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Although the successful clinical trials of immunotherapy show
promising strategies for many cancers, its application in gli-
oma has lagged in comparison with the progress seen in other
cancers. Both isocitrate dehydrogenase (IDH) mutations and
1p/19q codeletions are critical molecular alterations affecting
therapeutic response in lower-grade glioma (LGG). The sys-
tematic and comprehensive characterization of the immuno-
logical phenotypes with different molecular subtypes is key to
improving our understanding and application of immunother-
apies in LGG. Here, we collected the RNA-sequencing, somatic
mutation, and clinical data from 1,052 patients from The Can-
cer Genome Atlas and Chinese Glioma GenomeAtlas and strat-
ified patients into three genetic subgroups: IDH mutations
with 1p/19q codeletions (IDH mut-codel), IDH mutations
without 1p/19q codeletions (IDH mut-noncodel), and IDH
wild-type. Our evaluations revealed that IDH mutations and
1p/19q codeletions were associated with distinct immunolog-
ical tumor microenvironments in LGG. In addition, immune
cell infiltration, the expression of immune checkpoint and hu-
man leukocyte antigen (HLA) gene, and the activity of immune
signaling pathways shared gradual increase from IDH mut-co-
del to IDH wild-type. We further constructed and validated an
immune-related prognostic signature that presented high value
in predicting the overall survival time in LGG. In conclusion,
our study may provide valuable information for immuno-
therapy strategies in LGG patients.

INTRODUCTION
Glioma is the most commonly diagnosed primary malignancy of the
central nervous system and is characterized by aggressive malignant
proliferation and invasion.1 Although grades II and III gliomas are
often collectively described as diffuse lower-grade gliomas (LGGs),2

there are substantial heterogeneities among these tumors in terms
of both biology and clinical outcome. Comprehensive and integrative
genomic analysis has revealed hundreds of molecular alterations in
LGG.2 Among these changes, mutations in the isocitrate dehydroge-
nase (IDH) gene, and codeletions of chromosome arms 1p and 19q
(1p/19q codeletion) are of particular concern. According to the new
classification by the World Health Organization (WHO), diffuse
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LGGs are divided into three molecular subtypes based on IDH muta-
tion and 1p/19q codeletion status: (1) wild-type IDH, (2) IDH muta-
tion without 1p/19q codeletion, and (3) IDH mutation with 1p/19q
codeletion.3 Of these subtypes, IDH wild-type tumors are known to
be the most clinically aggressive with the worst prognosis, followed
by IDH mutation alone, and then IDH mutation with 1p/19q codele-
tion. This new classification has recently been demonstrated tomirror
the biological characteristics of these LGGs.

Immunotherapy, especially immune checkpoint inhibitors (ICIs), has
achieved great success in several extracranial cancers resulting in a
clear motivation for their application in glioma. Responses to immu-
notherapy usually depend on interactions between tumor cells and
the tumor immune microenvironment.4 Notably, the associations
of specific molecular subtypes and their interaction with the tumor
immune microenvironment have been reported for several tumor
types. For example, HER-2 positive and triple-negative breast cancers
are both reported to be associated with increased immune cell infiltra-
tion.5,6 In non-small cell lung cancer (NSCLC), Kirsten rat sarcoma 2
viral oncogene homolog (KRAS) mutations are associated with
increased immune infiltration, whereas epidermal growth factor re-
ceptor (EGFR) mutations are essential to the generation of T regula-
tory (Treg) and tolerogenic dendritic cells (DCs).7,8

We hypothesized that the three glioma subtypes classified by IDH
mutation and 1p/19q codeletion status may also produce with distinct
tumor immune microenvironments. In this study, we aimed to char-
acterize the immune profile of wild-type IDH, IDHmutation without
1p/19q codeletion, and IDH mutation with 1p/19q codeletion
ors.
://creativecommons.org/licenses/by-nc-nd/4.0/).
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subtypes using bioinformatics-based evaluations of two independent
datasets from The Cancer Genome Atlas (TCGA) and Chinese Gli-
oma Genome Atlas (CGGA) databases. We also aimed to determine
the prognostic impact of the tumor-infiltrating immune cells on these
subtypes and to develop and validate an immune-related risk signa-
ture, which might serve as an independent prognostic indicator dur-
ing clinical evaluation.

RESULTS
The immune landscape in LGG subtypes stratified according to

IDH mutation and 1p/19q codeletion status

The composition of the immune cell population modulates a diverse
range of immune responses and contributes to the anti-tumor effects
of immunity by infiltrating tumors with immunoreactive cells. Accu-
mulating evidence suggests that different molecular subtypes are
associated with distinct immune cell infiltration patterns. In this
study, a single sample gene set enrichment analysis (ssGSEA) was
used to determine the immune heterogeneity among IDH wild-
type, IDH mut-noncodel, and IDH mut-codel tumors. We generated
a heatmap to visualize the relative abundance of 28 infiltrating im-
mune cells in each tumor type and then used this data to guide our
other evaluations. Overall, the IDH wild-type samples from the
CGGA cohort were shown to present with a high degree of immune
cell infiltration, suggesting that they adopt an immune-hot pheno-
type, whereas IDH mut-codel samples produced a low degree of im-
mune cell infiltration suggesting that they have an immune-cold
phenotype (Figure 1A). These observations were then validated in
TCGA cohort (Figure 1B).

We then evaluated the proportion of immunoreactive and immuno-
suppressive cells in each of these populations. Interestingly, although
the IDH wild-type was shown to present with an immune-hot pheno-
type, the infiltrating cells were shown to be largely associated with
immune suppression (regulatory T cell, MDSC, neutrophil, macro-
phage, etc.) as opposed to immune activation (e.g., activated B cell,
activated CD4 T cell, activated CD8 T cell, effector memory CD8
T cell, natural killer cell, etc.). However, the opposite was true for the
IDHmut-noncodel and IDHmut-codel subtypes (Figures 2A and 2B).

In addition, the immune and stromal scores both shared a gradual in-
crease between the IDH mut-codel to the IDH wild-type subtypes,
whereas tumor purity demonstrated a gradual decrease (Figures
2C–2E).

GSEA identified a variety of changes in the immune-related

signaling pathway activations between IDH wild-type and IDH

mut-codel subtype tumors

We next evaluated the differences in the signaling pathways activated
in the IDH wild-type and IDH mut-codel subtype samples using
GSEA. These evaluations revealed that various gene sets were differ-
entially enriched in the IDH wild-type samples within the CGGA
database and that these gene sets were closely associated with the
regulation of immune signaling pathways, such as the B cell receptor
signaling pathway, the leukocyte transendothelial migration pathway,
the natural killer cell-mediated cytotoxicity, and the T cell receptor
signaling pathways (Figure 3A). These results were further confirmed
in TCGA database (Figure 3B).

In line with Kyoto Encyclopedia of Genes and Genomes (KEGG) re-
sults, gene ontology (GO) functional analysis also revealed that the
IDH wild-type was associated with the immune-related signaling
pathways (Figures 3C and 3D). In the biological process group, the
gene sets were mainly aggregated in the B cell receptor signaling
pathway, T cell migration, adaptive immune response, neutrophil
migration, T cell differentiation, and the antigen receptor-mediated
signaling pathway.

Prognostic impact of changes in immune checkpoint expression

and immunosuppressive cell infiltration in LGG patients

Clinical data show that IDH wild-type gliomas are clinically aggres-
sive and present with the worst prognosis, followed by IDHmut-non-
codel and IDH mut-codel.3 Survival data from both CGGA and
TCGA cohorts were consistent with these findings (Figure 4A).

Numerous studies have demonstrated a clear link between high im-
mune cell infiltration and favorable clinical outcomes in several
cancers. Notably, our study identified that IDH wild-type samples
present with an immune-hot phenotype but have a poor prognosis,
whereas IDH mut-codel subtype samples present with an immune-
cold phenotype but have more favorable clinical outcomes. We
hypothesized that the abundance of immune checkpoints and sup-
pressor cells contributed to the poor prognosis of the IDH wild-
type tumors. Indeed, the immune checkpoints (e.g., PD-L1, PD1,
CTLA-4, LAG3, and TIM-3) in the CGGA dataset were shown to
share a gradual increase in expression from the IDH mut-codel to
the IDH wild-type samples (Figure 4B). Moreover, overexpression
of immune checkpoints was correlated with poorer prognosis in
LGG (Figure 4C). In line with the immune checkpoint data, the pro-
portion of immunosuppressive cells was shown to be enriched in IDH
wild-type samples when compared to the IDH mut-noncodel and
IDH mut-codel subtypes (Figures 2A and 2B). A high proportion
of these immunosuppressive cell types (e.g., Treg, macrophage,
myeloid-derived suppressor cell, neutrophil, immature dendritic
cell, and plasmacytoid dendritic cells) was associated with poorer
clinical outcomes (Figures 5A–5F).

Differences in MHC class I gene expression and tumor mutation

burden (TMB) in samples with IDH wild-type, IDHmut-noncodel,

and IDH mut-codel subtypes

Tumor-related antigen presentation via the major histocompatibility
complex (MHC) class I complexes, TMB, and microsatellite insta-
bility (MSI) are all prerequisites for effective immune surveillance
and are essential for the clinical outcomes associated with immune
checkpoint blockade therapies. Given this, we evaluated the expres-
sion of the human leukocyte antigen (HLA) genes encoding the
MHC class I proteins in the different molecular subtypes in the
CGGA-LGG cohort and then validated these data with an indepen-
dent evaluation of TCGA cohort. All analyzed HLA genes shared a
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Figure 1. The immune cell landscape in different molecular subtypes of LGG

(A) Heatmap visualization of the relative abundance of 28 infiltrating immune cell types in the CGGA database data. (B) These results were further validated in TCGA database.

Each small grid represents each immune cell, and the shade of color represents the infiltration level of this immune cell. The larger infiltration level is, the darker color will be (red

is upregulated, and green is downregulated).
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Figure 3. Functional enrichment between wild-type and IDH mut-codel LGG data

(A and B) KEGG signaling pathway enrichment analysis of CGGA (A) and TCGA datasets (B). (C and D) Gene Ontology (GO) enrichment analysis of CGGA (C) and TCGA

datasets (D). The x axis represents normalized enrichment score, and the y axis is GO term. The size of the dot represents –log10(p value), and the color of the dot represents

different subtypes.
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gradual decrease in expression between the IDH wild-type and IDH
mut-codel subtypes (Figure 6A), indicating that patients with IDH
wild-type might benefit more from immune checkpoint blockade
therapy.
Figure 2. The proportion of immune cells and immune score in each subtype

(A and B) Boxplots represent the differential distribution of immunoreactive and immuno

databases. (C–E) Violin plots show the median, quartile, and kernel density estimations

horizontal line represents the median score for each subtype, and the edges in the box re

the data density, where amore concentrated dataset yields a broader graph. p values we

****p < 0.001).
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This assumption was further supported by the increase in TMB in
IDH wild-type samples compared to the IDH mut-codel subtype
samples (Figure 6B). However, there were no differences in MSI in
any of these subtypes (Figure 6C).
suppressive cells in the various LGG subtypes identified in CGGA (A) and TCGA (B)

for each immune score (C), stromal score (D), and tumor purity score (E). The black

present the upper and lower quartiles in the dataset. The violin graph can also reflect

re determined using theWilcoxon or Kruskal test (*p < 0.05, **p < 0.01, ***p < 0.001,
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Figure 5. The prognostic impacts of changes in immunosuppressive cell content on LGG patients

(A–F) A high proportion of Treg (A), macrophage (B), myeloid-derived suppressor cell (C), neutrophil (D), immature dendritic cell (E), and plasmacytoid dendritic cells (F) were

shown to be closely associated with reduced OS in LGG patients.
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Somatic mutations in IDHwild-type, IDHmut-noncodel, and IDH

mut-codel subtypes

Given our previous data, we determined the genomic alterations
associated with each of these tumor subtypes using the somatic
mutations data from TCGA database. We noted an increase in
the relative frequencies for EGFR, NF1, and PTEN mutations in
IDH wild-type samples when compared to the IDH mut-noncodel
and IDH mut-codel subtypes (Figure 7A). IDH mut-noncodel sub-
type samples demonstrated an increase in the frequency of TP53
and ATRX mutations, accounting for 86% and 73% of the total,
respectively (Figure 7B). The three most commonly mutated genes
Figure 4. The prognostic impact of changes in the immune checkpoint on LGG

(A) Kaplan-Meier curves describing the overall survival (OS) for different molecular s

checkpoint proteins in these subtypes. (C) Kaplan-Meier curves showing the prognos

determined using a Wilcoxon test (*p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001).
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in the IDH mut-codel samples were CIC, FUBP1, and NOTCH1
(Figure 7C).

We then analyzed the mutation frequencies in nine common onco-
genic pathways in each of these subtypes. Mutations in the RTK-
RAS, Hippo, WNT, cell-cycle, and transforming growth factor-b
(TGF-b) signaling pathways were most frequently detected in the
wild-type tumors, whereas the TP53 signaling pathways exhibited
the highest mutation frequency in the IDH mut-noncodel samples.
The mutation frequencies for the PI3K and MYC pathways were
highest in the IDH mut-codel tumors (Figure 7D).
patients

ubtypes. (B) Violin plots demonstrating the differential expression of the immune

tic impact of changes in the immune checkpoint on LGG patients. p values were
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Figure 6. Differences in MHC class I gene expression and tumor mutation burden in different subtypes of LGG

(A) Boxplots show the differential HLA expression between different LGG subtypes. (B) Violin plots represent differential TMB expression in these subtypes. (C) Violin plots

display the differential expression of MSI in each of these subtypes. p values were determined using a Wilcoxon or Kruskal test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.0001).
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Identification of differentially expressed immune-related genes

in different IDH subtypes

As the wild-type samples presented with an immune-hot phenotype
and the IDH mut-codel samples presented with an immune-cold
phenotype, we identified the key differentially regulated genes in
each subtype in an effort to understand the differences in immune
regulation in these LGG tumors. We identified a total of 95 dysregu-
lated immune-related genes in the CGGA cohort and 96 dysregulated
immune-related genes in TCGA cohort (Figure 8A). Most of the dys-
regulated genes were overexpressed in the wild-type samples, whereas
Molecular Therapy: Oncolytics Vol. 21 June 2021 295
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Figure 8. Identification of the key immune-related genes undergoing differential expression when comparing the wild-type and IDH mut-codel LGG

subtypes

(A) Volcano plots identify the differentially expressed immune related genes (wild-type versus IDH mut-codel) in both CGGA and TCGA databases; the Venn diagram

summarizes the co-regulated genes in both databases. (B) Protein-protein interaction network analysis revealed the key immune-related genes in both the wild-type and IDH

mut-codel subtypes. (C) Volcano plots represent the significant differentially expressed genes among progressive disease (PD), complete response (CR), partial response

(PR), and stable disease (SD), and the red dots with black outlines indicate the overlapping genes in the wild-type LGG data.

www.moleculartherapy.org
only seven genes in the CGGA and six genes in TCGA data were
shown to be upregulated in the IDH mut-codel samples. The interac-
tions between these differentially expressed genes was further evalu-
ated using a protein-protein interaction network constructed using
the STRING database. The 20 key immune-related genes with the
Figure 7. Comparison of somatic mutations among different LGG subtypes

(A–C) Oncoprint visualization of the top ten most frequently mutated genes in IDH wild-

frequencies of nine common oncogenic pathways in each of these three subtypes.
highest degree of interaction were identified and included TLR2, IT-
GAX, CCL2, ITGB2, C3AR1, FCER1G, CXCL10, FCGR2B, FCGR2A,
SELL, CD68, CD163, CYBB, C1QA, HLA-DRA, CASP1, HLA-B,
C1QB, CD74, and interleukin-18 (IL-18), suggesting their important
role in regulating the tumor immune microenvironment (Figure 8B).
type (A), IDH mut-noncodel (B), and IDH mut-codel subtypes (C). (D) The mutation
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To determine whether these differentially expressed genes were asso-
ciated with changes in the response to ICIs, we analyzed the expres-
sion data for various immune gene panels in both melanoma and
NSCLC patients treated with anti-PD1 antibodies. Patients with pro-
gressive disease were assigned to the non-response group, whereas
those with complete response, partial response, and stable disease
were assigned to the response group. These evaluations identified
153 immune genes that were differentially expressed, with a signifi-
cantly higher level of expression in the response group (fold change
> 0.5 and p value < 0.05). Notably, most of these immune genes over-
lapped with the upregulated genes in the IDH wild-type data (Fig-
ure 8C) suggesting that patients with IDH wild-type tumors might
benefit from ICI therapy.

Construction and validation of the immune-related prognostic

signature

Finally, we developed a prognostic model based on the differential im-
mune-gene expression profile of wild-type and IDHmut-codel subtype
tumors. Data were first evaluated using a least absolute shrinkage and
selection operator (LASSO) regression analysis which identified seven
of the 71 immune-related genes as critical to prognosis and then used
these to construct the prognostic model. A risk-score model was estab-
lished as follows: risk score = (0.200 � TLR2) + (0.075 � ITGAX) +
(0.13 � CXCL10) + (0.404 � CYBB) + (0.005 � CD163) + (0.271 �
TREM2) – (0.285 � SELL) (Figure 9A). Kaplan-Meier analysis was
then used to determine the prognostic value of this risk signature in
LGG. A high-risk score was shown to correlate with poor overall sur-
vival (OS) in the CGGA cohort, which was further validated by a
similar outcome in TCGA cohort (Figures 9B and 9C). We then con-
structed a nomogram model in which the immune-related prognostic
signature was integrated with six clinical characteristics (age, gender,
primary recurrence type, grade, IDHmutation status, and 1p19q code-
letion status) and then used to predict clinical outcome (Figure 9D). To
evaluate the efficiency of this nomogram model in predicting the 3-
and 5-year survival rates of patients, we generated a series of calibration
plots and a receiver operating characteristic (ROC) curve. The calibra-
tion plots describing observed versus predicted probabilities of 3- and
5-year OS demonstrated excellent concordance, and the area under the
ROC curve was 0.835 at 3 years and 0.842 at 5 years, respectively, indi-
cating a high predictive value (Figures 9E and 9F).

DISCUSSION
Immunotherapies, including antibodies, chimeric antigen receptor
T cells, and ICIs, have received tremendous attention in their applica-
tion to cancer treatment.9–11 However, apart from some exciting clin-
ical trials, the general application of immunotherapies has seen a
highly variable response with some patients even proving to be resis-
tant to these interventions.12–14 Therefore, the characterization of tu-
mor immunologic profile, which stratifies patients with a high or low
Figure 9. Prognostic value of the immune-related risk signatures in LGG

(A) Establishment of an immune-related risk formula. (B and C) Kaplan-Meier OS curves

predicting the probability of 1-, 3-, and 5-year OS. (E) Calibration plots of the nomogram f

and the y axis represents the observed probability. (F) ROC curves showing the predic
sensitivity, will help to maximize the efficacy of immunotherapy.
Here, we present a comprehensive characterization of the tumor
immune microenvironment for LGG tumors and reveal a significant
association between these immunological parameters and the three
genetic subgroups of the LGG tumor. This information may prove
valuable in evaluating the outcomes of precision immunotherapy in
LGG patients.

Glioma is highly heterogeneous with multiple subtypes. The identifi-
cation of several key molecular markers, most notably IDH muta-
tions, has allowed for a precise method with which to categorize
glioma with clear prognostic implications. Apart from IDHmutation,
recent evaluations have identified a second important mutation in
these tumors, the 1p/19q codeletion, affecting their clinical outcome.
The initial retrospective series and subsequent retrospective analyses
of large randomized trials have validated 1p/19q deletion as a strong
prognostic and predictive marker in LGG.15 In the revised fourth edi-
tion of the WHO Classification of central nervous system tumors
published in 2016, classification of diffuse gliomas has fundamentally
changed: a large subset of glioma is now defined based on IDH
mutation and 1p/19q codeletion status and can be stratified into three
genetic subgroups (IDHwild-type, IDHmutation and 1p/19q-nonco-
deletion, and IDH mutation and 1p/19q-codeletion).3,16 This stratifi-
cation based on IDH mutation and 1p/19q deletion status presents a
more precise stratification in natural histories, molecular profiling,
prognosis, and responses to treatment when compared to IDH strat-
ification alone, and many genome studies of glioma are based on the
three subgroups.17–22 Given the importance of the IDH and 1p/19q
codeletion mutations in LGG, we stratified our LGG data based on
their molecular subtype, producing three groups: (1) wild-type
IDH, (2) IDH mutation without 1p/19q codeletion, and (3) IDH mu-
tation with 1p/19q codeletion.

Recently, IDHmutation status has been reported to be associated with
PD-L1 expression and tumor-infiltrating lymphocyte (TIL) infiltration
in diffuse gliomas.23–27 Our study was largely in agreement with avail-
able data but differed in several important aspects. We integrated IDH
mutation and 1p/19q codeletion status and conducted a comprehen-
sive and systematic analysis of 28 immune cell types and their infiltra-
tion in these subtypes; the expression of the immune checkpoint com-
ponents in each subtype was assessed and TMB,MSI, andMHC class I
gene expression was categorized in these subtypes. Our evaluations
also included descriptions of somatic mutations and changes in the
molecular pathways associatedwith the immune response in these sub-
types. All our evaluations used bioinformatics-based scrutiny of
genomic and transcriptomic data from two independent databases
(TCGA and CGGA). Nevertheless, it should be noted that our findings
require further validation in vitro or in vivo. Our findings should be in-
terpreted with this limitation in mind.
for patients with high or low risk scores. (D) Construction of a nomogram model for

or 3-year and 5-year survival. The x axis shows the nomogram-predicted probability,

tive value of the nomogram model for 1-, 3-, and 5-year survival rates.
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Table 1. Clinical characteristic

Clinical characteristics

Total (n = 1,052)

CGGA (n = 536) TCGA (n = 516)

Age

<45 371 267

R45 164 190

N/A 1 59

Gender

Female 224 201

Male 312 256

N/A 0 59

IDH mutation status

Mutant 412 419

Wild-type 124 94

N/A 0 3

1p19q codeletion status

Codel 166 169

Noncodel 370 347

Grade

G2 254 216

G3 282 241

N/A 0 59
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Hegde et al.28 summarized the top 10 challenges in anti-tumor immu-
notherapy. One of these challenges is the determination of the domi-
nant drivers of cancer immunity. Tumor immunological phenotypes
are usually stratified as immune-hot or immune-cold tumors and are
associated with survival and prediction of response to immuno-
therapy.4,29 Accumulating evidence has identified the biomarkers of
the immune-hot type beyond the increase in the number of TILs,
including the expression of immune checkpoint proteins in tumor
or tumor-associated immune cells, genomic instability as defined by
MSI or TMB, and intact antigen presentation.14 In contrast, apart
from low immune cell infiltration, immune-cold tumors are also
characterized by low immune checkpoint expression, low mutational
burden, and defects in antigen presentation. Our study showed that
IDH wild-type tumors were infiltrated with the highest diversity of
immune cells and were associated with high immune checkpoint
expression, TMB, andMHC class I gene expression, indicating an im-
mune-hot phenotype. Conversely, IDHmut-noncodel and IDHmut-
codel subtypes were infiltrated by a lower number of immune cells
and were shown to correlate with reduced immune checkpoint
expression, TMB, andMHC class I gene expression, indicating an im-
mune-cold phenotype.

It has been reported that IDH wild-type gliomas present with the
worst prognosis, when compared to the IDH mut-noncodel and
IDH mut-codel subtypes.3 One of the proposed mechanisms of this
poor prognosis is likely to involve the relative radio-resistance of
IDH wild-type tumors when compared to the other two subtypes.30

Here, we reveal high degrees of immunosuppressive cell infiltration
and immune checkpoint expression in the IDH wild-type tumors,
both of which may contribute to its poor prognosis. This could be
another important mechanism underlying the differences in clinical
outcomes between the subtypes following treatment.

The aberrant activation of the EGFR signaling pathway is likely
responsible for the immunosuppression of the tumor microenviron-
ment.31 This mechanism may involve the aberrant regulation medi-
ated by mutated EGFR in the generation of Treg and tolerogenic
DCs.32,33 Our study went on to evaluate other somatic mutations in
these three tumor subtypes and showed that both the receptor tyro-
sine kinase-Ras pathway and the EGFR pathway mutations were
more common in the IDH wild-type, which may account for its
enhanced immunosuppressive cell infiltration.

In conclusion, our study highlights the associations of the IDH muta-
tion and 1p/19q codeletion with changes in the immunological tumor
microenvironment in LGG. These observations may benefit future im-
mune therapy-based interventions for LGG patients. We also estab-
lished and validated an immune-related prognostic signature, which
demonstrated significant value in predicting OS time in LGG patients.

MATERIALS AND METHODS
Datasets

The RNA sequencing, somatic mutation, and corresponding clinical
data from 536 LGG patients were obtained from the CGGA (http://
300 Molecular Therapy: Oncolytics Vol. 21 June 2021
www.cgga.org.cn/) database.34,35 Similar data was also collected for
the 516 LGG patients in TCGA (http://cancergenome.nih.gov/)
database to act as a validation set. LGG patients were divided into
wild-type IDH, IDH mutation without 1p/19q codeletion (IDH
mut-noncodel), and IDH mutation with 1p/19q codeletion (IDH
mut-codel) subtypes, and the clinical information for each cohort is
summarized in Table 1.

Transcriptome expression data describing a predefined immune gene
panel and the corresponding clinical outcome for patients treated
with anti-PD1 antibodies were downloaded from GEO: GSE93157.36

ssGSEA

ssGSEA was used to quantify the 28 types of immune cells infiltrating
each LGG sample and was completed using the “GSVA” and “GSEA-
Base” packages in R.37 The ssGSEA enrichment score was then used
as the measure of immune cell infiltration in each sample. Gene sig-
natures for each immune cell type were obtained from previously
published data.38

Somatic mutation analysis

Somatic mutation data for each of the of the LGG samples were
downloaded from TCGA GDC Data Portal in “maf” format (Var-
Scan2 Variant Aggregation and Masking; https://portal.gdc.cancer.
gov). Waterfall plots were then constructed using the “Maftools”
package in R software, which facilitated the visualization and
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summarization of the mutated genes and aberrant signaling pathways
in each of the three LGG subtypes.39

Functional enrichment analysis

GSEAwas used to identify the significantly altered signaling pathways
in each subtype, as identified by their enrichment in the MSigDB
Collection (c2.kegg.v7.1 symbols.gmt; c5.bp.v7.1 symbols.gmt).
Gene set permutations were set at 1,000 repeats for each analysis.
The results were then visualized using gglpot2, grid, and gridExtra
for R.

Differential expression of immune-related genes

The differential expression of immune-related genes was identified
using the “limma” R package. Adj. p < 0.05, and |fold change| > 1.5
were used as the threshold values.

Construction of the immune-related prognostic signature

The statistically significant immune-related genes identified in the
univariable Cox regression analysis were then subjected to a LASSO
cox regression analysis to calculate the specific coefficient values for
each association. LASSO is a regression analysis method that per-
forms both variable selection and regularization in order to enhance
the prediction accuracy and interpretability of the resulting statistical
model. Thus, LASSO cox regression is well-suited for the construction
of prognostic model based on gene-expression profile.40–44

These values were then used to develop the following formula:

risk score =
XN

i= 1

�
Expi �Coei

�

OS for the low and high-risk groups was compared using Kaplan-Me-
ier analysis completed using the Survminer and survival packages for
R. A nomogram model was then established in which the immune-
related prognostic signature, which integrates the age, gender,
primary recurrence type, grade, IDH mutation status, and 1p19q co-
deletion status, was then produced. The calibrations plot and survival
ROC curve were then generated to validate the predictive value of this
nomogram model in patients’ OS using the survivalROC, rms, and
foreign packages in R.
Statistical analysis

The OS among the different groups was compared via Kaplan-Meier
analysis using the survival and survminer packages in R. Differences
among the subtypes were tested using the Wilcoxon signed-rank test
or Kruskal-Wallis test. Univariate Cox analysis was applied to identify
potential prognostic factors. A ROC curve was performed to validate
the accuracy of the risk model in predicting the patients’ OS via the
survivalROC R package. All statistical analyses were performed using
the R software (version 3.5.2).
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