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Abstract: Youth-onset Type 2 Diabetes Mellitus (T2DM) represents a major burden worldwide. In the
last decades, the prevalence of T2DM became higher than that of Type 1 Diabetes Mellitus (T1DM),
helped by the increasing rate of childhood obesity. The highest prevalence rates of youth-onset
T2DM are recorded in China (520 cases/100,000) and in the United States (212 cases/100,000), and
the numbers are still increasing. T2DM young people present a strong hereditary component, often
unmasked by social and environmental risk factors. These patients are affected by multiple coexist-
ing risk factors, including obesity, hyperglycemia, dyslipidemia, insulin resistance, hypertension,
and inflammation. Juvenile T2DM nephropathy occurs earlier in life compared to T1DM-related
nephropathy in children or T2DM-related nephropathy in adult. Diabetic kidney disease (DKD) is
T2DM major long term microvascular complication. This review summarizes the main mechanisms
involved in the pathogenesis of the DKD in young population and the recent evolution of treatment,
in order to reduce the risk of DKD progression.

Keywords: diabetic kidney disease; youth-onset type 2 diabetes mellitus; diabetic nephropathy; D2M
pathophysiology and novel treatments

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease of both adults and children, and
it is associated with long-term complications and high rates of mortality [1,2]. Its prevalence
has been increasing, especially in young patients [3]. Type 1 diabetes mellitus (T1DM),
also historically known as juvenile or insulin-dependent diabetes, is the most predominant
type of DM in children and adolescents, being caused by insufficient pancreatic insulin
production [4]. Multiple genetic and environmental factors found in variable combinations
in T1DM individual patients [5].

In contrast, Type 2 Diabetes Mellitus (T2DM) or Type 2 Diabetes (T2D) is common
in adults and is caused by insulin resistance [6]. T2DM is a complex metabolic disease
with heterogeneous risk factors and complications; it consists of a combination of ge-
netic predisposition, diet, or physical inactivity [7]. In the last decades, the prevalence
of T2DM is becoming more common than T1DM, due to rising childhood obesity [8].
Recent data found that the highest prevalence rates of youth-onset T2DM were recorded in
China (520 cases/100,000) and in the United States (212 cases/100,000), being the lowest in
Denmark (0.6 cases/100,000) and Ireland (1.2 cases/100,000). However, specific epidemio-
logical data for juvenile onset T2DM are currently scarce and considerably varied among
different countries [9]. It is necessary to find uniform diagnostic criteria and finer screening
strategies to reduce these differences [10].
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The nature of T2DM is aggressive in young age, presents a sex-related variability, and
is associated with unfavorable and early cardiometabolic risk factors related to obesity [11].
The Search for Diabetes in youth (SEARCH) and Treatment Options for Type 2 Diabetes in
Adolescents and Youth (TODAY) studies compared young people with T2DM to healthy
controls and demonstrated a higher prevalence of cardiovascular disease (CVD) and
diabetic kidney disease (DKD) risk factors in the T2DM group [12,13]. Therefore, the main
microvascular diabetic complication is DKD, which develops in about 25–40% of T2DM
patients [14] and it is associated to a more rapid progression and poor prognosis in the
long term [15,16]. In DKD subjects, early-onset T2DM is also an independent risk factor
of end stage renal disease (ESRD) [17]. Faster progression to kidney damage is due to a
poor glycemic control and the coexistence of multiple risk factors such as hyperglycemia,
obesity, dyslipidemia, insulin resistance, hypertension, elevated serum uric acid, female
sex, and inflammation [18].

The natural history of DKD begins with renal hyperfiltration, characterized by an in-
crease in the glomerular filtrate rate (GFR) between 120 mL/min and 150 mL/min/1.73 m2,
renal hypertrophy, and, sometimes, microalbuminuria [19]. Hyperfiltration is the first
step of DKD, being primarily caused by obesity and impaired glucose tolerance [20]. The
increase of intraglomerular pressure causes hyperfiltration, leading to mesangial expansion
and glomerular basement membrane thickening [21]. These structural changes of the
kidney are typical of nephropathy (stage 1) and are already present after 1.5–5 years from
diabetes onset. Therefore, it represents a critical interval for risk factor reduction and
prevention of the rapid and aggressive progression of DKD [22]. These changes are often
reversible in the first years of the disease, depending on adequate metabolic compensation
and normalization of GFR. Stage 2 DKD presents with glomerular lesions on biopsy and
a GFR of 60–89% but no clinical signs; at this step, blood pressure and urine albumin
excretion remain in the normal range. After 5–10 years from the onset of diabetes, the early
DKD stage occurs (stage 3), characterized by microalbuminuria, defined as a urine albumin
excretion of 30–299 mg/day [23]. Microalbuminuria could be considered a predictive
element and/or biomarker of kidney damage; it may be already present in young people
with a mean duration of T2D of only six months as a consequence of longstanding periods
of misdiagnosis [24,25]. The regression to normoalbuminuria in patients with adequate
metabolic control, normal blood pressure, and favorable lipid profile may occur [26]; in con-
trast, in case of poor glycemic control, hypertension, and dyslipidemia, further progression
of damage occurs. Irreversible alterations related to the increased arterial blood pressure
cause progression to the following stage (called “overt diabetic nephropathy or stage 4”).
The main structural changes stage 4 related to kidney biopsy are diffuse and nodular
glomerulosclerosis and arteriolar hyalinosis and, it is described by the presence of albumin
≥ 300 mg/day and followed by accelerated GFR decline. Eventually, the progressive loss
of function leads ESRD, the stage 5 of DKD with GRF of under 15% [27].

Recently, the American Diabetes Association (ADA) has underlined the clinical impor-
tance of “persistent albuminuria” as a risk factor for nephropathy and CVD. Approximately
50% of patients with persistent albuminuria develop ESRD over 7–10 years after the onset
of DM [28]. The rapid decline of GFR is equally important to microalbuminuria as a risk
factor for DKD progression. GFR below 60 mL/min/1.73 m2 indicates the loss of half
renal function with a small number of functioning glomeruli. For this reason, an annual
measurement of estimated GFR is recommended to monitor and prevent ESRD [29].

Moreover, it is of pivotal importance distinguishing between DM-related and non-DM
related forms of kidney disease in DM subjects, as different diseases require different
clinical management, especially for the most aggressive form of kidney impairment [30].

However, it is mandatory to point out that a significant percentage of patients do not
follow the classic trajectory of hyperfiltration, microalbuminuria, proteinuria, and decline
in GFR [31]. Accordingly, an accelerated GFR decline has been described in T2DM patients,
even in the absence of proteinuria [32]. Therefore, it is necessary to identify an alternative
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biomarker to microalbuminuria that can predict early risk of DKD and prevent permanent
renal injury and refractoriness to common therapeutic options in T2DM children.

This article provides an overview of the main pathogenetic mechanisms involved
in T2D aggressive nephropathy, as well as the currently available management options
to reduce DKD risk. The discussion begins by describing correlation between DKD and
CV risk and then discusses the pathophysiology and novel therapeutic targets to improve
glycaemic control, hypertension, the lipid profile, and the progression of renal disease.
These data are useful for research and clinical practice and provide novel and recent
information on the new therapeutic target discovery and the development of potential
novel therapies slowing progression of the aggressive DKD in youth onset type 2 diabetes.

2. Methodology
2.1. Literature Search

A literature review following PRISMA [33] (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines was conducted in the PubMed gateway of the
MEDLINE database and Clinicaltrials.gov. This research identified all articles published in
English, in peer-reviewed journals from January 2000 to May 2021.

We used the following terms and mesh headings for the bibliography search: (“Dia-
betic Kidney Disease” OR “Diabetic Nephropathy”) AND (“T2DM” OR “Diabetes Mellitus”
OR “Diabetic”) AND (“Young” OR “Children” OR “Adolescence” OR “Adolescents”). The
reference list of each article and gray literature was scrutinized for additional relevant
articles. We collected search results in an Endnote library.

2.2. Study Selection Criteria and Procedure

DKD definition was indicated as evidence of kidney damage related to DN, defined as
the presence of an alteration of kidney function in diabetic patients, diagnosed by an altered
estimated glomerular filtration rate (eGFR) for at least three months, provided that other
causes of CKD are excluded (e.g., rapid decreases of eGFR and/or significant increases
in albuminuria, refractory hypertension, hematuria, nephrotic or nephritic syndromes,
among others) [34,35]. CKD, in turn, was indicated according to the National Kidney
Foundation-Kidney Disease Outcomes Quality Initiative (NKF KDOQI) guidelines by the
presence of a reduced GFR < 90 mL/min/1.73 m2 or the persistence of hyperfiltration
and/or urinary abnormalities (such as pathological albuminuria, proteinuria or hematuria)
in subjects with GFR ≥ 90 mL/min/1.73 m2 [36].

The definition of Young-onset T2DM was defined as T2DM in people aged <40 years [37].
By screening abstracts, two reviewers (G.G. & A.E.G.) independently assessed the eligibility
of each article. Disagreements were resolved by discussion between the two reviewers
or by consulting a third author (G.C.). We only included studies meeting the following
criteria: (1) Interventions were therapies for T2DM. (2) Outcomes of study must include
pharmacological therapies potentially useful to slow the progression of the disease in
patients with Youth-Onset T2DM. Exclusion criteria were observational studies, case
reports, letters to editors, editorials, posters, studies not providing short- or long-term data
on the outcomes of interest. Studies were considered regardless of drugs dosage or if the
comparator was a placebo or standard treatment.

2.3. Search Results

Figure 1 shows the flow diagram of the study selection process. From 1095 unique
identified studies identified (1158 including duplicates), we find 82 additional records
through personal research and citation searching.
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Figure 1. Flow diagram of the study selection process. From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC,
Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71,
doi:10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/.

We identified 194 studies for the full text screening. After further screening full texts,
55 studies were identified for our review. Main characteristics of the included studies are
described in Figure 1.

3. Correlation between DKD and CV Risk

DKD is associated with a very high CV (CV) risk and greater mortality rate than
diabetic patients without renal damage [38]. The increase in mortality is a result of the
higher incidence of major fatal and non-fatal CV events (MACEs) and worsening of the
GFR [39]. The cardiorenal risk has been defined as the risk of progression of CV events
(MACE or heart failure) and DKD that remains after the optimal glycemic control in
T2DM [40].

Several studies demonstrated that nephropathy and CV risk is closely associated with
reduced GFR and increased early markers for kidney damage as albuminuria excretion.

http://www.prisma-statement.org/
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This important cardiorenal risk marker determines inflammatory phenomena resulting
in overall glomerular damage [41,42]. Even at the lower concentrations represented by
microalbuminuria, albuminuria is considered an expression of endothelial damage and
consequent increased systemic vascular permeability involving both glomerular and tubu-
lar structure and, at the same time, the endothelium that increased CV risk [43]. DKD
perturbs the hemodynamic stability of CV system, increasing the risk of acute coronary
syndromes [44].

A determinant link between DKD and CV risk is represented by the systemic vascular
damage consequent to microalbuminuria [45,46]. The impact of albuminuria reduction on
the CVCV outcome through the use of different drug classes is the most interesting topic of
recent research [47].

A central role in the onset of proteinuria is the alteration of the glomerular endothelial
glycocalyx; it represents an early event of diabetic damage due to the effects of hyper-
glycemia and the increased permeability of the glomerular filtration barrier of serum
proteins [48]. Mitochondrial dysfunction of podocytes also plays a key role in the loss of
the selective permeability of the glomerular membrane and the development of microalbu-
minuria, and it could be triggered by various mechanisms involving intracellular homeosta-
sis [49,50]. In the pathogenesis of albuminuria in DKD, the reduced tubular reabsorption
of albumin has been described and associated with the degree of renal dysfunction [51].
Nevertheless, the association of increased albuminuria with all-cause mortality and CVCV
mortality in the general population remains controversial and poorly understood and at
high risk of being undertreated. Recently, several potential biomarkers seem to play a
role in the progression of DKD. Although albuminuria/proteinuria remain the most used
markers of DN, the role of oxidative stress in the development of vascular damage in
T2DM has been described, but it is not clear how its products could be included among
renal markers in both clinical practice and clinical trials [52,53].

Several studies have shown how proteinuria and micro/macroalbuminuria are prog-
nostic factors for the onset and worsening of DKD and CV disease. Minutolo R. et al. have
recently been conducted a pooled analysis of four cohort studies, enrolling chronic kidney
patients (CKD) treated with RAS inhibitors therapy to compared the risk of all-cause mor-
tality, fatal and non-fatal CV events and ESRD between diabetic and non-diabetic patients
stratified by proteinuria level. They concluded that non-proteinuric DKD patients do not
have higher cardiorenal risk when compared with their counterpart non-diabetic patients.
In contrast, moderate proteinuria entails a higher CV morbidity and mortality only in
DKD patients, whereas severe proteinuria levels modulate the ESRD risk independent
of diabetes. This study provides novel information on CV and renal prognosis in DKD
patients referred to nephrology clinics; in fact, the effect of diabetes only emerges in the
presence of moderate proteinuria and the finding was that proteinuria was a major modifier
of prognosis [54].

In DKD patients, the therapeutic approach requires simultaneous treatment of global
CVCV risk factors rather than a single risk factor to significantly improve above hard
outcome with a short intervention, and a long durability of protection [55]. Nephropathy
in Diabetes type 2 (NID-2) multicenter, cluster-randomized, open-label clinical trial demon-
strates that in DKD patients at very high CVCV risk, intensive multifactorial treatment
(MT) significantly reduces the risk of MACEs versus standard of care [56]. The factors
correlated to the progression of nephropathy in diabetic patients are hypertension, poor
glycemic control, dyslipidemia, proteinuria levels, obesity and smoking and glycemic
control has long been though fundamental to diabetes management to reduce diabetes
complications. Nevertheless, intensive glycemic control (IGC) has controversial effects in
reducing the macrovascular complications associated with T2D. In conclusion, in DKD
an effective therapy must not be limited to the management of hyperglycemia alone, but
also of the other main risk factors to improve the mortality and CV outcome in diabetic
patients [57].
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4. Risk Factors for DKD in Youth with T2DM: An Epigenetic and Genetic Possible Link?

Young individuals with early onset of diabetes have a major risk for macrovascular
and microvascular complications, secondary to longer disease exposure and potentially
influenced by a genetic predisposition [58]. Juvenile T2D nephropathy occurs earlier in
life compared to T1DM-related nephropathy of children or T2DM-related nephropathy
of adults. The reason is that T2DM young people have multiple coexisting risk factors,
including obesity, hyperglycemia, dyslipidemia, insulin resistance, hypertension, female
sex, and inflammation. Youth onset T2DM patients also have a strong hereditary compo-
nent often unmasked by social and environmental risk factors [59]. The most common
comorbidities in children, especially in the USA, are obesity and increased body mass
index (BMI). Their prevalence continues to escalate, and they are much more common in
youth-onset T2DM than those with T1DM. Obesity is associated with insulin resistance
(IR) and consequent poor glycemic control, defined as an HbA1c ≥ 9.5% [60]. In the
initial pathogenesis of T2DM, pancreatic beta cells can increase the secretion of insulin and
compensate IR maintaining good glycemic control. Then, pancreatic beta cells function
declines, and the compensatory hyperinsulinemia is insufficient to compensate IR, resulting
in hyperglycemia. The latter was reported in 27% of youth with T2DM, and it is more
commonly observed among ethnic minorities and children with a family history of T2DM
in relatives [61]. Markers of IR are acanthosis nigricans and polycystic ovarian syndrome
(PCOS). Acanthosis nigricans is characterized by hyperpigmented patches in the intertrigi-
nous area, and it is a useful guide for screening children at risk for hyperinsulinemia. Some
studies have shown that PCOS results from an excessive action of insulin on the ovary.
It is a common disorder of premenopausal women characterized by hyperandrogenism,
micro-polycystic aspect of the ovaries and anovulation. This syndrome has, therefore,
reproductive, and metabolic morbidities [62].

Hypertension, defined as a condition with systolic or diastolic blood pressure over
the 90th percentile, is present in youth with T2DM more often than those with T1DM. It
appeared resistant to treatment and associated with male gender, increased BMI [63], left
ventricular hypertrophy that appears after a few years from diagnosis [64]. Dyslipidemia
is defined as an low-density lipoprotein (LDL) ≥ 130 mg/dL, high-density lipoprotein
(HDL) < 40, hypertriglyceridemia, or use of LDL-lowering therapy. It has become a more
frequent clinical condition in children and adolescents with T2DM than T1DM or adult-
onset T2DM due to the increase in obesity prevalence and sedentary lifestyle. Dyslipidemia
at this age range may be predominantly environmental (diet and lifestyle) and genetic
related. It may be an extremely severe condition associated with major and early CVDs [65].

Hypertension, hyperinsulinemia, glucose intolerance, decreased HDL, and increased
LDL and triglycerides are a cluster of metabolic abnormalities constituents of the “metabolic
syndrome”, also called “syndrome X” or “syndrome of insulin resistance”. Children with
T2DM have one or more features of metabolic syndrome. Furthermore, hypertension, dys-
lipidemia, and metabolic syndrome in T2DM children and adolescents are more aggressive
and often diagnosed with delay, compared to T2DM adults or T1DM [66]. For this reason,
T2DM children receive delayed treatment and become poorly responsive or resistant to
medications. The resistance to treatments has been associated with a rapid loss of cell
function and a worse disease progression [67].

Other risk factors for youth-onset T2DM are genetic predisposition, maternal history
of diabetes, gestational DM and/or early puberty in girls. According to epidemiological
studies, puberty is associated with insulin resistance because it has been demonstrated that
GH secretion in a patient with a genetic predisposition of T2DM is probably responsible
for the reduction of insulin action and consequent glucose intolerance at the mean age of
this condition [68].

These mechanisms can be guided by genetic and non-genetic factors influencing gene
expression. The non-genetic factors include the epigenetic causal interactions between
genes and their products. Epigenetic factors have been also demonstrated to be associated
with risk of both T1DM and T2DM development [69,70]. Changes related to puberty
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seems to have a possible direct influence on DKD lesions progression: the increasing
of blood pressure, dysregulation of growth hormone-insulin-like growth factor I axis,
overproduction of sex steroids [71].

Further epigenetic mechanisms contribute to DKD evolution, based on chromatin
histone alterations, DNA methylation and non-coding RNAs, sustained by environmental
factors [72]. Genome-wide association studies (GWAS) isolated a small number of genes,
loci, and single nucleotide polymorphisms that can be related to DKD development [73,74].
Beyond the limit of the scarce number of gene-related factors that directly influence the
DKD susceptibility and progression, their group demonstrated a promising role of genetic
and epigenetic loci expression. Moreover, the Susztak laboratory developed kidney-specific
epigenome maps and tissue-specific expression quantitative trait loci maps to isolate renal
disease GWAS loci. A combination of the findings of these data sets’ maps showed
consistent common genes involved in the development of diabetic complications [75,76].

A better understanding of these epigenetic and genetic mechanisms may lead to more
effective strategies to treat DKD in young population at higher risk of disease progression.

5. Pathogenic Mechanisms

The pathophysiology of T2DM is characterized by an alteration in the equilibrium
between insulin sensitivity and insulin secretion. T2DM results from the gradual decrement
of β-cell activity and a crescent insulin resistance. Young patients with glucose imbalance
demonstrate a higher impairment of insulin secretion compared with a reduction of insulin
sensitivity [77].

A major cause of DKD development is represented by insulin resistance. This condi-
tion is clinically identified as the failure of exogenous/endogenous insulin to increment
glucose uptake and utilization in as it does in an average population [78]. This resistance
to the metabolic effect of insulin is tightly linked to other diseases such as dyslipidaemia,
hypertension, and metabolic syndrome [79,80]. A dysregulation of insulin homeosta-
sis contributes to lipoprotein and hepatic lipase inhibition, causing apolipoprotein and
triglycerides to increase, particularly triglyceride-rich Very-low-density lipoprotein (VLDL)
particles [81].

Patients presenting abnormal levels of these particles present a higher atherogenic
plaque formation risk, with a decrease in HDL levels and a worsening of inflammatory
status [82]. In fact, HDL presents a pivotal role in vascular health, preventing and reversing
monocyte recruitment and activation into the arterial wall and regulating the expression of
endothelial adhesion molecules [83].

These processes associated to insulin resistance contribute to a major risk of hyper-
tension: a recent meta-analysis demonstrated that insulin resistance is independently
associated with a higher risk of hypertension in the general population [84]. The link
between insulin resistance and hypertension can be partially explained by the fact that
this condition can induce renal sodium retention [85], contributes to overactivation of
renin-angiotensin system [86,87], increases sympathetic nervous system activity [88], and
stimulates peripheral and renal vascular resistance [89,90].

Atherosclerosis homeostasis can also be regulated by adipokines action, a family of
adipose tissue-generated cytokines [91]. These molecules present a key role in inflam-
mation mediation and the development of insulin resistance. Adipokines are defined as
factors secreted by adipose tissue, exerting pro- and anti-inflammatory actions [92]. One
example is represented by tumor necrosis factor alfa (TNF), which is overexpressed in the
adipose tissue, promoting inflammation and antagonizing the insulin signaling [93,94].
Furthermore, interleukin-6 and interleukin-18 contribute to inflammatory upregulation, ac-
celerating DKD evolution and kidney damage, directly affecting podocytes and worsening
urinary albumin excretion rate [95,96].

Leptin represents another adipokine involved in metabolic syndrome and insulin
resistance mechanisms. It controls appetite through an influence on the central nervous
system [97] and seems to reverse insulin resistance and control dyslipidemia in experi-
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mental models [98]. Another major role in insulin resistance is represented by Neutrophil
Gelatinase-Associated Lipocalin (NGAL), which is also linked to atherosclerosis and in-
flammatory processes [99]. At the same time, another adipokine, Plasminogen activator
inhibitor 1 (PAI1), seems also correlated to T2DM development [100] and CV disease.

Lack of adiponectin, another group of adipokines, is linked to vascular endothelial
damage and insulin resistance, with a major risk of atherosclerotic plaque formation,
playing a major role as anti-inflammatory hormone [101,102]. Lower adiponectin levels
are negatively associated with the risk of obesity and metabolic syndrome [103,104]. In
DKD patients, adiponectin showed a renoprotective function, translated in a reduction of
albuminuria, glomerular hypertrophy, foot process effacement, regulation of mammalian
target of rapamycin (mTOR) pathway, kidney inflammation mediators and modulates
angiotensin II effects at renal tubular level [105,106].

The natural history of DKD shows an analogy with the progression of pancreatic islet
β-cell failure in T2DM, such as hypertrophy of pancreatic islets, a proliferation of β-cells
associated with inflammatory responses, and subsequent loss of β-cells by apoptosis and
fibrosis of the pancreatic islets [107].

DKD is the consequence of several overlapping pathogenic mechanisms caused by
early-onset type 2 diabetes. The main factors triggering the dysregulation of DKD pathways
comprehend persistent hyperglycemia, obesity-related factors, β-cell failure, and insulin
resistance. Both murine and human studies demonstrated that the increased cellular sugar
concentration is the primary trigger leading to ESRD progression [108].

The Research Committee of the Renal Pathology Society proposed a pathologic classi-
fication of DKD depending on various degrees of disease severity [109] (Table 1).

Table 1. Histological staging of diabetic glomerulopathy.

Class I Class II Class III Class IV

GBM thickening alone,
GBM > 430 nm in men and

>395 nm in women.

Mesangial expansion present
in >25% of the mesangium

Nodular sclerosis,
characterized by the presence
of Kimmelstiel–Wilson lesions

but <50% diffuse global
glomerulosclerosis

Advanced diabetic
glomerulosclerosis, defined as

>50% diffuse global
glomerulosclerosis with or

without nodules

Abbreviations: GBM = glomerular basement membrane.

In DKD patients, endothelial cells cannot downregulate their glucose transport, lead-
ing to an unbalanced intracellular glucose alteration [110].

High blood glucose leads to tissue damages by an increase of mitochondrial super-
oxide generation. Elevated intracellular superoxide activates poly (ADP-ribosyl)ation of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by poly(ADP-ribose) polymerase
(PARP) that inhibits GAPDH [111,112]. The overproduction of glycolytic metabolites linked
to Glyceraldehyde-3-P accumulation stimulates pro-oxidative mechanisms such as polyol
and hexosamine [113] pathways: the accumulation of polyols in the mesangium provokes
excessive matrix proteins deposition and mesangial expansion [114].

This dysregulated glycolytic metabolites production also promotes the formation of
advanced glycation end-products species (AGEs) [115,116].

Specific AGEs receptors are present in both kidney podocytes and endothelial cells: in-
tracellular formation of AGEs induce glomerular, endothelial dysfunction, and macrophage
activation [117]. AGEs induce cell damage and alter the cellular proteins that regulate gene
transcription, leading to cell cycle arrest and apoptosis. AGEs provoke a dysregulation
between the production and removal of extracellular matrix proteins, causing a pathologic
accumulation of collagens, fibronectins, and laminins [118]. Moreover, AGEs receptors pro-
mote inflammatory damage activating the JAK/STAT pathway. This mechanism stimulates
the production of profibrotic cytokines and growth factors via the Receptor for Advanced
glycation end-products species (RAGE) [119].
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Hyperglycemia promotes the action of aldose reductase enzyme that reduces glu-
cose in sorbitol, consuming nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH) [120]. NADPH is an essential cofactor for intracellular antioxidant regener-
ating, its decrement increases the intracellular oxidative stress [121].

The inflammatory response secondary to the hyperglycemic stress also leads to inter-
stitial and glomerular macrophages infiltration. This accumulation is linked to a harmful
cytokines cascade production, including TGF-β and necrosis factor tumor-alpha (TNF-a),
leading to an accelerated declining of renal function [122].

At the renal level, hyperglycemia triggers Protein kinase C beta type (PKC-beta) and
Protein kinase C delta type (PKC-delta). This process also stimulates the production of
Interleukin-6 and Tumor Necrosis Factor-α from endothelium and mesangium [123,124].

PKC stimulation involves a considerable variety of pathogenic mechanisms: (1) Lower
endothelial nitric oxide (NO) expression and increasing of endothelin-1 (ET-1), vasoconstric-
tor causing flow alterations; (2) Vascular endothelial growth factor (VEGF) over expression,
with an increase in vascular permeability and angiogenesis; (3) TGF-β, fibronectin, and
collagen increments, causing an extracellular matrix expansion and capillary occlusion;
(4) PAI-1 growth that increases fibrinolysis and the risk of vascular damage; (5) Nuclear fac-
tor kappa-light-chain-enhancer of activated B cells (NF-kB) that promotes pro-inflammatory
genes expression, promoting apoptosis and inflammatory process [125]; (6) NAD(P)H-
NADPH oxidized increase resulting in reactive oxygen species (ROS) production [126–128].

Persistent hyperglycemia not only leads to PKC and AGEs-related inflammatory dam-
age, but also several dangerous pathways, leading to a worsening of kidney impairment.
A dysregulated glycemic control stimulates an overexpression of Janus kinase/signal trans-
ducers and activators of transcription (JAK/STAT) signaling pathway, transforming growth
factor-beta1/SMAD pathways, Wnt/β-catenin signaling pathway, Integrins/integrin-
linked kinase (ILK) signaling pathway, MAPKs signaling pathway, Jagged/Notch signaling
pathway all driving to the formation of proinflammatory molecules, extracellular matrix
deposition, and myofibroblast proliferation [129].

6. Prevention of DKD and Potential Therapies

The prevention of DKD at a young age is an important challenge based on the pro-
tection of all those risk factors that contribute to the development and progression of
this dreaded intravascular complication of diabetes. Often the onset of DKD occurs in
about 7–10 years [130]. Therefore, the importance of early detection of these risk factors is
essential to improve their quality of life.

These risk factors consist of increased blood pressure, altered lipid profile, chronic
state of hyperglycemia, and an unhealthy lifestyle [131], then we can act on them. The
intervention on these factors reduces the risk of DKD progression, the deterioration of
albuminuria, and renal impairment [132]. A rigorous control of the glycated hemoglobin
(HbA1c) values in patients with DKD is essential to prevent the progression of it, also
reducing CV events [133].

The ADVANCE study has highlighted this importance and how the control of serum
glucose levels leads to a reduction in the onset of albuminuria. Regarding the control of
hypertension, maintaining blood pressure under 145/80 mmHg leads to a lower incidence
of DKD [134]. Experimental studies demonstrated how this control permits the reduction
of proteinuria in diabetic mice, decreasing the glomerular damage [135].

Concerning lifestyle habits, exercise can improve other risk factors such as hyperten-
sion, dyslipidemia, insulin resistance, and CV risk in diabetic patients [136,137]. Further
modifications on lifestyle are smoking cessation [138], a healthy diet constituted by lower
intake of potassium, and salt [139,140]. The management of these risk factors related to
their early recognition is a crucial challenge for nephrologists, reducing the incidence
of DKD.

The therapeutic approach to DKD is characterized by a series of changes in life habits
and, if necessary, a pharmacological treatment to improve glycemic control, hypertension,
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the lipid profile, and the progression of renal disease [141]. Among lifestyle changes are
included the increase of physical activity, improvement in sleep restoration, and healthy
nutrition [142]. A high protein intake (above 1.3 g/day) is correlated with an increased
decline in kidney function, worsening of DKD with increased albuminuria and mortality.
Even a restrictive sodium intake can enhance the anti-protective effects supported by
ACEi [143]. A therapeutic scheme with metformin or orlistat is widely used in young obese
patients and in the presence of an important state of insulin resistance [144]. These multi-
factorial interventions play a crucial role in glycemic control, reducing microalbuminuria
and progression of overt DKD.

In the last years, novel therapeutic targets, leading to the discovery of promising
treatments, have been investigated [145].

Sodium-glucose co-transporter 2 (SGLT2) inhibitors are important emerging agents that
blocks glucose and sodium reabsorption in the kidney. SGLT2 is the major sodium-glucose
co-transporter, and it is located in the early proximal tubule. This important carrier leads
to the reabsorption of glucose and sodium. Therefore, its block brings glycosuria and
natriuria, which decreasing serum glucose and increases sodium delivery to the macula
densa, with consequent reducing tubuloglomerular feedback activation and renal blood
flow [146]. Among SGLT2i, Empagliflozin has been demonstrated to be well tolerated with
a sensible reduction in HbA1c levels in T2DM and CKD [147]. Currently, the scientific
community is waiting for results from Empa-Kidney trial, it should help us switch in the
pediatric population in the coming years.

Receptor agonists of glucagon-like peptide-1 (GLP-1) and dipeptidyl-peptidase IV (DDP-
IV) inhibitors (or gliptins) belonging to the new hypoglycemic agents. These drugs are
responsible for the incretin effect. GLP-1 leads to a fall in liver glucose production reducing
appetite and body weight [148]. Further action is antihypertensive, increasing levels of
atrial natriuretic peptide and improving endothelial cell function [149]. The inhibition
of sodium–hydrogen exchanger 3 (NHE3), which is situated in the cells of the proximal
convoluted tubule, contributes to an increase in natriuresis [150]. In animal studies, the
use of these molecules leads to a reduction in the activation of the renin–angiotensin–
aldosterone system (RAAS), which is one of the main stimuli for the onset of DKD. This
mechanism appears to improve also glomerular hemodynamics [151]. The DPP-IV inhibits
the enzyme dypeptilpeptidase responsible for the degradation of GLP-1. Besides the
hypoglycemic function, there is also an anti-hypertensive action, and the contribution in
maintaining an adequate lipid profile and reducing oxidative stress with an improvement
in endothelial cell response [152]. It also appears to be safe in patients who perform dialysis
treatment [153]. However, further research to confirm the clinical outcome in patients with
DPP-IV inhibitors treatment are needed [154].

Thiazolidinediones (TZDs) or Glitazones are potent activators of nuclear receptor gamma
(PPAR-γ), warranting an important hypoglycemic effect through an improved sensitiv-
ity to insulin [155]. The PPAR-γ are widely located in the adipose tissue, so a higher
activity of these receptors with TZDs administration, is involved in the reduction of insulin-
resistance [156,157]. This class of drugs shows pleiotropic effects beyond glucose-lowering.
The pioglitazone seems to reduce the CV risk through an anti-atherogenic action on the
vessel wall [158]. The main side effect of TZDs use is the gain of body weight either in
monotherapy or in association with insulin, metformin, and sulfonylureas. This effect
was limited to the association of TZDs with SGLT2i [159] or GLP1 [160]. More side effects
include water retention [161] with increased risk of heart failure and osteoporosis [162]. For
these reasons, the use of these drugs has been largely limited specially in juvenile diabetes,
although other trials would be needed to clarify their actions in the pediatric cohort.

Phosphodiesterase inhibitor (Pentoxifylline, PTF) reduces the production of tumor
necrosis factor (TNF-α) with consequent inhibition of cell proliferation. These drugs in-
hibit the phosphodiesterase pathway, bringing to increase of intracellular cAMP. However,
further studies to develop recommendations for its use are needed Vitamin D presents
an important role in the anti-inflammatory mechanism, immune response modulation,
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and RAAS inhibition [163,164]. In DKD renal tubular epithelial cells, vitamin D receptor
expression is downregulated. Pyridoxamine is a molecule belonging to the Vitamin B6
family and its activity is based on AGEs production and/or reducing oxidative stress. Fur-
ther studies are needed, however, to prove efficacy in slowing kidney disease progression
are necessary. This molecule seems to decrease the risk of intervertebral disc degenera-
tion [165], an important risk factor that can involve the people affected by T2DM [166].
Pirfenidone, Bardoloxone, and APX-115 molecules active on AGEs production. Bardoloxone
is a semi-synthetic product deriving from natural oleanolic acid. It is a potent activator of
Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2
(Nrf2) system leading to decrease the transcription of NF-kB and consequently the inflam-
mation process [167,168]. The Nrf2 is located in several districts with the highest expression
at the kidney level [169]. The activity of Nrf2 is reduced in CKD [170] and it is associated
with GFR improvement [171]. APX-115 is a drug belonging to NADPH oxidase (NOX)
inhibitor [172] studied DKD mice.

Molecules with effects on inflammatory and fibrosis pathways are Baricitinib and
Ruboxistaurin. Baricitinib, a selective JAK-1 and JAK-2 inhibitor.

ACE inhibitor, angiotensin II receptor blocker (ARB), Nonsteroidal mineralocorticoid
receptor antagonist (MRA), and Aliskiren are molecules that inhibit the RAS pathways.
Hyperactivation of this via leads to an increase of intraglomerular pressure creating vaso-
constriction at the level of efferent arterioles generating proteinuria, mesangial proliferation
and activation of the inflammatory process with final result of fibrosis [173,174]. Among
the most consolidated therapies for DKD is the use of ace inhibitors that are a blocker of the
enzyme of conversion of angiotensin I in angiotensin II, representing a cornerstone blocking
the renin angiotensin aldosterone system and limiting the previously seen damage cascade.
A double block-therapy with telmisartan and ramipril showed a worsening of nephropathy
and mortality [175]. Mineralocorticoid Receptor Antagonists (MRA) are widely used for
DKD treatment. Finerenone and Esaxerenone are a new generation of nonsteroidal MRA
that selectively block the receptor with a better safety profile without causing the side
effects (hyperkalemia and renal dysfunction) typical of this pharmaceutic class [176,177].
Aliskiren is a direct renin inhibitor that it protects against diabetic kidney disease.

Atresantan is a selective endothelial A receptor antagonist. Endothelin A is a powerful
vasoconstrictor factor that increases due to several damage mechanisms such as higher
level of glycemia, insulin resistance, and uncontrolled activity of RAAS. By contrast,
non-selective endothelin receptor antagonist, also inhibiting the endothelial B receptor,
increasing fluid retention with a greater incidence of heart failure [178].

Sulodexide (SXD) is glycosaminoglycan (GAG) with antithrombotic and profibri-
nolytic activity with renoprotective effect on diabetic patients.

Monoclonal antibodies (mAbs) are new molecules active on the main protein respon-
sible for DKD inflammation and fibrosis. Further studies to show their efficacy and safety
in DKD treatment are needed to understand their use in real life.

Stem cell therapeutic strategies are currently under investigation, but further and
larger studies are needed to establish the safety, feasibility, tolerability, and long-term effect.

Hypoxia-inducible factor prolyl hydroxylase inhibitor seems to open an important
key in renal protection in DKD patients.

Proprotein convertase subtilsin-kexin type 9 inhibitors (PCSK9i) are new lipid-lowering
drugs (monoclonal antibodies) that block enzyme PCSK9. This is a liver protease that
attacks LDL receptors, bringing their lysosomal destruction, leading to an increase in cir-
culating LDL [179]. Several trials have shown a familial hypercholesterolemia and earlier
cardiovascular disease in patients with activate mutation of PCSK9 [180,181]. The liver
is not the only manufacturing site of this protease; other particular locations are gut and
kidneys [182,183]. In patients undergoing peritoneal dialysis and with nephrotic syndrome,
higher blood PCSK values have been highlighted which leads to an increase in LDL in this
population [184].
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Evolocumab and Alirocumab are the only two drugs that are FDA-approved and
administered subcutaneously [185,186]. The PROFICIO trial has evaluated the safety of
Alirocumab, showing the main side effect related to the use of this drug, nasopharyngi-
tis [187]. In addition, the benefit to the lipid profile with the reduction of LDL values,
guarantees a dyslipidemia control which is present in many patients with metabolic syn-
drome and DKD. Further studies could open up new scenarios on the use of these drugs in
the management of metabolic syndrome, microalbuminuria and DKD.

Fibrates are drugs involved in the lipid and glucidic balance. Their action is based
on activation of Peroxisome proliferator-activated receptor-α (PPAR- α), decreasing the
triglyceride levels and consequently the atherosclerotic process [188,189]. These receptors
are ubiquitously located. In the renal tissue, the PPAR-α is expressed in several districts
like mesangium, proximal tubular cells and collecting duct [190–192].

These therapeutic approaches are summarized in Table 2.

Table 2. Therapeutic agents for DKD treatment: mechanisms of action and effects on renal outcomes.

Class of Drugs Mechanism of Action Effects on DKD Ref.

SGLT2 INHIBITORS

Block the sodium-glucose
co-transporter located in the proximal
tubule avoiding a reabsorption of
glucose and sodium

Reduction of microalbuminuria;
Slower progression of kidney disease
Decreased of HbA1C and serum glucose

[193,194]

GLP-1 AGONISTS Increase the insulin production and
decrease glucagon secretion

Improvement in glomerular hemodynamic reducing
RAAS activation and DKD incidence [195,196]

DPP IV INHIBITORS
Inhibit the dypeptilpeptidase
responsible for degradation of GLP1,
enhancing incretin effect

Improve endothelial function
Reduce the progression of albuminuria [197,198]

GLITAZONES Activate of PPAR-γ improving
insulin sensitivity Decrease microalbuminuria and inflammation process [199,200]

PENTOXIFYLLINES Inhibit the phosphodiesterase
increasing cAMP concentration

Reduce TNF-α
Slow urinary albumin excretion Increase
insulin sensitivity

[201,202]

VITAMIN D Anti-inflammatory mechanism also
modulating RAAS inhibition Reduce proteinuria and renal disease progression [203,204]

PYRIDOXAMINE Belonging to the vitamin B6 Decrease AGEs production and oxidative stress [205]

PIRFENIDONE Blocks TGF-β production and TGF
β-NADPH-induced ROS formation

Reduces the expression of TNF-α
Decreases mesangial expansion and glomerulosclerosis
showing antifibrotic effects
Improves the GFR of 25% in patient
with glomerulosclerosis

[206,207]

BARDOLOXONE Activates of Keap1 and Nrf2 leading
to decrease of NF-kb

Reduces inflammation process
Increases glomerular filtration rate [208,209]

APX-115 Inhibits NADPH oxidase May have an important anti-inflammatory action (only
experimental studies) [210,211]

BARICITINIB
RUBOXISTAURIN Inactivate JAK-1 and JAK-2

Reduce albuminuria, DKD progression and
inflammatory process
Ruboxistaurin works as PKC-β inhibitor reducing
albuminuria with normal GFR

[212,213]

ACE INHIBITORS
ARB
MRA
RENIN INHIBITORS

Inhibit the RAAS pathways

Reduce proteinuria, mesangial expansion and
DKD progression.
Telmisartan and Ibersartan limit the transition from
microalbuminuria to overt proteinuria about 60%.
Moreover, 70%
Spironolactone and Eplerenone reduce inflammation,
albuminuria and fibrosis
Finerenone shows a reduction of proteinuria, UACR
and tubular damage showing also the CV protection
Aliskiren decreases albuminuria and
glomerulosclerosis limiting the TGF-β action and
lipids accumulation

[214,215]
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Table 2. Cont.

Class of Drugs Mechanism of Action Effects on DKD Ref.

ATRESANTAN Selectively antagonizes endothelial
A receptor

Reduces insulin resistance
Downregulates fibrosis, inflammation pathways, and
DKD progression

[216,217]

SULODEXIDE
Glycosaminoglycan with
antithrombotic and
profibrinolytic activity

Reduces albuminuria and protects tubular cells from
oxidative stress [218,219]

MONOCLONAL
ANTIBODIES
(VPI-2690B, FG3019,
LY3016859)

The first target is Vitronectin receptor
The second target is tissue
growth factor
The third target is TGF-α

Decrease DKD inflammation and fibrosis
(Only phase II studies)

ClinicalTrials.gov
Identifier:
NCT02251067
ClinicalTrials.gov
Identifier:
NCT01890265
ClinicalTrials.gov
Identifier:
NCT01774981

STEM CELLS Mesenchymal stem cells Reduce albuminuria, fibrosis and ICAM-1 (only
experimental studies) [220]

HYPOXIA-INDUCIBLE
FACTOR INHIBITORS

Inhibit Hypoxia-inducible factor
prolyl hydroxylase decreasing NF-kb

Downregulate renal fibrosis and inflammation process
Reduce the tubulointerstitial sclerosis due to
hypoxia exposure

[221,222]

PCSK9 INHIBITORS
Monoclonal antibodies that block
PCSK9 enzyme decreasing LDL blood
concentration

Reduce the microalbuminuria and metabolic syndrome
Decrease [223]

FIBRATES Activate the PPAR-α decreasing
triglyceride levels

Decrease albuminuria value and metabolic syndrome
Show less CV risk and heart attack in patient
with diabetes
Limit the albuminuria onset and progression

[224,225]

Abbreviations: DKD = diabetic kidney disease; SGLT2 = sodium-glucose co-transporter 2; HbA1C = glycated hemoglobin; GLP1 = glucagon-like
peptide-1; RAAS = renin-angiotensin-aldosterone system; DPP IV = dypeptilpeptidase IV; PPAR-γ = peroxisome proliferator-activated
receptor gamma; TNF-α = tumor necrosis factor alfa; cAMP = cyclic adenosine monophosphate; AGEs = advanced glycation end-products;
TGF-β = transforming growth factor beta; NADPH = nicotinamide adenine dinucleotide phosphate; ROS = reactive oxygen species;
UACR = urinary albumin creatine ratio; GFR = glomerular filtration rate; CV = cardiovascular; Nrf2 = nuclear factor erythroid 2-related
factor 2; NF-kb = nuclear factor kappa-light-chain-enhancer of activated B cells; PKC-β = protein kinase C-beta; JAK-1 = janus kinase 1; JAK-
2 = janus kinase 2; ICAM-1 = intercellular adhesion molecule 1; PCSK9 = proprotein convertase subtilisin/kexin type 9; LDL = low-density
lipoprotein; PPAR-α = peroxisome proliferator-activated receptor alfa.

7. Conclusions

In juvenile DKD, the contemporary presence of several comorbidities and the conse-
quent risk of development aggressive nephropathy can determine a reduction in the quality
of life and an increase in mortality rates, despite shorter disease duration than T1DM and
comparable glycemic control [226].

Regarding those T2DM young patients at major risk of aggressive nephropathy, the
study of a proper strategy to combine different hypoglycaemic drugs, alone or associated
with insulin therapy, is of pivotal importance.

The study of new therapeutic target discovery and the development of potential novel
therapies is still under evaluation but the results from most recent studies are promising.
An ideal therapy should guarantee a slowing progression of the diseases and maintain
great flexibility in the timing of meals and daily activities for young patients, avoiding
potential lethal hypoglycemic levels, thereby enhancing patients’ quality of life.
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