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Abstract Malaria remains at the forefront of scientific research and global political and funding
agendas. Malaria models have consistently oversimplified how mass interventions are implemented.
Here, we present an individual based, spatially explicit model of P. falciparum malaria transmission
that includes all the programmatic implementation details of mass drug administration (MDA)
campaigns. We uncover how the impact of MDA campaigns is determined by the interaction
between implementation logistics, patterns of human mobility and how transmission risk is
distributed over space. Our results indicate that malaria elimination is only realistically achievable in
settings with very low prevalence and can be hindered by spatial heterogeneities in risk. In highly
mobile populations, accelerating MDA implementation increases likelihood of elimination; if
populations are more static, deploying less teams would be cost optimal. We conclude that mass
drug interventions can be an invaluable tool towards malaria elimination in low endemicity areas,
specifically when paired with effective vector control.

Introduction

In Southeast Asia, and particularly the Greater Mekong Sub-region (GMS), Plasmodium falciparum
transmission has decreased substantially over the last two decades (World Health Organization,
2011; World Health Organization, 2010b), setting the stage for pre-elimination scenarios, with all
GMS countries committing to ambitious elimination timelines (World Health Organization, 2013a).
Alignment of global funding bodies’ goodwill with sound national malaria control programmes is
crucial for elimination timelines to be met (World Health Organization, 2013c; Alonso and Tanner,
2013), but spreading artemisinin resistance creates a race against time before malaria becomes
untreatable with currently available drugs (World Health Organization, 2010a; World Health Orga-
nization, 2013b).

Vector control and early diagnosis followed by effective antimalarial treatment have been the
mainstay of malaria control programmes, but modelling based projections indicate these
approaches alone are unlikely to achieve P. falciparum malaria elimination before failing drug effi-
cacy becomes an issue. Elimination will require more intensive measures to clear the infectious reser-
voir in asymptomatic populations, especially in the GMS where existing vector bionomics make
vector control particularly challenging. The most abundant vector species in the GMS are exophilic
(mainly bite outdoors), do not preferentially bite humans, and can bite quite early in the evening
(Sinka et al., 2011), rendering typical vector control measures such as insecticide treated nets (ITNs)
and indoor residual spraying (IRS) sub-optimal.

Population wide interventions, including mass drug administration (MDA), are under consider-
ation to clear the infectious reservoir in asymptomatic populations and potentially hasten progress
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toward elimination (Poirot et al., 2013; World Health Organization, 2015a). The proportion of the
target population receiving these interventions (‘coverage’) is believed to determine their success
(World Health Organization, 2013c; Slater et al., 2015; Okell, 2015; Stuckey et al., 2016). This
success can be considered at two spatial levels: global or local. Whilst malaria elimination campaigns
have been carried out successfully in some countries or locally in specific regions (Snow et al., 2013;
John et al., 2009; World Health Organization, 2015b), reintroductions of malaria from surrounding
endemic areas are a constant threat (Cohen et al., 2012; Galappaththy et al., 2013). The impor-
tance of mobile populations as a source of malaria transmission in the GMS has been emphasized in
recent years (Pindolia et al., 2012; Prosper et al., 2012; Pindolia et al., 2014, Smith and Whit-
taker, 2014; Edwards et al., 2015; Guyant et al., 2015). Prompt treatment of new clinical cases
through village malaria worker (VMW) or village health worker (VHW) networks has proven to be an
effective case management strategy (Maude et al., 2014; Rutta et al., 2012) and would be an
essential barrier against malaria reintroduction.

We argue that the way in which mass interventions are deployed is what determines their success
likelihood. The most efficient and effective roll-outs are laid on a solid community engagement foun-
dation, thus ensuring subsequent adherence and coverage, while preventing malaria reintroduction
from adjacent areas. Here, we model target areas as a collection of discrete villages (unit of interven-
tion) and define coverage as the proportion of individuals receiving the intervention within a village
and also as proportion of villages receiving the intervention within an area. Critically, we also simu-
late the minutia of mass intervention roll outs, with all its relevant deployment logistics, thus assign-
ing coverage a temporal dimension which measures the time it takes for all target villages to receive
the intervention.

Conducting enough clinical trials to understand the interaction between all variables at play dur-
ing a mass drug administration, as well as their individual and combined contribution to the
expected outcome, is prohibitive. Hence, we turn to computational modelling to explore the rela-
tionships between logistical aspects of MDA implementation and demographic aspects such as
human population mobility in diverse epidemiological settings (characterized by prevalence, season-
ality patterns and heterogeneity in mosquito densities across space). Our focus in on how the pre-
dicted impact of mass intervention strategies on malaria transmission changes when these logjistical
intricacies are taken into consideration, and its implication for the likelihood of P. falciparum elimina-
tion. Our research questions are threefold: 1) what is the relevance of logistical implementation
details to the outcome of mass interventions? 2) How fast does target coverage need to be reached
for the strategy to be successful? 3) What are the key modulators of malaria elimination likelihood in
a short timeframe? To offer strategic guidance to national malaria control programmes we also need
to understand how the answers to these questions hinge on key features of malaria transmission in
specific areas such as artemisinin resistance levels, population mobility networks, transmission het-
erogeneity over space, and seasonality patterns.

Model description

We developed a modular simulation platform that is customizable to any malaria transmission setting
to provide realistic outcome predictions for local and global level interventions. The modules are the
building blocks of an individual based, discrete time, spatially explicit, stochastic model, with explicit
mosquito population dynamics and human population movements. We thus have villages with differ-
ent mosquito densities connected by a human flow network, on which different interventions are
deployed at different times (Figure 1). One particular innovation compared to previous published
work (Gatton and Cheng, 2010; Okell et al., 2011, Maude et al., 2012; Gerardin et al., 2015;
Nikolov et al., 2016) is the inclusion of very detailed logistical processes related to intervention
deployment in the field.

Whilst previously published models are extremely good at representing the biological processes
underlying malaria transmission, some even making very realistic assumptions on how coverage
increases over time (Nikolov et al., 2016), they fail to explicity model how these interventions are
carried out in the field. In practice, teams of workers visit villages sequentially one by one, usually
spending 4-7 days to deploy one MDA round in each village, which is quite different from having an
unlimited number of teams slowly treating everyone in the target population until a certain coverage
is reached. The number of implementation teams is then an input parameter in our simulation plat-
form and each team behaves as an agent. They remain in each village for a fixed period of time
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Figure 1. Model structure illustration. (A) Flow diagram representing the natural history of Plasmodium falciparum infections in human populations.
Uninfected individuals (S) can be infected at rate A, with the probability of developing clinical symptoms (6) depending on their immunity level i and
number of lifetime infections j. Clinical infections (C) can be detected and subsequently treated at rate 7 to a treated state (T), or naturally subside into
an asymptomatic parasite carrier stage (A) at rate €. Treated individuals lose their drug at rate m. After recovery or treatment, individuals become
susceptible with an added level of clinical immunity (S"*7). Clinical immunity level decays at rate «. (B) Probability of developing clinical malaria
depending on individual's history of infection (cumulative number of infections) for each immunity level considered here. (C) Village connectivity
network. Geo-located villages appear as circles the size of which is proportional to the number of people living there. Edge width reflects individuals’
probability of travel between connected villages. (D) Each village is assigned a specific mosquito density/vectorial capacity, with transmission
heterogeneity over space characterized by three different distributions.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Synthetic population demographics.

Figure supplement 2. Model fit to immunological data.

Figure supplement 3. Calibrated relationship between EIR and Data.

Figure supplement 4. Calibrated relationship between prevalence and clinical malaria incidence.
Figure supplement 5. Clinical age profiles for different endemic levels.

Figure supplement 6. MDA effect size for different values of starting prevalence.

(process = 4 days), assumed to be the time needed to complete one round of MDA per village, and
move to the next village according to a gravity model. Given a total number of villages V, and a
processing time process, the total number of days taken from start of first MDA round in the first vil-
lage to end of first MDA round in the final village (D) depends on the number of implementing
teams (Teams): D = V*process/Teams.

Gao et al. eLife 2020;9:e51773. DOI: https://doi.org/10.7554/eLife.51773 3 0of 30


https://doi.org/10.7554/eLife.51773

e Llfe Research article

Epidemiology and Global Health

Results

Initially, we simulated thousands of parameter sets that explore how a wide range of key transmis-
sion parameters (e.g. mean initial parasite prevalence, proportion of artemisinin resistant parasites)
and logistical constraints — Table 1 — modulate the expected outcome of MDA campaigns. Figure 2
illustrates the sensitivity of the predicted proportional decrease in prevalence over 5 years to each
parameter. Clearly, the number of MDA campaigns and the initial mean prevalence across all villages
are critical covariates when predicting MDA outcome. The distributions characterizing how malaria
risk is distributed over space also seem quite important. Artemisinin resistance spread is very sensi-
tive to those same covariates as well as to the number of intervention teams and the intensity of
human population mobility (Figure 2—figure supplements 4 and 5).

We found that there is an intricate relationship between the optimal timing of MDA campaign
start, its implementation logistics, and malaria seasonality patterns. Deploying a higher number of
MDA teams will yield a higher likelihood of reaching malaria elimination within 2 years, only when
population mobility is high — Figure 3. Using a smaller number of intervention teams is predicted to
be advantageous in a population of lower mobility, especially when there is only one annual trans-
mission peak and when the MDA start is delayed to day 60 (instead of the default start at the begin-
ning of the calendar year). In settings with 2 malaria seasons per year, the first transmission peak
occurs earlier in the year, making the faster 400 team implementation a better option in general.
The only exceptions are very static populations in which two MDA campaigns are deployed. We
should note that overall, a slower implementation is preferable, especially for the single peak sea-
sonal profiles (Figure 3—figure supplement 1). For the two peak scenarios, a higher number of
teams would be beneficial as prevalence increases from 1%. When addressing how to maximize the
chances of reaching elimination within a short time span by implementing an MDA strategy, we
found that different transmission heterogeneity distributions (depicted in Figure 1D) incur quite dif-
ferent prospects — Figure 4 (Normal), Figure 4—figure supplement 1 (Log-Normal), and Figure 4—
figure supplement 2 (Pareto). The likelihood of reaching elimination is strikingly different when com-
paring the Pareto distribution (most skewed) with the other two (Normal and Log-Normal distribu-
tions), except when an extremely efficient vector control program is carried out for a couple of
years. Coupling vector control with an MDA campaign vastly improves the chances for elimination
across the low prevalence settings explored here, and the longer vector control can be sustained
the more likely elimination becomes. Once again, there seems to be a correlation between popula-
tion mobility and number of MDA teams, with faster MDA implementations being preferred when
the human population is more mobile — Figure 4.

Table 1. Factors explored by the model and their respective sets of values.

Factor Meaning Values
Teams Number of teams performing prevalence surveys and 15 [267]
distributing ACTs simultaneously. Translated into 25 [160]
coverage speed in square brackets, that is, the number 50 [80]
of days it takes to perform one MDA round in a region of 1000 villages. 100 [40]
200 [20]
400 [10]
Prevalence Mean initial malaria u-PCR prevalence across all villages. 0.5, 0.1, 0.15, 0.2, 0.25, 0.3
Resistance Mean initial proportion of parasites which are artemisinin resistant. 0.1,0.2,03
Distribution Transmission heterogeneity distribution, underlying spatial Gaussian, Log-normal,
heterogeneity of malaria transmission, manifested by differential Pareto
mosquito density distributions.
Mobility Describes the intensity of population movement in the general 5/365
population. Indicates the per person average daily probability of 25/365
moving to places other than their home village for short-term visits 125/365
(see Mobility section in the Simulation Protocol). that is a 250/365
population of individuals whose short-term movement occurs on
average 25 times per year (25/365) has a relatively static
population with low mobility.
Campaigns The number of MDA Campaigns 1,2
Peaks The number of annual seasonal peaks 1,2
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Figure 2. Multivariate sensitivity analysis of the predicted intervention impact on malaria prevalence and artemisinin resistance. The box plots show the
median and interquartile ranges of the proportional reduction in malaria prevalence for all simulated parameter sets. Each parameter set consists of a
combination of initial mean prevalence (Prevalence), initial proportion of artemisinin resistance parasites (Resistance), population mobility (Mobility),

Figure 2 continued on next page
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number of teams deployed in the field (# Teams), number of MDA campaigns (# Campaigns), and number of transmission peaks per year (Seasonality).
An overall mean and interquartile range for the effect of transmission heterogeneity, independent of any other parameter, is displayed on the top
panel. The reduction in prevalence is evaluated as the proportional difference in the integral in prevalence in the 5 years following MDA relative to the

5 years preceding MDA.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Multivariate model sensitivity analysis independent of transmission heterogeneity.
Figure supplement 2. Interplay between population mobility and transmission heterogeneity.
Figure supplement 3. Interplay between logistics and human population topologies.

Figure supplement 4. Factors influencing the spread of artemisinin resistance.
Figure supplement 5. Population movement and mosquito distributions determine artemisinin resistance spread.

Finally, we explored the value of targeting the top 10 or 20% of villages (sorted by vectorial
capacity) and compared its predicted outcome with a full MDA campaign — Figure 5. We confirm
that the log-normal and gaussian distributions explored here produce the same elimination likeli-
hood profiles. For very efficacious vector control strategies, the vectorial capacity in the transmission
foci will be greatly reduced, causing a greater drop in mean vectorial capacity across all villages in
the more skewed distribution (where most villages have negligible numbers or no mosquitoes), com-
pared to the others. This causes the likelihood of elimination in settings with a Pareto distributed
risk of infection to be greater on the long-term under those circumstances. Once again, sustaining
the vector control for longer, greatly improves the expected outcome (Figure 5—figure supple-
ment 1.

Discussion

A series of key interacting features of the transmission-intervention system emerge when intricate
logistics are incorporated in spatial-temporal transmission dynamics. Mapping MDA campaign
expected outcomes to a specific malaria endemic setting is a complex multivariate problem. Here,
we elucidate the way in which the most critical interactions determine MDA success:

o Operational strategy design. Mass intervention strategies rely on a detailed protocol defining
the proportion of villages targeted, the target population in each village reached (usually
termed target coverage), and the number of intervention teams deployed (determining the
speed with which all villages are covered). Unsurprisingly, the chosen number of MDA cam-
paigns is the most significant intervention outcome determinant (Figure 2). This is intuitive in a
scenario where treatment failure due to drug resistance is not a serious issue. Assuming 80%
of the target population receives each MDA round, and independent coverage between
rounds (meaning the likelihood that someone adheres to round 3 for example is independent
of their uptake in rounds 1 and 2), by increasing the number of MDA rounds, we are decreas-
ing the proportion of the population not treated with at least one round of ACT. Even if adher-
ence and compliance are correlated, increasing the number of rounds would assure individuals
that received treatment would be less likely to become infectious, or be infectious for long, if
infected via untreated individuals. Indeed, additional MDA rounds provide a powerful tool to
disrupt any resurgence in transmission following the typical 3 round MDA campaigns. The like-
lihood of elimination being achieved is substantially higher for 2 campaigns of 3 MDA rounds
compared to 1 campaign (Figure 3).

o Transmission heterogeneity, described by different mosquito density distributions over space,
and initial mean parasite prevalence in the human population also have a clear impact on the
predicted reduction in prevalence with MDA (Figure 2—figure supplements 1 and 2). Of
note, MDA strategies on their own are not predicted to achieve elimination unless mean
malaria prevalence is at very low levels (under 3%) — Figure 2 and Figure 3—figure supple-
ment 1. Coverage speed, increased with a higher number of intervention teams, is program-
matically beneficial only when elimination is achievable (prevalence <3%) and in scenarios
where MDA is deployed in well-connected populations (consisting of individuals with high
mobility) — Figure 3. Counterintuitively, in all other scenarios, a slower MDA implementation is
optimal (Figure 2—figure supplement 3, Figure 3—figure supplement 1). When the number
of MDA teams is highest, all villages receive the first round within a couple of weeks, meaning
a very large proportion of the population will be under treatment simultaneously. Whilst that
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Figure 3. Intervention implementation speed in different epidemiological contexts. Demonstrates under what conditions using 400 implementation
teams is preferable over 15 teams when deploying an MDA campaign. We investigate different epidemiological contexts, characterized by different
prevalence and seasonality profiles can be accounted for in deciding the appropriate campaign start day (delay) when maximizing the chances for
malaria elimination. ‘'MDA (delay)’ means MDA start is delayed to day 60 instead of the default start at the beginning of the calendar year. '#Peaks’
indicates the number of transmission peaks per year. The left four columns have 1 peak whereas the right four columns have 2 peaks.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Elimination likelihood over time in different settings.

Figure supplement 2. Relationship between elimination probability and MDA campaign village sequencing.
Figure supplement 3. Relationship between elimination probability and the relative infectivity of asymptomatic infections.

translates into the largest possible increase in the likelihood of elimination, any resistant infec-
tions will have a large selective advantage at that point, causing resistance to spread (Fig-
ure 2—figure supplement 5). Interestingly, this effect is less pronounced in populations with
high mobility, due to a dilution effect described below. A slower deployment of MDA cam-
paigns is then generally preferable in low mobility populations (here defined as settings where
individuals spend on average less than 25 nights per year somewhere other than their home)
due to a slower buildup of resistant infections (Figure 4, Figure 2—figure supplement 5).

* Interestingly, prioritizing the very first villages to receive MDA will have very little effect on the
MDA campaign'’s success (Figure 3—figure supplement 2). This is solely due to the spatial
dispersal of transmission foci. In a setting where transmission foci are scattered over space (as
simulated here), not much can be gained by prioritizing high incidence villages to receive
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Figure 4. Elimination probability surfaces (Normal distribution of transmission risk over space). These surface plots show the proportion of simulations
(out of 100) in which elimination was achieved within a 5 year time horizon. Hypothetical interventions that decrease the vectorial capacity by a
proportion given in the y-axis are maintained for a period of time defined in the x-axis. These transmission blocking interventions are layered on top of
a global MDA campaign consisting of 3 ACT rounds in all villages and including widespread village malaria workers. Different panels give different
combinations of mean initial malaria prevalence, human population mobility and MDA implementation speed. The white dashed line represents the
80% likelihood of elimination contour line.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Integrated control elimination surfaces for the Log-normal distribution of transmission risk over space.
Figure supplement 2. Integrated control elimination surfaces for the Pareto distribution of transmission risk over space.
Figure supplement 3. Mean reduction in prevalence in intervention strategies containing either MDA + VC or VC alone.
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Figure 5. Elimination probability with a targeted approach. lllustrates the likelihood of elimination within 5 years of an elimination strategy consisting of
3 MDA rounds and a vector control strategy sustained over 1 year. We compare elimination prospects across different prevalence levels, human
population mobility, and transmission heterogeneity over space. Vector control (VC) efficacy refers to the coefficient by which vectorial capacity is
reduced for the duration of the intervention. The vector control target sizes refer to the quantile of villages, sorted by descending vectorial capacity,
targeted by the intervention.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Elimination probability with a targeted approach.

MDA fist, since once the intervention teams leave those villages, transmission will be re-
seeded from lower incidence neighboring villages or forest areas. In fact, if there is only one
seasonal peak and only one MDA campaign is carried out, staring in lower incidence villages is
predicted to incur a statistically non-significant benefit. Note that in areas where foci are clus-
tered in a small area, a targeted MDA approach would be preferable over a global MDA, with
villages outside the foci area not receiving MDA.

e Transmission topology. This is defined by the magnitude of transmission heterogeneity over
space combined with the level of mixture between sub-populations through human move-
ment. As mentioned above, spatial transmission heterogeneity has a dramatic effect on pre-
dicted outcomes, with more skewed distributions (suggesting most malaria infections occur in
a few villages) presenting a challenge for control (Figure 4—figure supplement 2). We should
note that P. falciparum transmission in the Greater Mekong Sub-region (GMS) has been
reported to be spatially heterogeneous (Gryseels et al., 2015; Cui et al., 2012; Erhart et al.,
2005). However, there is very little evidence as to the relative abundance of the main vector
species and no quantification of densities exists at a large enough scale, thus we investigated
a spectrum of population mobility patterns which at one extreme consists of a set of isolated
transmission foci (thus low population movement), where infections in each village are almost
exclusively locally acquired (mosquitoes infecting someone will have had acquired that infec-
tion from someone else living in the same village). As population mobility increases, these foci

Gao et al. eLife 2020;9:e51773. DOI: https://doi.org/10.7554/eLife.51773 9 of 30


https://doi.org/10.7554/eLife.51773

eLife

Epidemiology and Global Health

become more and more connected, eventually merging with each other in the upper extreme
of the spectrum, onto one large homogeneously mixed population (where mosquitoes infect-
ing a person could have acquired that infection from anyone else).

In low connectivity populations (consisting of individuals with low mobility), the likelihood of
resurgence in villages where MDA achieved local elimination is low, since there are only very
sporadic introductions of parasites, typically insufficient to reseed endogenous transmission. In
these settings, implementation speed should be sacrificed, and a low number of intervention
teams deployed, to minimize resistance spread. In populations with high population move-
ment, speed of implementation becomes more important (Figure 3) due to the propensity for
recently eliminated intervention units to be reseeded by its neighbors, leading to local
resurgences.

Seasonality. The optimal timing of MDA campaigns relative to malaria seasonal peaks have
been theoretically investigated in Brady et al. (2017). Critically, those models do not incorpo-
rate implementation logistics in a detailed manner, either simulating instantaneous MDA
deployment in all villages, or having a synchronously increasing global coverage until a target
coverage is reached. Here, we have explicit intervention teams that deploy sequential MDAs,
one village at a time. This is much closer to reality in the field and creates an added dimension
when comparing MDA start with malaria seasonal peaks. A very slow implementation that
starts 3 months prior to the peak might only have reached a 50% coverage by the time trans-
mission intensity hits the peak, whereas a very fast MDA deployment might start 1 month prior
to the peak and end before it.

When there is only one transmission peak during the year, a slower MDA implementation
seems to be preferable (Figure 3), especially if the start of the MDA is set to start one month
prior to the peak in vectorial capacity (not to be mistaken with the season malaria incidence
peak which occurs later) instead of starting at the beginning of the year. It seems delaying the
start of MDA campaigns improves the likelihood of malaria elimination compared to a start at
the beginning of the year when a lower number of MDA teams is used (Figure 3—figure sup-
plement 1). This is mostly due to how sensitive near instantaneous MDA campaigns are to the
timing of the seasonal peak. In a single annual peak setting, where the incidence peak is at
day 140, a near instantaneous MDA would end (all 3 rounds) 70 (for no delay) or 10 (with
delay) days prior to the peak. Given the general cosine function simulated here, it seems a lon-
ger implementation lasting the whole duration of the high transmission season is optimal. For
the two annual peaks scenario, a fast implementation of MDA (covering the whole of the first
annual peak) seems preferable.

Dilution. We uncovered an interesting trade-off between population mobility, transmission het-
erogeneity and number of MDA teams that results in unexpectedly high predictions for inter-
vention impact in highly mobile populations. This is due to a diluting effect, rooted in the
sharing of parasite pools between high transmission foci and very low transmission villages,
which is particularly relevant in the post MDA rebound period. Granted high population mobil-
ity, after the parasite pool is greatly reduced through MDA, the few infectious mosquitoes in
transmission foci are likely to bite migrants, which upon return to low transmission villages, are
unlikely to transmit those infections onwards. Increased mobility decreases the proportion of
endogenous infections in each village, which consequently increases the radial impact of local
interventions, thus also generally contributing to the dilution of artemisinin resistant emerging
infections (Figure 2—figure supplement 5). In a scenario where village A with an extremely
low vectorial capacity is very close to a high transmission village B and there is intense popula-
tion movement between villages, it is likely that infections in people living in village A are
almost exclusively acquired when they visit village B. Thus, an MDA in village B will have a pos-
itive knock-on effect on the incidence of malaria in village A.

Drug Resistance. We observe that increased transmission heterogeneity is detrimental to inter-
vention success (Figure 4—figure supplement 2), through a mechanism whereby high trans-
mission foci provide a niche for resistance spread which is promoted by drug pressure
incurred through multiple MDA rounds (Figure 4, Figure 2—figure supplement 4). Interest-
ingly, this effect is more pronounced for populations with the lowest mobility for all considered
spatial heterogeneity distributions. This is due to the dilution effect mentioned above, causing
artemisinin resistant parasites expanding in high transmission foci to be diluted across other
villages, given a sufficiently high population movement. If the population is very static, how-
ever, resistant parasites can gradually outcompete sensitive ones in transmission foci receiving
multiple MDA rounds. Drug resistance is also a key driver of why more heterogeneous topolo-
gies are predicted to have a lower MDA impact for low mobility populations (red lines in Fig-
ure 2—figure supplement 5). Thus, any concerns regarding the enhancement of artemisinin
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resistance spread with MDA hinge on the transmission heterogeneity of the setting in which
MDA is deployed. This entails serious consequences for the likelihood of malaria elimination
with an MDA approach in populations where resistance is already established.

Although the elucidation of these intricate relationships is of great scientific interest, National
Malaria Control Programmes (NMCPs) might find this exploration to be devoid of applicability, spe-

cifically those concerned with drug resistance issues. We have demonstrated that more MDA rounds
translate into higher likelihoods of malaria elimination but also show how resistance is very likely to
increase dramatically if elimination is not achieved. To explicitly inform policy decisions of NMCPs
aiming to eliminate P. falciparum malaria in a short time frame, we provide insights into integrated

strategies that combine vector control interventions with a minimal number of MDA rounds:

Intervention layering and elimination prospects. While MDA strategies consisting of only 3
rounds of ACT are unlikely to interrupt transmission in all but very low prevalence (<2% all-age
true prevalence) settings, the village malaria worker (VMW) network providing operation sup-
port to MDA campaigns does provide a great foundation for additional interventions to be
more easily deployed. Combining a complete VMW network with 3 rounds of MDA at 80%
coverage and imperfect vector control strategies, we predict malaria elimination can be
reached, provided the initial parasite prevalence is sufficiently low (under ~2%) — Figure 4.
Whilst vector control clearly provides a significant increase in the chances of reaching elimina-
tion, it would be unlikely to lead to elimination on its own as seen in Figure 4—figure supple-
ment 3. More than a theoretical possibility, elimination, even when in the presence of
artemisinin resistance, has been demonstrated to be possible (Lwin et al., 2015). This bistabil-
ity phenomenon, first proposed for malaria a decade ago (Aguas et al., 2008) and since revis-
ited (Smith et al., 2013), provides the theoretical foundation for the determination of the
minimum intervention effort sustained over a defined period of time, after which all interven-
tion measures can be relaxed and elimination is still reached (provided clinical case manage-
ment remains effective). We thus explored the prospects for elimination with realistic
intervention packages coupling vector control with MDAs using our simulation platform - Fig-
ure 5. We find that initial mean prevalence is a key determinant of success likelihood and
determines the minimum effect size required from the vector control component, for elimina-
tion to be reached. We highlight how logistical constraints combine with human movement
patterns to modulate the likelihood of an intervention strategy’s success. Clearly, when popu-
lation mobility is high, elimination becomes likely even with low vector control effect sizes, if
MDA is done near instantaneously (400 intervention teams). A much higher vector control
effect size would be required if MDA implementation is significantly slower. Conversely, if the
human population is static, a slower MDA implementation would increase the likelihood of
elimination for the same vector control effect sizes. This illustrates quite well the value of the
missing information in simulation models that convert the highly complex logistics of a global
MDA administration into an instantaneous process.

Targeting interventions. Over the last few years, MDA interventions have moved towards a
focal approach, where only a proportion of individuals within a village (Eisele et al., 2015), or
a proportion of villages in the target area will receive treatment (METF, 2016), to ease drug
resistance spread concerns, and to minimize the number of ACT doses given to uninfected
individuals. The purpose is to implement MDAs in high transmission foci only, thus bringing
mean prevalence across the whole population down very quickly, and then relying on good
clinical case management and vector control interventions to eventually reach elimination. The
logistical implementation is also simplified, and its associated costs minimized, since only a
fraction of MDAs are performed. We explored the likelihood of reaching malaria elimination
within 5 years by implementing a targeted elimination program combining 3 rounds of MDA
with different vector control intensities and found that the duration and effect size of the vec-
tor control component greatly influences the prospects for elimination. Interestingly, increas-
ing the target size (number of villages receiving the intervention), minimizes the differences
across transmission heterogeneities. In fact, the most skewed distribution offers better elimina-
tion prospects for higher prevalence settings where intense vector control measures (VC effi-
cacy = 0.9) are put in place. The nature of the distribution provides the basis for this effect.
Given that most villages have a negligible vectorial capacity, transmission is sustained by a few
high transmission foci. If those are targeted efficiently, you can expect to have a disproportion-
ately higher disruption of transmission compared to settings where the distribution of mosqui-
toes over space is more homogeneous.
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We have refrained from doing a cost-effectiveness analysis, since we do not have enough infor-
mation on most unit costs, which are currently being assessed in different settings, and are likely to
be quite variable across countries in the GMS. Any recommendation and cost-effectiveness analysis
would have to be tailored to each specific country/area. We also have not extensively addressed syn-
chronous migration patterns but have included long term and seasonal migration events in the simu-
lation platform. The sensitivity of the model’s predictions to these types of migration is much lower
than to the general population’s short-term mobility actions explored to great lengths throughout.
This is, in all likelihood, a result of the low proportion of seasonal or long-term migrants in the overall
population. In settings where migrants constitute a more considerable (>20%) fraction of the popula-
tion, the predicted impact might vary. We also considered an uncorrelated uptake of ACT rounds
during MDA, meaning there is no relationship between the likelihood of receiving a future ACT
round and having received a previous one. This can be an issue in areas where religious and/or cul-
tural beliefs cause individuals to refuse any and all drug treatments, but if that is the case, then it
would manifest itself at the time of the prevalence survey, when blood would have to be drawn. In
practice, we concede that we may be unable to deploy MDA in whole villages due to these con-
straints, but in the absence of data we refrain from making any assumptions. For simplicity, we have
assumed that asymptomatic and clinical infections are equally infective to mosquitoes throughout. In
reality, further empirical studies are greatly needed to better characterise this controversial quantity
that bears critical consequences for malaria elimination prospects (Aguas et al., 2018). In Figure 3—
figure supplement 3 we demonstrate this critical nature, with malaria elimination becoming more
amenable if asymptomatic infections are less infectious. To keep the mosquito population compara-
ble to that in all other simulations shown here, we leverage the biting rate in simulations with lower
infectivity of asymptomatic infection to obtain comparable prevalence levels. That means that for a
given prevalence value, we took the mosquito density in previous simulations and calibrate the bit-
ing rate (proxy for effective number of human/mosquito contacts) needed to obtain the same preva-
lence at equilibrium when infectivity is lowered. Since the overall infectiousness of asymptomatic
infections is decreased, the biting rate will have to increase to reach the same level of prevalence.
Therefore, the infection pool will be sustained in a smaller population of mosquitoes which bite
humans more frequently to make up for the decrease in human to mosquito infection efficiency. We
can then conclude that the true catalyst of malaria elimination is the crash of the infectious popula-
tion of mosquitoes after MDA, rather than a complete elimination of infections in the human
population.

Here, we present a theoretical exploration of the potential impact of MDA strategies in different
settings of the GMS, with special emphasis on the sensitivity of the predicted impact to logistical
constraints, and transmission or population topologies. The ranges of parameters and distributions
explored are meant to represent the current malaria situation in the GMS but need to be adjusted
for application to specific areas/countries. In conclusion, we propose that mass drug interventions
can be an invaluable tool towards malaria elimination in the right context. The model presented
here predicts that an MDA's success likelihood is bounded by the initial malaria prevalence and we
elucidate how those chances can be improved through tailoring of implementation logistics.
Although MDA is being revisited by the global community, very little attention has been paid to
implementation logistics, and there seems to be no protocol adjustment across settings with
completely different seasonality and human mobility patters, thus risking a sub-optimal MDA
outcome.

Materials and methods

We developed an individual based, discrete time, spatially explicit, stochastic model, with mosquito
population dynamics and human population movement. The flow diagram in Figure 1A describes
the natural history of malaria infection in the human population. Details of how the dynamics of
malaria transmission, human mobility and interventions are simulated are provided in the simulation
protocol section below. All model parameters are presented in Table 2 along with their respective
references when applicable. The simulated synthetic population mimics the demographics of a set of
1000 villages in SE Asia, with the distribution of villages over space, village sizes and age distribution
of people likely not applicable to African settings. They should be generic enough to give a fair
representation of rural settings in SE Asia. The parameter exploration presented here provides the
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Table 2. List of parameters used in the model.

Epidemiology and Global Health

# Name Description Value Reference
1 % Set of villages V] = 1000
2 N Set of individuals across all villages IN| = 314,795 -
3 ml Proportion of males in 0.48 (National Institute of
the population Statistics, 2008)
4 maxage Maximum age 80 years -
5 beta Biting rate variable” -
6 previ Initial proportion of infectious people variable” -
7 resit Initial proportion of artemisinin resistant infections variable” -
8 netuse Proportion of individuals that own an insecticide 0.5 -
treated bed net
9 itneffect proportional decrease of individual susceptibility/ 0.2 -
infectiousness related to ITN usage
10 ovstay Mean number of nights spent somewhere when 3 -
undertaking short-term population movement
11 crit Critical distance below which overnight stays 4 km -
somewhere other than your home are made very unlikely
12 timecomp Mean time to complete ACT routine treatment 4 days Best guess
13 fullcourse Proportion that receives treatment full course 0.8 (Yeung et al., 2008)
14 covab Proportion of symptomatic cases that 0.6 (Yeung et al., 2008)
receive antimalarials
15 nomp Relative probability of receiving treatment in 0.1 Best guess
a non-malaria post village
16 asymtreat Relative probability of receiving treatment 1074 -
without clinical symptom
17 tauab Daily probability of receiving ACT in a village 1/1.5 -
under MDA
18 gamma Mean liver stage duration 5 days (Collins and Jeffery, 1999,
Eyles and Young, 1951)
19 sigma Mean time to infectiousness after liver emergence 15 days (Jeffery and Eyles, 1955)
20 mellow Mean duration of symptoms 3 days (Church et al., 1997)
21 xa0 Daily probability of going below the minimum 1/7 (Karbwang et al., 1998)
effective artemisinin concentration
22 xai Daily probability losing the DHA effect as part of ACT 1/3 (Rijken et al., 2011,
Tarning et al., 2008)
23 xab Daily probability of going below the minimum 1/30 (Rijken et al., 2011,
effective piperaquine concentration Tarning et al., 2008)
24 xpr Daily probability of going below the minimum 1/2 (Burgess and Bray, 1961)
effective primaquine concentration
25 delta Mean duration of a malaria untreated infection 160 days (Eyles and Young, 1951, Babiker et al.,
1998; Franks et al.,
2001)
26 imm_min Minimum clinical immunity period 40 days Best guess
27 alpha Average permanence in each immunity level 60 days -
28 phic Relative infectiousness of symptomatic infections 1 -
compared to sub-patent ones
29 mdi Mosquito daily probability of dying while infectious /7 (Dawes et al., 2009)
30 mdn Mosquito daily probability of dying while 1/20 (Dawes et al., 2009)
infected but not yet infectious
31 mgamma Mean extrinsic incubation period 14 days (Smith et al., 2014)
32 amp Amplitude of mosquito density seasonal variation 0.6 Best guess

Table 2 continued on next page
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Table 2 continued

Epidemiology and Global Health

# Name Description Value Reference

33 process Days needed to administer a full ACT 4 days Optimistic guess
course in one village

34 rounds Number of drug rounds in an MDA campaign 3 Standard practice

35 btrounds Number of days between drug rounds in an 32 Standard practice
MDA campaign

36 veefficacy Vector control efficacy variable” -

37 Chrta Daily probability of clearing blood stage drug 1/5 (Adjuik et al., 2004; Pukrittayakamee
sensitive parasites with circulating dha et al., 2004)

38 Chraa Daily probability of clearing blood stage 0.27*Cp.r0a (Dondorp et al., 2009)
artemisinin resistant parasites with dha (0.05)

39 Ciroa Daily probability of clearing infectious 1/3 (Adjuik et al., 2004;
stage drug sensitive parasites with circulating dha Pukrittayakamee et al., 2004)

40 Ciraa Daily probability of clearing infectious stage 0.27*Ci.10.a (Dondorp et al., 2009)
artemisinin resistant parasites with dha (0.09)

41 Chero-ab Daily probability of clearing blood stage drug 1/3 (Adjuik et al., 2004;
sensitive parasites with circulating dha- piperaquine Pukrittayakamee et al., 2004)

42 Chora-ab Daily probability of clearing blood stage 0.27*cproab + (Dondorp et al., 2009)
artemisinin resistant parasites with dha- piperaquine (1.0-0.27)*cpr06

(0.33)

43 Cir0-ab Daily probability of clearing infectious stage 1/3 (Bustos et al., 2013)
drug sensitive parasites with circulating
dha- piperaquine

44 Cira-ab Daily probability of clearing infectious 0.27*Civo.ar + -
stage artemisinin resistant parasites with (1.0-0.27)*ci.00
dha- piperaquine (0.126)

45 Chr0b Daily probability of clearing blood stage drug 1/3 (Chen et al., 1982)
sensitive parasites with circulating piperaquine

46 Chorah Daily probability of clearing blood stage 1/3 (Chen et al., 1982)
artemisinin resistant parasites with piperaquine

47 Cir0-b Daily probability of clearing infectious stage drug 1/20 (Myint et al., 2007)
sensitive parasites with circulating piperaquine

48 Cirah Daily probability of clearing infectious stage 1/20 (Myint et al., 2007)
artemisinin resistant parasites with piperaquine

49 Cirop Daily probability of clearing infectious stage 1/1.5 (Burgess and Bray,
drug sensitive parasites with primaquine 1961; Smithuis

et al., 2010)

50 Cirap Daily probability of clearing infectious stage 1/1.5 -
artemisinin resistant parasites with primaquine

51 k Steepness of susceptibility increase with age 0.14 (Aguas et al., 2008)

52 r Amplitude of susceptibility increase with age 0.99 (Aguas et al., 2008)

“the values are varied in different simulation settings. Their values are given in the description of each set of experiments and the set of possible values is

given in Table 1.

limits of plausibility in terms of how people are expected to move, the levels of drug resistance and
malaria prevalence, and how spatially heterogeneous transmission is.

Spatial demographics for both mosquitoes and humans are implemented at the village level,
that is, humans can only move between villages and transmission within each village follows a
pseudo-homogenous process where each mosquito is equally likely to bite a given individual. We
assume villages are transmission units that encapsulate the village itself and the surrounding farms/
forest areas. Whilst clearly a simplification of reality, we know that mosquitoes can easily cover the

distance between village and proximal farms over the course of a single day, and most SE-Asian vec-
tor species engage in late afternoon biting (some even having a near flat biting rate throughout the
day). Given that people tend to move freely within their village during those hours we can
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reasonably assume that all humans in one village can potentially be bitten by any one mosquito in
that village. Having villages as both the transmission and intervention units is obviously computation-
ally convenient, since all model processes related to transmission and intervention can then be evalu-
ated at the same scale.

Malaria transmission in the Greater Mekong Sub-region (GMS) has been reported to be spatially
heterogeneous (Gryseels et al., 2015; Cui et al., 2012; Erhart et al., 2005). However, there is very
little evidence as to the relative abundance of the main vector species and no quantification of densi-
ties exists at a large enough scale. Given the lack of data to inform the discrepancies in mosquito
densities across different villages, we chose to explore three mosquito density distributions (Mn, M,
and Mp). Two of those distributions represent extreme scenarios: one in which all villages have
approximately the same biting rate (Gaussian distribution); another where the vast majority has very
low biting rates with a few hotspots (Pareto). The third distribution illustrates a scenario possibly
more applicable to most areas in which some villages have a quite high transmission intensity, but
where most have low mosquito abundance. These distributions were chosen arbitrarily and are para-
meterised as follows:

Gaussian:
Mn~N(0.0172,0.0075)

Lognormal:
Ml~Logn(u,0)
0.01722

p="Log 1/(0.01722+0.0001)

o= [Log (g5t +1)

Pareto
Mp~ Pareto(0.37,0.0075,0.001)

We take these distributions of mosquito density across villages as reference (M(t =0)) and impose
some seasonal variation to reflect the observed malaria incidence seasonal patterns. Mosquito den-
sity at time t in village j, for all mosquito density distributions is then given by:

M;(t) = M;(0) 4+ amp x M;(0) x cos (277 (%)) ,
where amp reflects the amplitude of the seasonal fluctuation.

Transmission in a given simulation is characterised by a single extra parameter, the mosquito bit-
ing rate, which determines the vectorial capacity and is adjusted to reach a specific baseline malaria
prevalence in the human population. The mosquito biting rate calibration was performed for each
combination of transmission heterogeneity distribution, population mobility intensity and malaria
mean prevalence. Thus, for each population mobility and mosquito density distribution, hundreds of
model runs were performed until the desired mean malaria prevalence was reached with a specific
mosquito biting rate within the first 5 years of simulation.

Population movement patterns and their importance for infectious disease transmission and
emergence has recently garnered a lot of increased scientific interest, with new tools and analysis
frameworks being developed for mobility inference (Tatem et al., 2014; Tatem et al., 2009). Whilst
census data and mobile phone data can help in proposing a connectivity network for a given region,
the lack of general precision in questionnaires and the relative difficulty in capturing a lot of outside
home overnight stays in mobile phone records, begs for a new source of data to resolve transmission
relevant mobility patterns. Spatially explicit malaria models have in so far used gravity models to
describe population movement, which is supported by some data (notably, daytime travel data).
Whilst we agree that a gravity model can be the most appropriate to describe some seasonal and
long-term migration patterns, we argue that overnight stays a very short distance from your home
are generally unlikely. It is more likely for someone to return home for the night if they are within a
certain critical distance threshold (crit) in km, instead of staying overnight somewhere else. We thus
consider that daily population flow (FL_short) between villages i and j is best characterised by a
modified gravity model given by:
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1

where FL; refers to the daily population flow of a standard gravity model

FL— (PP Pon
' dist(i.))

where pop refers to village population size, and dist to the Euclidean distance (in km) between vil-
lages i and j.

The frequency of general population’s short-term movements (very small number of nights spent
somewhere other than their own village at a time) is given by the overall population mobility param-
eter — mobility — which is explored at length in the main text and assumes 2 extreme values (5 and
250 nights spent somewhere other than the home village, per year). The population is further parti-
tioned into temporary (seasonal) or long-term migrant groups. Seasonal migration can only occur
during a 3 month period. This roughly corresponds to the duration of crop seasons, at which time
people typically go back to their village of origin to help their families harvest crops or for other eco-
nomic/personal reasons. After 3 months they return to larger villages or surrounding cities following
FL;. Long-term migrants only move between a priori defined (at random) economic hubs, comprising
2% of the target villages, spending an average of 6 months in each before moving to the next. For
simplicity, we only explore the effects of short-term movements throughout this paper, excluding
seasonal and long-term migration events from the simulations presented here. We should note that
the sensitivity of the model’s predictions to seasonal and long-term migration is much lower than to
the general population short-term movements explored to great lengths throughout this paper. We
simulate malaria elimination strategies composed of MDA, a village malaria worker (VMW) network
for improved case management, and an annual bed net distribution program. Villages are given an
MDA of one full course (3 monthly rounds) of artemisinin combination therapy (ACT) plus one dose
of primaquine, irrespective of their illness or infection status. Logistically, intervention teams sweep
through all villages and give out ACTs without any prior screening, staying for a given number of
days and then moving on to the next village. The details of how implementation logistics were incor-
porated into the simulation protocol can be found in the Simulation Protocol below.

When exploring the factors driving MDA outcome prediction, we explored all possible combina-
tions of parameter values presented in Table 1, comprising 3888 sets of parameters. The model was
run 100 times for each parameter set.

We also explored the layering of further intervention efforts on top of a global MDA initiative
(with 3 ACT rounds), such as the implementation of indoor residual spraying (IRS) or larvicidal
deployment, for example. Vector control effect size can be modelled as a reduction in vectorial
capacity or EIR, as a direct consequence of a decrease in life expectancy, increase in sporogony cycle
length and/or decreased biting rate on humans. Depending on what vector control measure one
considers and how the mosquito life cycle is modelled, there might be interest in detailing the
impact of a vector control intervention on a particular aspect of the mosquito life cycle. That is
beyond the scope of what is intended in this paper, and we present vector control effect size as a
measure of how much vectorial capacity is decreased when vector control interventions are in place.
Thus, a transmission reduction efficacy of 0.10 means that the implemented vector control strategy
reduces the number of infectious bites per person per year by 10%. Whilst MDA is programmatically
well defined, with a specific number of ACT rounds being deployed, it is less clear how vector con-
trol strategies are sustained over time. Thus, we ran simulations for a range of vector control effi-
cacy/duration of intervention pairs and evaluated the proportion of simulations in which elimination
is reached.

Simulation protocol

In this section, we give detailed description of the agent-based malaria simulation model results
from which were discussed in the main text. We start by defining the interacting agents and their
properties in the next section. Model processes and functions executed during the simulation are
then documented in another two sections according to their positions in the simulation sequence.
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Agents

The simulation model presented here is a multi-level agent-based model containing three intercon-
nected groups of agents: Villages, Humans and Mosquitoes. Each agent has group-specific
properties:

Villages

- Village ID

- Population size

- Location (Longitude, Latitude)

- Mosquito density

- Malaria post status/Date of establishment

- Current treatment strategy (whether the village is undergoing MDA)
- Number of administered ACT rounds

Humans

- Human ID

- Home Village ID

- Current Village ID

- Age

- Gender

- Susceptibility/infectiousness

- ITN usage (affects the susceptibility/infectiousness property above)

- List of infections (In each human we keep a list of all infections emerging from the liver. We track
each infection’s parasite drug resistance status and maturity over time)

- Transmission status

- Clinical status

- Immunity status (Immunity level and cumulative number of lifetime infections determined the
probability of developing clinical symptoms upon infection)

- Treatment status

- Active circulating drugs (which drugs are circulating at effective concentrations in the person's

blood)

Mosquitoes

- Transmission status

- Infection carried (This property informs on the drug resistance of the parasites in the mosquito’s
salivary glands)

- Current Village ID

Model set-up

To explore the effect of malaria interventions using dynamic transmission models, one usually
assures that the model is run until an equilibrium is reached (thus establishing a control scenario),
and then implements whatever the intervention of interest is. The intervention’s outcome or effec-
tiveness can then be derived from a direct comparison between the integral of the control scenario
and that of the intervention scenario over the same time period. Throughout the manuscript we
present simulations for settings of a specific malaria prevalence. That value is the mean malaria prev-
alence over the last year of a 200 year run of a control scenario. To calibrate model runs to a specific
prevalence we vary a free parameter beta [5], the mosquito biting rate, whilst keeping all other
parameters fixed.

From the end of each successful calibration run to a given prevalence, we extract individual level
information to inform the age, immunity level, number of cumulative infections, and infection status
of each individual. This information forms a human input file used for model initialisation in the runs
where intervention is simulated. The calibrated vectorial capacity distributions used in the calibrated
runs are added to a village input file containing village location and population size and is also used
for model initialisation.
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More specifically, the following processes are involved in setting up the human population and
village properties at the start of the 200 year prevalence calibration runs:

Human properties
Gender and age

Age and gender information of human agents are generated according to parameterised distribu-
tions. The probability of a human agent being male is m/[3]. The age of a human is sampled from a
discrete distribution specified by a vector of size maxage [4]. This vector is given by a csv file with
maxage [4] integers, containing a discrete age profile taken from Cambodian census data.

Prevalence
The probability of a human agent being infectious is previ [6], and the probability of that infection
being resistant to artemisinin is resit [7].

ITN usage

Each human agent is assigned with an ITN with a probability of netuse [8]. Ownership of an ITN
reduces the human agent'’s susceptibility/infectivity by itneffect [9]. Note that ITN distribution is not
explored further in the model runs contained here. If that were a consideration, then the control sce-
narios would have both netuse and itneffect at their minimum acceptable values.

Immunity

Each human agent is assigned two properties in relation to immunity, namely Cumulative Number of
Exposures and Immunity Level. Both properties are set to 0 for newborns. The likelihood of clinical
symptoms brought on by a single infection is given by

0.1 x e—(cmln—Z)XO.l +e—0,9><cml,,
X

wios

(—0.15% (moi,—1))

clinical prob, = e

where moi, cml and Ivl denote the multiplicity of infection, cumulative exposure to malaria and
immunity level properties of the human agent respectively. Although we only increase immunity level
if individuals resolve their infection (presumably due to increased antibodies killing activity), the
cumulative exposure is updated with each infectious bite received. Thus, individuals can accrue
some immunity with superinfections.

Village properties

Mobility network

Geo-spatial human mobility amongst the population is a key element simulated in our model. Using
the location and population information provided for each village, a complete graph (FL) is con-
structed linking all villages during initialisation. Let M denote the set of villages in the simulation, FL
is constructed using a generic gravity model, with each edge denoting the flow of human move-
ments between village i, j € V as

FLy = (PPXPons
dist(i,j)

where pop; denotes the population of village i, and dist(i,j) denotes the earth-surface distance
between i and j.

Mosquito density

Each village has a property describing the number of mosquitoes per person. At model setup, each
village is assigned a mosquito density by randomly sampling from the distribution describing the
spatial heterogeneity in risk used for a particular model run. Given the lack of data to inform these
distributions, we chose to explore three different ones (Mn, Ml, and Mp). Two of those distributions
represent extreme scenarios: one in which all villages have approximately the same biting rate
(Gaussian); another where the vast majority have very low biting rates with only a few hotspots
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(Pareto). The third distribution (Lognormal) illustrates an intermediate scenario in which some vil-
lages have a quite high transmission intensity, but where most have low mosquito abundance. These
distributions were chosen arbitrarily and are parameterised as follows:

Gaussian : Mn~N(0.0172,0.0075)

Lognormal : Ml~Logn(u, o)

0.01722
w = Log
(0.01722 +0.0001)

0.0001
7= \/Log [0.01722 + 1]

Pareto : Mp~ Pareto(0.37,0.0075,0.001)

We take these distributions of mosquito density across villages as reference (M(t =0)) and impose
some seasonal variation to reflect the observed malaria incidence seasonal patterns (described
below).

For simplicity, we chose not to create infectious mosquitoes during model set-up. This is essen-
tially due to the extremely fast timeframes of life events in mosquitoes compared to humans. The
mosquito infection prevalence reaches equilibrium in a matter of days and thus its initialisation to
non-zero values bears a negligible benefit. We use a free parameter beta [5], the mosquito biting
rate, to calibrate each simulation to the desired malaria prevalence. Biting rates are calibrated for
each combination of mobility, transmission distribution, and prevalence to ensure the system is at
equilibrium.

Model initialisation

The developed malaria micro-simulation platform takes inputs from two CSV-formatted input files
and a JSON-formatted configuration file. The two input files provide the model with a list of villages
and a list of humans respectively. Each row in these files describes the properties (as listed in the
previous section) of either a village or a human agent. Model-wide and process-specific, as opposed
to agent-specific, parameters are given by the configuration file. Most parameters specified in
Table 2 of the main text are associated with processes and functions (rather than individual agents),
and therefore are given by the configuration file. In this section, we use the numbers in square brack-
ets to refer to the associated parameter number whose description and value can be found in
Table 2.

The initialisation process starts by processing the configuration file where the location of the input
files is stored. Then a list of village agents and a list of human agents are created according to infor-
mation given in the input files. Human agents are randomly assigned a home village from a list of all
possible villages. Once all agents have been created, the software initialises the parameterised func-
tions of the model using the information given in the rest of the configuration file.

Implementation of malaria relevant dynamics
Once initialisation finishes, the main body of the model simulation starts. We assume time zero to be
the 1°* of January 5 years prior to the first malaria post establishment/MDA initiation.

The simulation protocols detailed in this section illustrate the flow of events and processes taking
place each day. Each process has a daily probability of occurrence. For each individual and for every
simulated daily time step, a uniform random number is drawn between 0 and 1 for each possible
and valid (according to the individual’s status) transition process (e.g. whether the individual dies, is
infected, is treated, etc) associated with that individual. The transition process occurs if and only if
the number drawn is lower than its daily probability of occurrence. Note that not all events are valid
to an individual given its status on a given day. For instance, a clinical resolution event is not valid to
an individual until that individual develops clinical symptoms.
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Human population dynamics

Birth and death

The age profile presented here are taken from Cambodia census data. When we initialize individuals
in the model and assign them a random age given the age frequencies in the data (through repre-
sentative sampling), and run that model for 200 years, whilst assuming that individuals have a life
expectancy of 1/mu, we end up with a different age profile from the one we started with. That
means an adjustment in life expectancy is needed to reflect differences in mortality rates across
ages. To that end, we fit the data age profile to an 8" order polynomial function, which we normal-
ised to obtain representation weights for each age, w(a). We then calculate the death probability of
individual n of age a as:

_ 1
"~ 80—a

death_prob,(a) w(a)

Whilst this provided a large improvement is the long-term age profiles produced by the model,
we still good not replicate the flattening around age 30. Research into the census data for LMICs
revealed that there is a significant drop in life expectancy in teenager and young adults, presumably
due to involvement in higher risk activities. We explored several age range mortality modifiers and
found that the data is best fit when multiplying w(a;5_25) by 4.

When a death event happens, a new infant agent is generated as a replacement. The new agent
is placed in the same village where the death took place to keep population size constant, and all its
immunity and exposure related parameters reset.

Mobility

Every human agent can display short-term mobility patterns, characterised by overnight stays in vil-
lages other than their home for a mean period of ovstay [10] days. For every agent who is currently
located at their home village, the daily probability of such short-term movement is given by the fac-
tor Mobility in Table 1. Thus, the number of human agents embarking on short-term movement on a
given day is

Nmove - B(Nh()me ) MOblllty)

The destination of each agent’s movement varies and is determined using the mobility network
FL constructed during initialisation. Let the flow of short-term movement between village i, j € V be

1
FLJh{)rl‘,'j = FL,'j/ <1 +W>

where crit[11] denotes the critical distance below which overnight stays at a village other than home
are made very unlikely. The probability of a human agent to move from home to village j is

short move_probjome, j = FLshoFthome | ZFL_shorthomw
vev

Clinical outcome
The likelihood of clinical symptoms brought on by a single infection is given by

0.1 x e~ (cmh,—2)x0.1 + ¢~ 0-9%cmi,
X

wios

—0.15% (moi,—1))

clinical prob, = e

where moi, cml and Ivl denote the multiplicity of infection, cumulative exposure to malaria and
immunity level properties of the human agent respectively.

Treatment

The probability for a human agent to receive a full course of ACT treatment is dependent on symp-
tomatology as well as the presence of a local malaria post. In a village with a malaria post, a human
agent with clinical symptom would receive treatment with probability
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- 1 .
treatment prob_mp_clinical = ————— X fullcourse x covab
timecomp

where timecomp [12], fullcourse [13] and covab [14] are described in Table 2. In a village with no
malaria worker presence, this treatment probability is reduced by nomp [15]. Treatment rates of
asymptomatic human agent is negligible as treatment is conditional on a positive RDT, which is very
unlikely in sub-patent infections. The probability of a human agent with asymptomatic infection get-
ting treatment is given by asymtreat [16]. The assumed figure of 60% treatment coverage may seem
low but it was the coverage reported in a very comprehensive study designed specifically to evaluate
access to treatment in remote areas covered by the Cambodian village malaria worker network and/
or malaria outreach teams (Yeung et al., 2008) Nevertheless, in Cambodia, the Thai-Myanmar bor-
der and other areas of Myanmar (Landier et al., 2018) there has been a substantial decrease in inci-
dence over the past 5 years, mostly due to better clinical case management. The model presented
here does predict a substantial effect size on prevalence when village malaria posts are open for this
low of a coverage value (~20% decrease for starting prevalence of 5%).

In a village under MDA, the daily probability for a human agent to receive a round of ACT treat-
ment is tauab [17].

Intrinsic incubation
Parasites emerge from the liver at a rate of 1/gamma [18], thus the liver stage takes on average
gamma [18] days to complete.

Gametocytaemia
Parasites start reproducing sexually, and thus generating gametocytes with 1/sigma [19] daily
probability.

Clinical resolution
Malaria induced fevers gradually recede at a rate of 1/mellow [20], meaning that a person is feverish
for mellow [25] days on average.

PK/PD

We describe waning drug efficacy over time through explicit daily probabilities of drug effect loss.
Upon receiving treatment (with DHA-pip), each human agent will gradually lose the effect of both
DHA and Piperaquine, according to xai [22] and xab [23] respectively. The single remaining drug will
be lost at rates xa0[21] and xab [23] for Artesunate and Piperaquine respectively. Single dose Prima-
quine is lost at rate xpr[24].

Parasite killing rates depend on the person’s transmission status (s € {blood, infectious}), with par-
asite clearance in not yet infectious people generally slower than that in individuals carrying gameto-
cytes. Clearance of parasites with drug resistance phenotype & by drug d then follows

Clearances..q~B(Nyp.q,Cs.ha)

where ¢;;.4 is an element of a 3-dimensional drug clearance rate matrix C of size |S| x |[H| x |D|. Val-
ues of the elements of C are given by parameters [37-50] in Table 2. B denotes a binomial
distribution.

Recovery
Each infection in a human agent’s infection list has a daily probability of being naturally cleared given
by 1/delta [25].

Immunity

One level of clinical immunity is gained by a human agent every time his infection list is emptied.
Immunity loss starts imm_min [26] days after one level of immunity is gained. Immunity is lost at a
rate of 1/alpha [27]. Therefore, each human agent is clinically immune an average of imm_min [26] +
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alpha [27] days. A loss in immunity prompts a reduction in immunity level and not the immune status
per se.

Susceptibility/Infectiousness

Susceptibility was implemented as being age dependent and be modulated by ITN usage. Each indi-
vidual's baseline susceptibility increases during the first years of life, saturating at around age 10
(Smith et al., 2004). We define the susceptibility of individuals with age a to a mosquito bite as:

S(a)=1—rxexp(—kxa));

If someone sleeps under a bed net, their susceptibility to receive an infectious mosquito bite is
reduced by itneffect [9]. Individuals sleeping under a bed net are also less infectious compared to
people that don't.

Clinical status modulates infectiousness through phic [28], which determines the relative infec-
tiousness of clinical malaria infections compared to sub-patent ones (here assumed to be 1). We
recently published a paper stressing the need for further empirical studies to better characterise this
critical but very controversial quantity (Aguas et al., 2018), where we demonstrate how the relative
infectivity of chronic infections has severe consequences for malaria elimination prospects.

Infection

Given the time dependent vectorial capacity of each village, we can extrapolate the number of mos-
quito bites landed on humans each day. We exclude all bites from non-infectious mosquitoes. Infec-
tious bites are distributed across humans according to a Gaussian distribution of mean of 1 and a
standard deviation of 0.5, reflecting how some individuals are more likely to be bitten than others.
This is done through proportional sampling. For each infectious bite, the probability of causing a
new infection in a human agent n is given by

Infection,, ~ B(1, susceptibility, )

A resulting infection is then added to the human agent's infection list and inherits the drug resis-
tance phenotype of the infecting mosquito. The number of that agent’s cumulative number of expo-
sures and multiplicity of infection is adjusted accordingly.

Mosquito dynamics
Note that only infected and infectious mosquito agents exist in our model.

Survival

We assume adult female mosquito's life expectancy to be 1/mdi[29] + 1/mdn [30] days on average.
Meaning for each mosquito agent, its daily probability of dying while infectious is 1/mdi[29], and 1/
mdn [30] while infected but not infectious.

Extrinsic incubation

Parasite development in mosquitoes takes an average of mgamma [31] days. Meaning for a mos-
quito agent, it takes mgamma [31] days from gametocyte infection to having sporozoites in the sali-
vary glands and thus becoming infectious to humans.

Seasonality
Mosquito density at time ¢ in village i, for all mosquito density distributions follows an annual sea-
sonal cycle given by

M;(t) = M;(0) +amp x M;(0) x cos (277 (t ;620) )

when only 1 seasonal peak is modelled in a year, and

Mi(t) = M;(0) +amp x M;(0) x cos (4” <t3_620) >
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when 2 seasonal peaks are modelled in one year, with amp [32] denoting the amplitude of the sea-
sonal variation of mosquito density.

Infection

Given the time dependent vectorial capacity for each village, we can easily extrapolate the number
of mosquito bites landed on humans each day. For all bites handed out by mosquitoes that land on
infectious humans we generate a new infection in the corresponding mosquito with the same resis-
tant phenotype as a randomly sampled infection in the human'’s infected list. There is no limit as to
the number of infections a given mosquito can acquire during its lifetime. Their adult survivorship is
quite limited though, with only 26% of female mosquitoes having more than one infection at the
time of death. That number drops to ~ 14% for values of prevalence amenable to elimination. Note
that on a daily basis, the set of humans a mosquito can bite is assessed, based on the human move-
ment across villages. If a human spends a night in village A, they are included in the set of possible
humans bitten by mosquitoes in that village, even though that person might live in village B.

Interventions

Malaria post

Malaria posts are established over time by placing a village malaria worker upon MDA initiation in
each village. The presence of a malaria post improves the access to treatment as mentioned in the
Human treatment section above.

MDA

In order to coordinate MDA teams to visit all villages without overlapping and repetition, a complete
graph VG connecting all villages to each other is first constructed. The weight of the edge between
village i and j is given by dist(i,j). This complete graph VG is then reduced to its minimum spanning
tree form, denoted MST(VG), which we use to represent the road network connecting all villages.

Given that the MDA campaign includes T teams (Table 1), T starting locations are randomly
selected from the nodes/villages of MST(VG). Then, T breadth-first-search algorithms are started
from each of the T starting locations. These search algorithms run simultaneously in coordinated
rounds. Each round, an algorithm proposes the next village to be visited. Villages are added to the
path of the algorithm which reaches it first. When an algorithm reaches a village that has been
added/visited to the path of another algorithm, it continues searching until it finds an un-visited vil-
lage in the same round. Once all villages have been visited, all algorithms stop. Each algorithm’s
path is used as the sequence of villages to be visited by each of the T MDA teams.

An MDA team stays in a village for process [33] days for each one of the rounds [34] number of
ACT courses administered. There are btrounds [35] days between drug rounds.

Vector Control and targeted Vector Control

Each village's mosquito density is reduced by 1-vcefficacy [36] during vector control. During a tar-
geted vector control campaign, only a selected subset of villages’ mosquito density property is
reduced.

Model Calibration

The simulated synthetic population mimics the demographics of a set of 1000 villages in SE Asia.
Whilst not using data from real villages, some properties describing the demographic fabric of the
synthetic population are taken from SE Asian settings. Notably, the distribution of village population
sizes and the shape of Euclidean distance network used to determine human population mobility are
informed by data from the Thai-Myanmar border, whilst the age profile is extracted from the Cam-
bodian population census. The population demographics simulated here should be generic enough
to give a fair representation of rural settings in SE Asia but are not necessarily applicable to African
settings.

To ensure the simulation platform produces outcomes that represent reasonable falciparum
malaria transmission dynamics, we performed several model calibrations using malaria metadata. By
doing so, we safeguard the generalizability of the results presented in the paper as well as the appli-
cability of the model to any specific setting moving forward. The mentioned meta datasets describe
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fundamental relationships between malariometric indices measured in as many different endemic
settings as possible.

A preliminary model calibration done independently of this work, allowed the estimation of an
age-dependent force of infection function. Using data from 8 endemic countries in sub-Saharan
Africa, we were able to estimate how age modulates the risk of infection during the first years of life,
saturating at around age 10 (Aguas et al., 2008). The susceptibility of individuals with age a to a
mosquito bite is then given by:

8(a)=1—rxexp(—k=a));

Where k [51] determines how steeply susceptibility increases with age, and r [52] controls the
amplitude of that increase. Given that this relationship is primarily the result of an increasing body
weight and surface with age (Smith et al., 2004), and secondarily with the potentially increased pro-
tection conferred to infants and small children, we believe it is transferable to any other setting.

An initial model calibration was carried out to better characterise how immunity is developed
over age, which remains a contentious and unresolved issue in falciparum malaria. To do so we use a
dataset of immunity markers collected in 4 Cambodian sites, that describes seroconversion rates
over time and extrapolates age profiles of clinical immunity (Cook et al., 2012). It is important to
define what measured immunity means in this context. The data presents percent positivity of each
collected specimen (hence single individual) as that defined by a cut-off of the mean optical density
of the seronegative population plus three standard deviations (Corran et al., 2008). More impor-
tantly, this refers to measured MSP-144 antibodies which have demonstrated a significant association
with a decrease in clinical falciparum malaria incidence (Fowkes et al., 2010), and display a very
strong linear correlation with EIR (R? = 0.78) (Corran et al., 2007). Critically, a 15% reduction in
symptomatic P. falciparum per doubling of antibody levels was observed (Fowkes et al., 2010), thus
painting a picture of piecemeal acquisition of clinical immunity over age, and explaining the quasi-
linear relationship with EIR. We take the seroconversion rates reported in this paper as the probabil-
ity of immune positivity and translate that into a probability function governing the likelihood that a
newly infected person of a given age will eventually develop clinical symptoms and thus account for
a new clinical malaria case. We then calibrate our model to the prevalence metrics reported for each
setting and output the age, number of cumulative infections and immunity level of each person at
the last timestep of the model. If we define the probability of clinical outcome as:

probelin = (imm_a* exp( —0.1(cml— 1)) + exp( —imm.bx (cml+ 1) ))/ sqrt(vl);

we can then jointly estimate the set of parameters 6 = {imm.a,imm_b}, that minimise the difference
between the mean probability of clinical symptoms derived from the mean number of cumulative
infections (cml) and mean immunity level (lvl) for each age category in the model output for each
prevalence, and the measured probability of immunity (Pi). We thus minimise the following objective
function:

f(9) = Z\/(probclin(i) - Pi(i))2

where i are the ages in the dataset.

The resulting estimates of imm_a (0.5631 [0.4201-0.7061]) and imm_b (0.9652 [0.4976-1.433))
determine the shape of the probability of developing clinical symptoms relative to previous expo-
sure as is depicted in Figure 1C of the main text. The model adjustment to the data can be visual-
ised in Figure 1—figure supplement 2.

The second calibration performed was to the relationship between entomological inoculation rate
(EIR) and falciparum malaria prevalence. The data shows a non-linear relationship between EIR and
Pf prevalence measured by microscopy (Guerra et al., 2007) in over 90 endemic countries, that sug-
gests a marked heterogeneity in individual infection risk (Smith et al., 2005). The relationship pro-
duced by the model described here is compared with the data in Figure 1—figure supplement 3.
For a direct comparison with the data, we had to convert the prevalence obtained from the model
(Pm) to a metric akin to the one obtained when using microscopy for diagnosis (Pd). We assume that
an model equivalent of Pd can be derived from: Pm = sPd + sp(1 — Pd), thus correcting for micro-
scopy's sensitivity (s) and specificity (sp). We assumed these to be 85% and 96%, respectively. Note
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that the model was not fit to the data. Rather, 1000 simulations were run using different mosquito
biting rates (and thus EIR) and susceptibility distributions but keeping all other parameters (as
defined here) fixed, and their outputs plotted against the data. Here we present model calibrations
using a Gaussian bite receptivity distribution with mean of 1 and a standard deviation of 0.5 (See
Infection section for more details). Note that the Pareto distribution for vector density across villages
(blue dots) replicates the observed prevalence variance for a fixed EIR value much better than the
Gaussian equivalent (red dots).

We opted to plot a point per village for each simulation, to try to reproduce the variance
observed in the real data, instead of plotting a single median prevalence value per EIR. This enables
us to explore how the relationship between EIR and prevalence can be modulated by factors such as
the existence of a village malaria worker, or proximity to a high/low incidence village.

The third calibration assessed the relationship between Pf prevalence and clinical case incidence.
This calibration is done to the subset of SE-Asian datapoints contained in the dataset published in
Patil et al. (2009) and assumes the same relationship between true and measured prevalence as
stated above. The incidence reported here is interpreted as the number of people with a febrile ill-
ness testing positive for P. falciparum independently of aetiology. We thus include a term (asymtreat
[16]) to describe the proportion of malaria asymptomatic infections in the model outcome that might
test Pf positive and have a concurrent fever of another aetiology, to adjust the model to the data.
Here we present a calibrated model output assuming asymtreat = 10~* (Figure 1—figure supple-
ment 4).

The fourth model calibration is done in the absence of data, since we don’t have access to a suffi-
ciently detailed dataset to inform the relationship between age and prevalence in SE-Asia. Instead,
we present the patterns generated by our model and compare them with outputs from other models
where a rigorous fitting procedure to such data was performed (Griffin et al., 2014). Figure 1—fig-
ure supplement 5 summarises how clinical cases are distributed across 4 age ranges according to
prevalence.

Lastly, to assess the realism of the MDA implementations simulated throughout, we compare the
predicted model outcomes after MDA, with those obtained in the MDA trials performed in the Thai-
Myanmar border. We extracted the data on baseline and post MDA prevalence from a supplemen-
tary figure in Landier et al. (2018). The model comparators are medians and percentiles of the prev-
alence in specific villages across one hundred simulations. The model was set up such that MDA
would be done focally, that is, only villages with a prevalence over a certain threshold (5%) were eli-
gible to receive an MDA. As per the trial protocol, during the year prior to MDA programme rollout,
all 1000 villages were surveyed to establish a baseline prevalence. These surveys consisted of sam-
pling 50 individuals from each village and perform a uPCR to determine their infection status. Here
we assume that uPCR can detect 85% of all infections. Once a list of villages eligible to receive MDA
is compiled, the model proceeds to compile a schedule for each village to be visited by an interven-
tion team. This process is repeated 100 times, and for each village only the runs in which that village
was selected for MDA are used to calculate the summary statistics. A comparison of the model’s out-
put with the empirical trial is presented in Figure 1—figure supplement 6.
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