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Background
It is stated in Koshy (2009), Stanley and Weisstein (2015) that the Catalan numbers Cn 
for n ≥ 0 form a sequence of natural numbers that occur in tree enumeration problems 
such as “In how many ways can a regular n-gon be divided into n− 2 triangles if differ-
ent orientations are counted separately?” whose solution is the Catalan number Cn−2. 
The Catalan numbers Cn can be generated by

Two of explicit formulas of Cn for n ≥ 0 read that

where
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Cnx
n
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7 + 1430x
8 + · · · .

(2)Cn =
4nŴ(n+ 1/2)
√
π Ŵ(n+ 2)

= 2F1(1− n,−n; 2; 1),

Ŵ(z) =
∫ ∞

0
tz−1e−tdt, R(z) > 0

Abstract 

In the paper, the authors find some properties of the Catalan numbers, the Catalan 
function, and the Catalan–Qi function which is a generalization of the Catalan num‑
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sions, integral representations, logarithmic convexity, complete monotonicity, minimal‑
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is the classical Euler gamma function and

is the generalized hypergeometric series defined for complex numbers ai ∈ C and 
bi ∈ C\{0,−1,−2, . . .}, for positive integers p, q ∈ N, and in terms of the rising factorials 
(x)n defined by

and

In Graham et al. (1994), Koshy (2009), Stanley and Weisstein (2015), Vardi (1991), it was 
mentioned that there exists an asymptotic expansion

for the Catalan function Cx. What is the general expression for the asymptotic 
expansion (5)?

In Qi et al. (2015b, Remark 1) an analytical generalization of the Catalan numbers Cn 
and the Catalan function Cx was given by

and the integral representation

for a, b > 0 and x ≥ 0 was derived. For uniqueness and convenience of referring to the 
quantity (6), we call C(a, b; x) the Catalan–Qi function. It is clear that

The integral representation (7) generalizes an integral representation for C
(
1
2 , 2; x

)
 in Shi 

et al. (2015). Currently we do not know and understand the combinatorial interpreta-
tions of C(a, b; x) and its integral representation (7). Here we would not like to discuss 
the combinatorial interpretations of them. What we concern here is the asymptotic 
expansion similar to (5) for C(a, b; x).

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞∑

n=0
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1, n = 0
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]

C(a, b; 0) = C(a, b; 1) = 1 and C(a, b; x) =
1

C(b, a; x)
.
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In Koshy (2009) and from https://en.wikipedia.org/wiki/Catalan_number, the integral 
representation

was listed. In Nkwanta and Tefera (2013, p. 10), there is an integral representation

In Qi et al. (2015c, Theorem 1.4), the integral representations

was established. In Qi (2015a, Theorem 1.3), the equivalence relation between (8) and (9) 
was verified. What is the integral representation of the Catalan–Qi function C(a, b; x) 
similar to either (8) or (9)?

From the power series  (1), we observe that the Catalan numbers Cn is an increasing 
sequence in n ≥ 0 with C0 = C1. What about the monotonicity and convexity of the 
Catalan numbers Cn, the Catalan function Cx, and the Catalan–Qi function C(a, b; x)? 
In Temme (1996, p. 67), it was listed that

Accordingly, we obtain an alternative integral representation

for b > a > 0 and x ≥ 0, where B(z, w) denotes the classical beta function which can be 
defined (Abramowitz and Stegun 1972, p. 258, 6.2.1 and 6.2.2) by

for R(z) > 0 and R(w) > 0 and satisfies

From the integral representations  (8) and  (9), one can not apparently see any mes-
sage about the monotonicity and convexity of the Catalan–Qi function C(a,  b;  x) in 
x ∈ [0,∞) .

As showed by (1), the Catalan numbers Cn have a generating function 2
1+

√
1−4x

. What 
is the generating function of the Catalan–Qi numbers C(a, b; n)?

The aim of this paper is to supply answers to the above problems and others.

(8)Cn =
1
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∫ 4

0
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x
xndx
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∫ 1

0
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dx.

(9)Cn =
1

π

∫ ∞

0

√
t

(t + 1/4)n+2
dt =

2

π

∫ ∞

0

t2

(t2 + 1/4)n+2
dt, n ≥ 0

Ŵ(z + a)

Ŵ(z + b)
=

1

Ŵ(b− a)

∫ ∞

0

(
1− e−u

)b−a−1
e−(z+a)udu, b > a ≥ 0.

(10)C(a, b; x) =
1

B(a, b− a)

(
b

a

)x ∫ ∞

0

(
1− e−u

)b−a−1
e−(x+a)udu

(11)B(z,w) =
∫ 1

0
tz−1(1− t)w−1dt =

∫ ∞

0

tz−1

(1+ t)z+w
dt

(12)B(z,w) =
Ŵ(z)Ŵ(w)

Ŵ(z + w)
= B(w, z).

https://en.wikipedia.org/wiki/Catalan%5fnumber
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A new expression of the Catalan numbers
In order to establish a new expression for the Catalan numbers Cn, we need the follow-
ing lemma which was summarized up in the papers Qi (2015c, Section 2.2, p. 849), Qi 
(2016, p. 94), and Wei and Qi (2015, Lemma 2.1) from Bourbaki (2004, p. 40, Exercise 5).

Lemma 1 Let u(x) and v(x) �= 0 be differentiable functions, let U(n+1)×1(x) be an 
(n+ 1)× 1 matrix whose elements uk ,1(x) = u(k−1)(x) for 1 ≤ k ≤ n+ 1, let V(n+1)×n(x) 
be an (n+ 1)× n matrix whose elements

for 1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ n, and let |W(n+1)×(n+1)(x)| denote the determinant of the 
(n+ 1)× (n+ 1) matrix

Then the nth derivative of the ratio u(x)v(x) can be computed by

Making use of the formula (13) in Lemma 1, we can obtain the following new expres-
sion for the Catalan numbers Cn.

Theorem 1 For n ∈ N, the nth derivative of the generating function of the Catalan num-
bers Cn can be expressed as

and the Catalan numbers Cn can be represented as

where 〈x〉n is the falling factorial defined by

and (x)n is the rising factorial defined by (3).

vi,j(x) =






�
i − 1

j − 1

�
v(i−j)(x), i − j ≥ 0

0, i − j < 0
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]
.

(13)
dn

dxn

[
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]
= (−1)n
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vn+1(x)
.

dn

dxn

(
1−

√
1− 4x

2x

)
=

(−1)n+1

2xn+1

n∑

k=0

4k
〈
1

2

〉

k

xk(1− 4x)1/2−k

Cn =
4n

(n+ 1)!

(
1

2

)

n

�x�n =
n−1∏

k=0

(x − k) =
{
x(x − 1) · · · (x − n+ 1), n ≥ 1,
1, n = 0
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Proof Let u(x) = 1−
√
1− 4x and v(x) = x. Since

for k ∈ N as x → 0, making use of the formula (13) yields

u(k)(x) = (−1)k+14k
〈
1

2

〉

k

(1− 4x)1/2−k → (−1)k+14k
〈
1

2

〉

k
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1
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3

2
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· · · 0 0 0

.
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.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
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x 0
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u(x) x 0 0 · · · 0 0 0

u
′(x) 1 x 0 · · · 0 0 0

u
′′(x) 0 2 x · · · 0 0 0

u
′′′(x) 0 0 3 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

u
(n−2)(x) 0 0 0 · · · n− 2 x 0

u
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u
(n)(x) 0 0 0 · · · 0 0 n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)n

2xn+1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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u
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x
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x
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x
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u
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x
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u
(n−2)(x)−
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(−1)k

(n−2)!
(n−k−2)!

u
(n−k−2)(x)

xk
0 0 0 · · · 0 x 0

u
(n−1)(x)−
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k=1
(−1)k

(n−1)!
(n−k−1)!

u
(n−k−1)(x)

xk
0 0 0 · · · 0 0 x

u
(n)(x)−

∑
n

k=1
(−1)k n!

(n−k)!
u
(n−k)(x)

xk
0 0 0 · · · 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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1

2xn+1

[
u
(n)(x)−

n∑

k=1

(−1)k
n!

(n− k)!
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(n−k)(x)
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 0 0

0 x 0 · · · 0 0 0
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0 0 0 · · · 0 0 0

.

.

.
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.

.

.

.

.
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.

.
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.

.

.

.
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as x → 0. By virtue of the second function in the Eq. (1), we see that

The proof of Theorem 1 is complete.  �

Asymptotic expansions of the Catalan–Qi function C(a,b; x)
We first derive two asymptotic expansions of the Catalan–Qi function C(a, b; x). Conse-
quently, from these two asymptotic expansions, we deduce a general expression for (5) 
and an asymptotic expansion of the ratio Ŵ(a)

Ŵ(b) for a, b > 0.

Theorem 2 Let B(σ )

k (x) denote the generalized Bernoulli polynomials defined by

=
1

2x

[
u(n)(x)−

n∑

k=1

(−1)k
n!

(n− k)!
u(n−k)(x)

xk

]

=
1

2

n∑

k=0

(−1)k
n!

(n− k)!
u(n−k)(x)

xk+1

=
1

2xn+1

n∑

k=0

(−1)k
n!

(n− k)!
xn−ku(n−k)(x)

= (−1)n
1

2xn+1

n∑

k=0

(−1)k
n!
k!
xku(k)(x)

→
(−1)n

2(n+ 1)!

n∑

k=0

(−1)k
n!
k!

lim
x→0

[
xku(k)(x)

](n+1)

=
(−1)n

2(n+ 1)!

n∑

k=0

(−1)k
n!
k!

lim
x→0

n+1∑

ℓ=0

(
n+ 1
ℓ

)(
xk
)(ℓ)

u(n−ℓ+k)(x)

=
(−1)n

2(n+ 1)!

n∑

k=0

(−1)k
n!
k!

(
n+ 1
k

)
k!u(n)(0)

=
(−1)n

2(n+ 1)

n∑

k=0

(−1)k
(
n+ 1
k

)
u(n)(0)

=
(−1)n

2(n+ 1)
(−1)n+14n

〈
1

2

〉

n

n∑

k=0

(−1)k
(
n+ 1
k

)

= −
4n

2(n+ 1)

〈
1

2

〉

n

n∑

k=0

(−1)k
(
n+ 1
k

)

= (−1)n+1 4n

2(n+ 1)

〈
1

2

〉

n

=
4n

n+ 1

〈
−
1

2

〉

n

=
4n

n+ 1

(
1

2

)

n

Cn =
1

n!
lim
x→0

dn

dxn

(
1−

√
1− 4x

2x

)

= (−1)n
4n

(n+ 1)!

〈
−
1

2

〉

n

=
4n

(n+ 1)!

(
1

2

)

n

.

(14)
exz

(
z

ez − 1

)σ

=
∞∑

k=0

B
(σ )

k (x)

k!
zk , σ ∈ C, |z| < 2π .
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For b > a > 0, the Catalan–Qi function C(a, b; x) has the asymptotic expansion

as x → ∞. Consequently, the Catalan function Cx has the asymptotic expansion

as x → ∞.

Proof In Temme (1996, p. 67), it was listed that, under the condition R(b− a) > 0,

in the sector | arg z| < π, where the generalized Bernoulli polynomials B(σ )

k (x) are 
defined by  (14) in  Temme (1996,  p.  4). Consequently, the function C(a,  b;  x) has the 
asymptotic expansion (15) under the condition b > a > 0 as x → ∞. In particular, when 
taking a = 1

2 and b = 2 in (15), we obtain the asymptotic expansion (16). Theorem 2 is 
thus proved.  �

Remark 1 In Qi (2015a), there are another two asymptotic expansions for Cn and Cx, 
which were established by virtue of the integral representations (8) and (7) for a = 1

2 and 
b = 2.

Remark 2 The asymptotic expansion  (16) is a general expression of the asymptotic 
expansion (5). Hence, the asymptotic expansion (15) is a generalization of (5).

Theorem 3 Let Bi denote the Bernoulli numbers defined by

Then the Catalan–Qi function C(a, b; x) has the exponential expansion

where I(α,β) denotes the exponential mean defined by

(15)C(a, b; x) ∼
Ŵ(b)

Ŵ(a)

(
b

a

)x ∞∑

k=0

(−1)k
B
(a−b+1)
k (a)

k!
Ŵ(b− a+ k)

Ŵ(b− a)

1

xk+b−a

(16)Cx = C

(
1

2
, 2; x

)
∼

4x
√
π

∞∑

k=0

(−1)k
B
(−1/2)
k (1/2)

k!
Ŵ(k + 3/2)

Ŵ(3/2)

1

xk+3/2

Ŵ(z + a)

Ŵ(z + b)
∼ za−b

∞∑

k=0

(−1)k
B
(a−b+1)
k (a)

k!
Ŵ(b− a+ k)

Ŵ(b− a)

1

zk
as z → ∞

(17)
x

ex − 1
=

∞∑

i=0

Bi
xi

i!
= 1−

x

2
+

∞∑

j=1

B2j
x2j

(2j)!
, |x| < 2π .

(18)

C(a, b; x) =
Ŵ(b)

Ŵ(a)

(
b

a

)x
√

x + b

x + a
[I(x + a, x + b)]a−b

× exp

[ ∞∑

j=1

B2j

2j(2j − 1)

(
1

(x + a)2j−1
−

1

(x + b)2j−1

)]
, a, b > 0,

(19)I(α,β) =
1

e

(
ββ

αα

)1/(β−α)
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for α,β > 0 with α �= β. Consequently, we have

Proof Making use of (17) in the integral representation (7) yields

which can be reformulated as the form (18).
The exponential expansion  (20) follows from letting x → 0 in  (18) and rearranging. 

Theorem 3 is thus proved.  �

Remark 3 When taking a = 1
2 and b = 2, the asymptotic expansion (18) reduces to one 

of conclusions in Qi (2015a, Theorem 1.2).

Remark 4 For more information on the exponential mean I(α,β) in (19), please refer to 
the monograph (Bullen 2003) and the papers (Guo and Qi 2009, 2011).

Integral representations and complete monotonicity of the Catalan–Qi 
function C(a,b; x)
Motivated by the first integral representations  (8) and  (9), we guess out the following 
integral representations for the Catalan–Qi function C(a, b; x).

Theorem 4 For b > a > 0 and x ≥ 0, the Catalan–Qi function C(a, b; x) has integral 
representations

(20)
Ŵ(a)

Ŵ(b)
=

√
b

a

aa

bb
exp

[ ∞∑

j=1

B2j

2j(2j − 1)

(
1

a2j−1
−

1

b2j−1

)]
, a, b > 0.

C(a, b; x) =
Ŵ(b)

Ŵ(a)

(
b

a

)x
(x + a)x

(x + b)x+b−a
exp

[
b− a

+
∫ ∞

0

1

t

(
1

et − 1
−

1

t
+ 1− a

)(
e−at − e−bt

)
e−xtdt

]

=
Ŵ(b)

Ŵ(a)

(
b

a

)x
(x + a)x

(x + b)x+b−a
exp

[
b− a

+
∫ ∞

0

1

t

(
1

2
− a+

∞∑

j=1

B2j
t2j−1

(2j)!

)(
e−at − e−bt

)
e−xtdt

]

=
Ŵ(b)

Ŵ(a)

(
b

a

)x
(x + a)x

(x + b)x+b−a
exp

[
b− a+

(
1

2
− a

)
ln

x + b

x + a

+
∞∑

j=1

B2j

2j(2j − 1)

(
1

(x + a)2j−1
−

1

(x + b)2j−1

)]

=
Ŵ(b)

Ŵ(a)

(
b

a

)x
(x + a)x+a−1/2

(x + b)x+b−1/2
eb−a

× exp

[ ∞∑

j=1

B2j

2j(2j − 1)

(
1

(x + a)2j−1
−

1

(x + b)2j−1

)]

(21)
C(a, b; x) =

(
a

b

)b−1 1

B(a, b− a)

∫ b/a

0

(
b

a
− t

)b−a−1

tx+a−1dt
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and

Proof Straightforwardly computing and directly utilizing (11) and (12) acquire

The integral representation (21) is thus proved.
Similar to the above argument, by virtue of (11) and (12), we obtain

Hence, the integral representation (22) follows readily. The proof of Theorem 4 is thus 
complete.  �

Remark 5 Letting a = 1
2, b = 2, and x = n in  (22) and (21) respectively reduce to the 

first integral representation in (9) and its equivalent form (8).

Remark 6 In https://en.wikipedia.org/wiki/Catalan_number, it was said that the inte-
gral representation (8) means that the Catalan numbers Cn are a solution of the Haus-
dorff moment problem on the interval [0, 4] instead of [0, 1]. Analogously, we guess that 
the integral representation (21) probably means that the Catalan–Qi numbers C(a, b; n) 
are a solution of the Hausdorff moment problem on the interval 

[
0, ba

]
 instead of [0, 1] 

and [0, 4].

Recall from Mitrinović et  al. (1993, Chapter XIII), Schilling et  al. (2012, Chapter 1), 
and Widder (1941, Chapter IV) that an infinitely differentiable function f is said to be 
completely monotonic on an interval I if it satisfies 0 ≤ (−1)k f (k)(x) < ∞ on I for all 
k ≥ 0. It is known (Widder 1941, p. 161, Theorem 12b) that a function f is completely 
monotonic on (0,∞) if and only if it is a Laplace transform f (t) =

∫∞
0 e−tsdµ(s) of a 

positive measure µ defined on [0,∞) such that the above integral converges on (0,∞).

(22)C(a, b; x) =
(
a

b

)a 1

B(a, b− a)

∫ ∞

0

tb−a−1

(t + a/b)x+b
dt.

∫ ∞

0

tb−a−1

(t + a/b)x+b
dt =

(
b

a

)x+b ∫ ∞

0

tb−a−1

(1+ bt/a)x+b
dt

=
(
b

a

)x+b(b

a

)a−b ∫ ∞

0

(
bt
a

)b−a−1

(
1+ bt

a

)x+b
d

(
bt

a

)

=
(
b

a

)x+a ∫ ∞

0

ub−a−1

(1+ u)b−a+(x+a)
du

=
(
b

a

)x+a

B(b− a, x + a)

=
(
b

a

)x+a
Ŵ(b− a)Ŵ(x + a)

Ŵ(x + b)
.

∫
b/a

0

(
b

a
− t

)b−a−1

t
x+a−1

dt =
(
b

a

)x+b−1 ∫ 1

0

(1− s)b−a−1
s
x+a−1

ds

=
(
b

a

)x+b−1

B(b− a, x + a) =
(
b

a

)x+b−1
Ŵ(b− a)Ŵ(x + a)

Ŵ(x + b)
.

https://en.wikipedia.org/wiki/Catalan%5fnumber
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Theorem 5 For b > a > 0, we have

where

is the falling factorial. Consequently, the function

for N ∈ {0} ∪ N and b > a > 0 is completely monotonic in x ∈ [0,∞), where ⌊x⌋ denotes 
the floor function whose value is the largest integer less than or equal to x.

Proof The integral representation (21) can be rearranged as

Further utilizing the well-known power series expansion

arrives at

which can be reformulated as (23).
Rewriting (23) as

(23)C(a, b; x) =
1

B(a, b− a)

(
b

a

)x ∞∑

k=0

(−1)k
�b− a− 1�k

k!
1

x + a+ k
,

�x�n =
n−1∏

k=0

(x − k) =
{
x(x − 1) · · · (x − n+ 1), n ≥ 1
1, n = 0

(24)(−1)⌊b−a⌋
[(

a

b

)x

C(a, b; x)−
1

B(a, b− a)

N∑

k=0

(−1)k
�b− a− 1�k

k!
1

x + a+ k

]

(25)

C(a, b; x) =
1

B(a, b− a)

(
b

a

)x−1 ∫ b/a

0

(
1−

a

b
t

)b−a−1(a

b
t

)x+a−1

dt

=
1

B(a, b− a)

(
b

a

)x ∫ 1

0
(1− s)b−a−1sx+a−1ds.

(1+ x)α =
∞∑

k=0

�α�k
xk

k!
, |x| < 1

C(a, b; x) =
1

B(a, b− a)

(
b

a

)x ∞∑

k=0

(−1)k

k!
�b− a− 1�k

∫ 1

0
sx+k+a−1ds

=
1

B(a, b− a)

(
b

a

)x ∞∑

k=0

(−1)k

k!
�b− a− 1�k

1

x + a+ k

(
a

b

)x

C(a, b; x)−
1

B(a, b− a)

N∑

k=0

(−1)k
�b− a− 1�k

k!
1

x + a+ k

=
1

B(a, b− a)

∞∑

k=N+1

(−1)k
�b− a− 1�k

k!
1

x + a+ k

= (−1)⌊b−a⌋ 1

B(a, b− a)

∞∑

k=N+1

(−1)k−⌊b−a⌋ �b− a− 1�k
k!

1

x + a+ k
,
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considering the non-negativity of (−1)k−⌊b−a⌋�b− a− 1�k, and employing the com-
plete monotonicity of 1

x+a+k in x ∈ [0,∞) reveal the complete monotonicity of the func-
tion (24). The proof of Theorem 5 is complete.  �

Remark 7 When taking a = 1
2 and b = 2, Theorem  5 becomes a part of conclusions 

in Qi (2015a, Theorem 1.1).

Logarithmically complete monotonicity of the Catalan–Qi function C(a,b; x)
An infinitely differentiable and positive function f is said to be logarithmically com-
pletely monotonic on an interval I if 0 ≤ (−1)k [ln f (x)](k) < ∞ hold on I for all k ∈ N. 
The inclusions

were discovered in Berg (2004), Guo and Qi (2010), Qi and Chen (2004), Qi and Guo 
(2004), where L[I], C[I], and S denote respectively the set of all logarithmically com-
pletely monotonic functions on an interval I, the set of all completely monotonic func-
tions on I, and the set of all Stieltjes transforms. See also the monograph Schilling et al. 
(2012) and plenty of references therein.

Recall from monographs  Mitrinović et  al. (1993,  pp.  372–373) and  Widder 
(1941, p. 108, Definition 4) that a sequence {µn}0≤n≤∞ is said to be completely mono-
tonic if its elements are non-negative and its successive differences are alternatively non-
negative, that is,

for n, k ≥ 0, where

Recall from Widder (1941, p. 163, Definition 14a) that a completely monotonic sequence 
{an}n≥0 is minimal if it ceases to be completely monotonic when a0 is decreased.

Theorem 6 The function

is logarithmically completely monotonic on (0,∞) if and only if a ≷ b. Consequently, the 
sequence

is completely monotonic, minimal, and logarithmically convex.

(26)L[I] ⊂ C[I] and S \ {0} ⊂ L[(0,∞)]

(−1)k�kµn ≥ 0

�kµn =
k∑

m=0

(−1)m
(

k
m

)
µn+k−m.

C
±1(a, b; x) =

{
1, x = 0

[C(a, b; x)]±1/x, x > 0

(27)Cn =






1, n = 0
1

n
√
Cn

, n ∈ N
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Proof In Qi and Li (2015, Theorem 1.1), it was proved that, when a ≷ b, the function

for c > 0 is logarithmically completely monotonic on [0,∞) if and only if c � Ŵ(b)
Ŵ(a). It is 

easy to see that

Therefore, the function C±1(a, b; x) is logarithmically completely monotonic on [0,∞) 
if and only if a ≷ b. Consequently, the function C−1

(
1
2 , 2; x

)
 is logarithmically com-

pletely monotonic, and then completely monotonic and logarithmically convex, on 
[0,∞) . As a result, the complete monotonicity, minimality, and logarithmic convexity of 
the sequence (27) follows immediately from Widder (1941, p. 164, Theorem 14b) which 
reads that a necessary and sufficient condition that there should exist a completely 
monotonic function f(x) in 0 ≤ x < ∞ such that f (n) = an for n ≥ 0 is that {an}∞0  should 
be a minimal completely monotonic sequence. The proof of Theorem 6 is complete.  �

Remark 8 It is interesting that, since the function ha,b;c(x) defined by  (28) originates 
from the coding gain (see Lee and Tepedelenlioğlu 2011; Qi and Li 2015), Theorem 6 
and its proof imply some connections and relations among the Catalan numbers, the 
coding gain, and the ratio of two gamma functions.

Theorem 7 Let a, b > 0 and x ≥ 0. Then

1. when b > a, the function C(a,  b;  x) is decreasing in x ∈ [0, x0), increasing in 
x ∈ (x0,∞),and logarithmically convex in x ∈ [0,∞);

2. when b < a, the function C(a,  b;  x) is increasing in x ∈ [0, x0), decreasing in 
x ∈ (x0,∞), and logarithmically concave in x ∈ [0,∞);

where x0 is the unique zero of the equation

and satisfies x0 ∈
(
0, 12

)
. Consequently, the Catalan numbers Cn for n ∈ N is strictly 

increasing and logarithmically convex.

Proof In  Guo and Qi (2010,  Theorem  1) closely-related references therein, it was 
proved that the function

is completely monotonic on (0,∞) if and only if α ≤ 1. This means that

(28)[ha,b;c(x)]±1 =






1, x = 0�
c
Ŵ(x + a)

Ŵ(x + b)

�±1/x

, x > 0

C
±1(a, b; x) =

(
b

a

)±1[
ha,b;Ŵ(b)/Ŵ(a)(x)

]±1
.

(29)
ψ(x + b)− ψ(x + a)

ln b− ln a
= 1

θα(x) = xα[ln x − ψ(x)]
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that is,

This can also be verified by virtue of the inequality

which is a special case of Guo and Qi (2010, Lemma 3), and by virtue of the equality

Since the function ψ(x + b)− ψ(x + a) is increasing (or decreasing, respectively) if and 
only if b < a (or b > a, respectively) and

for all a, b > 0, we obtain that for all a, b > 0 with a �= b the function ψ(x+b)−ψ(x+a)
ln b−ln a  is 

strictly decreasing on [0,∞) and

It is clear that the first derivative

if and only if

which can be rewritten as

and

As a result, considering (30) and (31), we see that the Catalan–Qi function C(a, b; x) for 
all a, b > 0 with a �= b is not monotonic on [0,∞) and that

ln a− ψ(a) ≶ ln b− ψ(b), a ≷ b,

(30)
ψ(b)− ψ(a)

ln b− ln a
> 1, a �= b.

ψ ′(x) >
1

x
+

1

2x2
>

1

x
, x > 0,

ψ(b)− ψ(a)

ln b− ln a
=

∫ b
a ψ ′(x)dx
∫ b
a 1/xdx

.

lim
x→∞

[ψ(x + b)− ψ(x + a)] = 0

(31)lim
x→∞

ψ(x + b)− ψ(x + a)

ln b− ln a
= 0.

∂[lnC(a, b; x)]
∂x

= (ln b− ln a)− [ψ(x + b)− ψ(x + a)] ⋚ 0

ln b− ln a ⋚ ψ(x + b)− ψ(x + a)

ψ(x + b)− ψ(x + a)

ln b− ln a
� 1, b > a

ψ(x + b)− ψ(x + a)

ln b− ln a
⋚ 1, b < a.
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1. when b > a, the function C(a,  b;  x) is decreasing in x ∈ (0, x0) and increasing in 
x ∈ (x0,∞);

2. when b < a, the function C(a,  b;  x) is increasing in x ∈ (0, x0) and decreasing in 
x ∈ (x0,∞);

where x0 is the unique zero of the Eq. (29).
The Eq. (29) can be rearranged as

Regarding b as a variable and differentiating with respect to b give

which can be reformulated as

where limu→0+
[
u− 1

ψ ′(u)

]
= 0 and

Employing the asymptotic expansion

in Abramowitz and Stegun (1972, p. 260, 6.4.11) yields

Due to [ψ ′(x)]2 + ψ ′′(x) > 0 on (0,∞), see Alzer (2004), Qi (2015b), Qi and Li (2015), 
Qi et al. (2013) and plenty of closely-related references therein, the function u− 1

ψ ′(u) is 
strictly increasing, and so

on (0,∞). Accordingly, the unique zero x0 of the Eq. (29) belongs to 
(
0, 12

)
.

It is immediate that

Since the tri-gamma function ψ ′(x) is completely monotonic on (0,∞), inequalities

ψ(x + b)− ψ(x + a) = ln b− ln a.

ψ ′(x + b) =
1

b
=

1

(x + b)− x

x = (x + b)−
1

ψ ′(x + b)
� u−

1

ψ ′(u)
,

d

du

[
u−

1

ψ ′(u)

]
= 1+

ψ ′′(x)

[ψ ′(x)]2
=

[ψ ′(x)]2 + ψ ′′(x)

[ψ ′(x)]2
.

ψ ′(x) =
1

x
+

1

2x2
+

∞∑

m=1

B2m

x2m+1

u−
1

ψ ′(u)
=

1
2u +

∑∞
m=1

B2m
u2m

1
u + 1

2u2
+

∑∞
m=1

B2m
u2m+1

→
1

2
, u → ∞.

0 < u−
1

ψ ′(u)
<

1

2
,

∂2[lnC(a, b; x)]
∂x2

= ψ ′(x + a)− ψ ′(x + b).

(−1)k+1 ∂
k+1[lnC(a, b; x)]

∂xk+1
= ψ(k)(x + a)− ψ(k)(x + b) ≶ 0
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for k ∈ N hold if and only if b ≶ a. The proof of Theorem 7 is complete.  �

Remark 9 From Theorem 7, we can derive that, for b > a > 0,

In other words,

Theorem 8 For b > a > 0, the function

is logarithmically completely monotonic on [0,∞).

Proof By (6), it follows that

which can be straightforwardly verified to be a logarithmically completely monotonic 
function on [0,∞). By the first inclusion in (26), we obtain the required complete mono-
tonicity of the function (32).  �

Remark 10 The integral representation (22) can be rewritten as

for b > a > 0 and x ≥ 0. This formula and both of the integral representations  (10) 
and (25) all mean that the function (32) for b > a > 0 is completely monotonic on [0,∞) . 
This conclusion is weaker than Theorem 8.

Theorem 9 For b > a > 0, the function

is logarithmically completely monotonic on [0,∞).

Proof This follows from the integral representation (7).  �

Remark 11 Theorems 8 and 9 imply that the sequences

are logarithmically completely monotonic and minimal, which have been concluded 
in Qi (2015a, Theorems 1.1 and 1.2).

Ŵ(x + a)

Ŵ(x + b)
≶

Ŵ(a)

Ŵ(b)

(
a

b

)x

, 0 < x ≶ 1.

0 < C(a, b; x) ≶ 1, 0 < x ≶ 1, b > a > 0.

(32)

(
a

b

)x

C(a, b; x)

(
a

b

)x

C(a, b; x) =
Ŵ(b)

Ŵ(a)

Ŵ(x + a)

Ŵ(x + b)

C(a, b; x) =
1

B(a, b− a)

(
b

a

)x+b−a ∫ ∞

0

tb−a−1

(bt/a+ 1)x+b
dt

(
a

b

)x
(x + b)x+b−a

(x + a)x
C(a, b; x)

{
Cn

4n

}

n≥0

and

{
(n+ 2)n+3/2

(n+ 1/2)n
Cn

4n

}

n≥0
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A generating function of the Catalan–Qi sequence C(a,b;n)
In this section, we discover that 2F1

(
a, 1; b; bt

a

)
 is a generating function of the Catalan–

Qi numbers C(a, b; n).

Theorem 10 For a, b > 0 and n ≥ 0, the Catalan–Qi numbers C(a, b; n) can be gener-
ated by

and, conversely, satisfy

Proof Using the relation (z)nŴ(z) = Ŵ(z + n) for n ≥ 0, we have

As a result, we obtain

Using the relation (−n)n+i = 0 for i ∈ N, which can be derived from (4), we obtain

Further using the relation

we acquire

The formula (Graham et al. 1994, p. 192, (5.48)) reads that

Hence, the inversion of the relation  (35) gives us the relation  (34). The proof of 
Theorem 10 is complete.  �

(33)2F1

(
a, 1; b;

bt

a

)
=

∞∑

n=0

C(a, b; n)tn

(34)C(a, b; n) = (−1)n
n∑

k=0

(−1)k
(
n
k

)
2F1

(
a,−k; b;−

b

a

)
.

C(a, b; n) =
(
b

a

)n
(a)n

(b)n
, a, b > 0, n ≥ 0.

∞∑

n=0

C(a, b; n)tn =
∞∑

n=0

(a)n(1)n

(b)n

(bt/a)n

n!
= 2F1

(
a, 1; b;

bt

a

)
, a, b > 0.

2F1

(
a,−n; b;−

b

a

)
=

n∑

r=0

(−1)r(−n)r

r!
C(a, b; r).

(−1)r(−n)r = (n− r + 1)r =
Ŵ(n+ 1)

Ŵ(n− r + 1)
=

n!
(n− r)!

,

(35)2F1

(
a,−n; b;−

b

a

)
=

n∑

r=0

(
n
r

)
C(a, b; r).

g(k) =
∑

ℓ

(
k
ℓ

)
(−1)ℓf (ℓ) if and only if f (k) =

∑

ℓ

(
k
ℓ

)
(−1)ℓg(ℓ).
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Remark 12 (An alternative proof of (33) for b > 1) In Abramowitz and Stegun (1972, p. 
558, 15.3.1), it is collected that

In order to prove the Eq. (33), it is sufficient to show

In fact, a straightforward calculation reveals

for b > 1. This gives an alternative proof of (33) for b > 1.

Remark 13 Combining (2) and (34) brings out

A double inequality of the Catalan–Qi function C(a,b; x)
Finally we present a double inequality of the Catalan–Qi function C(a, b; x).

Theorem 11 Let Bi for i ∈ N be the Bernoulli numbers defined by (17) and let I be the 
exponential mean defined by (19). Then the Catalan–Qi function C(a, b; x) satisfies the 
double inequality

2F1(a, b; c; z) =
1

B(b, c − b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt, R(c) > R(b) > 0.

lim
t→0

dn

dtn

[
2F1

(
a, 1; b;

bt

a

)]
= n!C(a, b; n).

lim
z→0

dn

dzn

[
1

B(1, b− 1)

∫ 1

0

(1− t)b−2

(1− btz/a)a
dt

]

= (b− 1)aa lim
z→0

dn

dzn

∫ 1

0

(1− t)b−2

(a− btz)a
dt

= (b− 1)aabn
Ŵ(n+ a)

Ŵ(a)
lim
z→0

∫ 1

0

tn(1− t)b−2

(a− btz)a+n
dt

=
(b− 1)aabn

aa+n

Ŵ(n+ a)

Ŵ(a)

∫ 1

0
tn(1− t)b−2dt

=
(b− 1)bn

an
Ŵ(n+ a)

Ŵ(a)

Ŵ(b− 1)Ŵ(n+ 1)

Ŵ(n+ b)

= n!
bn

an
Ŵ(n+ a)

Ŵ(a)

Ŵ(b)

Ŵ(n+ b)

= n!C(a, b; n)

2F1(1− n,−n; 2; 1) = (−1)n
n∑

k=0

(−1)k
(
n
k

)
2F1

(
1

2
,−k; 2;−4

)
.

(36)

exp

[ 2m∑

j=1

B2j

2j(2j − 1)

(
1

(x + a)2j−1
−

1

(x + b)2j−1

)]

<
Ŵ(a)

Ŵ(b)

(
a

b

)x√x + a

x + b

C(a, b; x)
[I(x + a, x + b)]a−b

< exp

[2m−1∑

j=1

B2j

2j(2j − 1)

(
1

(x + a)2j−1
−

1

(x + b)2j−1

)]
.
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Consequently, we have

Proof In Koumandos (2006, Theorem 3), it was obtained that

for m ∈ N and x > 0. Substituting this double inequality into the integral representa-
tion (7) and straightforward computing lead to the double inequality (36).

The double inequality  (37) follows from letting x → 0 in  (36) and simplifying. The 
proof of Theorem 11 is complete.  �

Remark 14 The double inequality  (36) generalizes a double inequality in  Qi 
(2015a, Theorem 1.2).

Conclusions
The main conclusions of this paper are stated in Theorems  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
and 11. Concretely speaking, a new expression, several asymptotic expansions, several 
integral representations, logarithmic convexity, complete monotonicity, minimality, log-
arithmically complete monotonicity, a generating function, and several inequalities of 
the Catalan numbers, the Catalan function, and the Catalan–Qi function are presented 
and an exponential expansion and a double inequality for the ratio of two gamma func-
tions are derived. These conclusions generalize and extend some known results. More 
importantly, these conclusions provide new viewpoints of understanding and supply 
new methods of investigating the Catalan numbers in combinatorics and number theory. 
Moreover, these conclusions connect the Catalan numbers with the ratios of two gamma 
functions in the theory of special functions. In other words, the main conclusions in this 
paper will deepen and promote the study of the Catalan numbers and related concepts 
in combinatorics and number theory.

Remark 15 This paper is a companion of the articles Liu et al. (2015), Mahmoud and Qi 
(2016), Qi (2015a, d, e), Qi and Guo (2016a, b), Qi et al. (2015b, c, d, e), Shi et al. (2015) 
and a revised version of the preprint Qi et al. (2015a).
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