, as opposed to short-term response to pharmacolog-

ical treatment. It may be argued that accurately predicting treatment

response is a more beneficial clinical capability than predicting long-

term change in symptom severity. However, it is important to remark

that long-term outcome is an important prognostic consideration given

that schizophrenia can often become a chronic and lifelong disorder

and such predictive information may orient treatment and follow-up

strategies, limiting relapses.

We found certain differences in dynamic connectivity features

that predicted worsening positive versus negative symptoms

(Figure 4, Tables S3 and S4). Individuals with worsening positive

symptoms were predicted by hypo-connectivity and hyper-dynamism

within the DMN at baseline, compared to individuals with improving

positive symptoms. The converse pattern was evident for negative

symptoms (i.e., hyper-connectivity and hypo-dynamism at baseline

predicted worsening negative symptoms). While the reasons for this

dissociation is unclear, it is consistent with the observation that sev-

eral individuals improved with respect to one symptom dimension but

worsened with respect to others (Figure 1). One hypothesis is that

positive and negative symptom dimensions tap distinct and possibly

mutually exclusive subsystems of the DMN, and thus predictors of

change in positive and negative symptom severity circumscribe dis-

tinct loci. This notion is in line with the observation that the sub-

network predicting change in positive symptom severity (Figure 4,

topmost row) shows little overlap with the connections predicting

negative symptoms (center row). Worsening of negative symptoms

was predicted by increased connectivity of a left-lateralized
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sub-network with direct involvement of hub regions such as PCC and

amPFC, while for positive symptoms, a hypoconnectivity within a

bilateral network without the participation of the hub nodes predicted

worsening. However, the between-group comparison of connection

strengths using the NBS did not reveal any significant differences

between the improving and worsening groups.

We hypothesize that this distinction between the predictors of

worsening positive versus negative symptoms may relate to the puta-

tive introspective and extrospective modes of the DMN. The DMN

toggles between an introspective self-referential mode and an

extrospective mode that remains alert to changes in the external envi-

ronment (Fransson, 2005, 2006), suggesting a functional segregation

within DMN regions (Fransson, 2005; Hearne, Cocchi, Zalesky, &

Mattingley, 2015; Uddin, Clare Kelly, Biswal, Xavier Castellanos, &

Milham, 2009). Hyperactivity in prefrontal regions characterizes inter-

nalization and self-reflective thinking (Fransson, 2005; Ingvar, 1979),

which is frequently interrupted and shifted toward an externalized

state vigilant to external stimuli (Fransson, 2005; Laufs et al., 2003).

Therefore, frontal DMN hyper-connectivity may predict worsening of

negative symptoms due to increased internalization and fewer shifts

to the externalized mode, which are characteristic of the internalizing

negative symptoms of schizophrenia. Disengagement among DMN

regions (i.e., hypo-connectivity) on the other hand leads to externali-

zation (Farina et al., 2018), which may be necessary to engender delu-

sions, hallucinations and other positive symptoms.

While we recommend that the dynamics of resting-state func-

tional connectivity should be given priority when selecting neuroimag-

ing predictors of schizophrenia outcome in future studies, the precise

biological and pathological correlates of connectivity dynamics are

unknown. In this study, connectivity dynamics were summarized using

the standard deviation computed across multiple temporal windows.

Therefore, larger temporal fluctuations in functional connectivity

strength were indexed by larger standard deviations. Connectivity

dynamics could potentially index the rate at which the DMN cycles

between putative internalizing and externalizing modes, where an

abnormal switching rate may place individuals at greater risk of poor

outcome. The hypo-dynamism associated with worsening of negative

symptoms (i.e., low standard deviation) suggests that individuals do

not (or are unable to) freely switch between externalizing and inter-

nalizing states, consistent with internalization and rumination.

It is worth noting that worsening and improvement were defined

as relative deviations from baseline scores in the present study. While

this is a commonly followed approach (Cao et al., 2018; Leucht,

Davis, Engel, Kane, & Wagenpfeil, 2007; Schennach, Riedel, Musil, &

Möller, 2012), this definition does not take into account the actual

symptom values. For example, as per this definition, an individual with

a low score at baseline and a slightly higher score at follow-up will be

considered as worsening, even though the actual score at follow-up

might still be relatively low. Similarly, a slight improvement in symp-

toms when the actual scores are high does not imply a good outcome.

Note that we performed a supplementary analysis where a threshold

of T = 20% was considered, such that an individual will be considered

as worsening only if the percentage increase in follow-up symptoms is

>20%. This analysis yielded similar results (Figure S7), consistent with

the main analysis (T = 0%) reported in Figure 3. However, we consid-

ered only percentage changes in symptoms in this study and no abso-

lute changes were considered. Future studies are warranted to assess

if the neuroimaging-based classifiers are predictive of symptom sever-

ity (above or below a clinically meaningful cut-off) or only sensitive to

relative change in symptoms.

Several limitations should be considered. First, our sample size is

modest for a machine learning study. It is worth mentioning that

acquiring longitudinal neuroimaging data with long follow-up periods

is difficult in psychiatric cohorts. While we followed a cross-validation

framework which reduces the risk of over-fitting, it does not eliminate

the risk completely, particularly when all data are acquired from the

same site. Intersite cross-validation in which one acquisition site is

used for training and another for testing would have further mitigated

this risk. Given this, the reported prediction accuracies must be inter-

preted cautiously, particularly with respect to the high variability of

cross-validation estimates when applied to typically sized neuroimag-

ing datasets (Schnack & Kahn, 2016; Varoquaux et al., 2017). For this

reason, we used a simple linear classifier to minimize the risk of over-

fitting and principally focused on ranking the feature classes investi-

gated, as opposed to interpreting the prediction accuracies in an

absolute sense. We also used a relatively small set of predictors to

further reduce the risk of overfitting as well as domain-specific knowl-

edge to select the regions and networks considered. Second, the fea-

ture class that was found to yield the most accurate predictions was

also the class with the greatest number of features (153 mean values

+ 153 standard deviations), and thus the risk of overfitting may have

been increased for this class. However, feature selection was per-

formed to choose the same number of features across different clas-

ses. Moreover, prediction accuracy did not markedly improve when

combining features from the five feature classes investigated,

suggesting that the influence of overfitting on accuracy was possibly

minimal; otherwise the classifier combining features across all classes

would have yielded the highest accuracy. Third, our feature class with

clinical and behavioral measures was limited to the information that

was collected during data acquisition, which does not include all clini-

cal/behavioral variables. There could be other variables with better

predictive power that were not collected and included in this study.

For example, incorporating structural connectivity inferred from

diffusion-weighted MRI into the prediction model could potentially

enhance accuracy by explaining unique variance that is not captured

by connectivity dynamics. Fourth, all individuals were prescribed anti-

psychotic medication and medication represents a potential con-

founding effect on structural and functional neuroimaging. The

adherence to medication and certain environmental factors such as

substance use during the period between baseline and follow-up

examinations affect the outcomes, but these cannot be accounted in

a predictive model based on the baseline measures alone. Also, no

information regarding adherence to medication was collected during

the follow-up assessment; hence we cannot comment on the extent

to which the current findings relate to treatment response. Fifth,

all participants were recruited from the same clinical service, resulting in
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a geographically and ethnically homogeneous cohort. While this homo-

geneity is beneficial in alleviating confounds inherent to interindividual

variation, it is unclear whether the classifiers trained will generalize to

other cohorts (Hahn, Ebner-Priemer, & Meyer-Lindenberg, 2019).

Finally, the use of sliding windows to estimate connectivity dynamics

has been criticized (Hindriks et al., 2016; Laumann et al., 2016),

although we show that this methodology can yield predictors that out-

perform cortical thickness and gray matter volume.

5 | CONCLUSIONS

Functional neuroimaging provides improved prognostic utility in

predicting long-term changes in schizophrenia symptom severity,

compared to predictors derived from structural neuroimaging and

baseline clinical variables. While our results might not necessarily gen-

eralize to other cohorts due to the modest sample size, our study can

inform and constrain the choice of candidate predictors investigated

in future machine learning studies that aim to predict illness outcome

using larger cohorts. In particular, we recommend that dynamic fluctu-

ations in resting-state functional connectivity, particularly within the

default-mode network, are given prime consideration as candidate

predictors in future studies.
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