
ARTICLE
Cellular and Molecular Biology

PLAGL2 promotes epithelial–mesenchymal transition and
mediates colorectal cancer metastasis via β-catenin-dependent
regulation of ZEB1
Liang Wu 1, Zili Zhou1, Shengbo Han1, Jinhuang Chen2, Zhengyi Liu1, Xudan Zhang1, Wenzheng Yuan3, Jintong Ji4 and
Xiaogang Shu1

BACKGROUND: We previously demonstrated that the pleomorphic adenoma gene like-2 (PLAGL2) is involved in the pathogenesis
of Hirschsprung disease. Enhanced PLAGL2 expression was observed in several malignant tumours. However, the exact function of
PLAGL2 and its underlying mechanism in colorectal cancer (CRC) remain largely unknown.
METHODS: Immunohistochemical analysis of PLAGL2 was performed. A series of in vitro and in vivo experiments were conducted
to reveal the role of PLAGL2 in the progression of CRC.
RESULTS: Enhanced PLAGL2 expression was significantly associated with EMT-related proteins in CRC. The data revealed that
PLAGL2 promotes CRC cell proliferation, migration, invasion and EMT both in vitro and in vivo. Mechanistically, PLAGL2 promoted
the expression of ZEB1. PLAGL2 enhanced the expression and nuclear translocation of β-catenin by decreasing its phosphorylation.
The depletion of β-catenin neutralised the regulation of ZEB1 that was caused by enhanced PLAGL2 expression. The small-molecule
inhibitor PNU-74654, also impaired the enhancement of ZEB1 that resulted from the modified PLAGL2 expression. The depletion of
ZEB1 could block the biological function of PLAGL2 in CRC cells.
CONCLUSIONS: Collectively, our findings suggest that PLAGL2 mediates EMT to promote colorectal cancer metastasis via β-
catenin-dependent regulation of ZEB1.
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BACKGROUND
Colorectal cancer (CRC) is the third most frequent cancer
worldwide, ranking second in cancer-related mortality.1,2 Metas-
tasis, accounting for up to 90% of cancer-related deaths, is still the
most incomprehensible part of cancer progression.3 Evidence is
mounting that epithelial–mesenchymal transition (EMT) initiates
the metastatic progression of CRC.4–6 EMT is a transdifferentiation
process, that is associated with enhanced tumour dissemination,
disruptions the apical-basal polarity, decreased numbers of
cellular junctions, and EMT requires the reduction of E-cadherin
expression. During EMT, differentiated epithelial cancer cells from
the primary tumour, lose their epithelial characteristics and
assume a mesenchymal phenotype, which promotes the forma-
tion of an invasive phenotype and enhances cancer cell
metastasis. The molecular characteristics of EMT include the
suppression of epithelial markers, including E-cadherin, and the
concomitant promotion of mesenchymal markers such as N-
cadherin and vimentin.7 In the initiation of EMT, E-cadherin
depletion is a crucial initial step.4 Various EMT-inducing transcrip-
tion factors, including Snail, Twist and ZEB protein families, and

corresponding intracellular signalling pathways can initiate the
EMT process.8 There are the most consistent negative correlations
between the expression levels of ZEB1 and E-cadherin in various
cancers.9 In EMT activation, ZEB1 not only suppresses epithelial
gene expression but also upregulates mesenchymal markers such
as N-cadherin. ZEB1 expression is also associated with worse
clinical outcomes across different types of tumours.
Signals, such as the TGFβ and Wnt/β-catenin pathways, induce

EMT by triggering the expression of Snail1 and ZEB1.8 One of
the most important signalling pathways in the induction of EMT is
the Wnt/β-catenin signalling pathway, which promotes the
nuclear translocation of the oncoprotein β-catenin. The β-
catenin nuclear accumulation can be observed in approximately
80% of CRC specimens.10 β-Catenin that is located in the nucleus
functions as a coactivator of T-cell and lymphoid enhancer factors
(TCF–LEFs) to transcriptionally activate downstream genes.9 The
abnormal activation of β-catenin/TCF signalling has been impli-
cated in various tumours, most notably CRC. Due to the
inactivated Wnt ligand, cytoplasmic β-catenin is phosphorylated
by a complex with GSK-3β, APC and Axin, and is degraded by the
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proteasome and then prevented from reaching the nucleus.11 Due
to a lack of nuclear β-catenin, TCF–LEFs instead act as transcrip-
tional repressors.9

PLAGL2, containing a C2H2 zinc finger, serves a carcinogenic
function and is involved in the pathogenesis of numerous
tumours.12–16 In addition, the PLAG family proteins (PLAG1,
PLAGL1, and PLAGL2), have highly homologous N-terminal zinc
finger structures.13 PLAGL2 and PLAG1 are oncogenes involved in
various malignancies, whereas PLAGL1 functions as a tumour
suppressor.13 Aberrant PLAG1 expression is involved in the
development of uterine leiomyomas17 and salivary gland
tumours.18 The overexpression of PLAGL2 contributes to the
development of malignant gliomas by strongly impeding their
differentiation and by promoting their self-renewal capacity.12

Growing evidence has demonstrated that enhanced PLAGL2
expression functions as a dominant oncogene in gastrointestinal
cancers.19 In CRC, PLAGL2 is one of the top 20 overexpressed
genes at 20q11. Several studies have focused on various
fundamental cellular processes of PLAGL2 and its crucial
mechanism in tumorigenesis, but the exact role of PLAGL2 and
underlying mechanism in CRC yet remain largely unknown.
Our study revealed that enhanced PLAGL2 expression in CRC

tissues is positively correlated with the expression of mesenchy-
mal markers but is inversely correlated with the epithelial marker
expression. The data in this study also demonstrated the crucial
effects of PLAGL2 on the proliferation, migration and invasion of
CRC cells both in vitro and in vivo. Moreover, these results
demonstrated that PLAGL2 triggers EMT, contributing to CRC
metastasis via β-catenin -dependent regulation of ZEB1. Our
findings illustrate that PLAGL2 serves as a crucial regulatory factor
of the β-catenin-ZEB1 molecular mechanisms, and may be a
promising therapeutic target for CRC anti-metastatic strategies

METHODS
Patients and specimens
Forty-two pairs of CRC specimens and matched para-carcinoma
samples, were randomly selected from patients who had not
received chemotherapy or radiotherapy before excision. All
samples were gathered from patients who underwent surgery at
the Union Hospital (Wuhan, China). The diagnosis of CRC in each
case was confirmed by the original histopathological report. Our
study protocol (S-082/2019) was approved by the Ethics
Committee of Tongji Medical College, Huazhong University of
Science and Technology (Wuhan, China).

Cell culture and reagents
The CRC cell lines (SW620, SW480, LOVO, DLD1 and HCT116) and
the normal colon epithelial cell line FHC were purchased from
American Type Culture Collection (ATCC, Manassas, VA, USA) and
were checked and authenticated for genotypes by DNA finger-
printing within 6 months. The cell lines were incubated in a
humidified atmosphere with 5% CO2 at 37 °C and cultivated in the
recommended growth medium, supplemented with 10% foetal
bovine serum (FBS), 100mg/ml streptomycin and 100 U/mL
penicillin (Sigma-Aldrich, St Louis, MO, USA). The GSK-3β inhibitor
CHIR-98014, the Akt inhibitor MK2206 and the small-molecule
inhibitor PNU75654 were purchased from Selleck (Houston, TX,
USA). The Akt activator SC-79 was purchased from MedChem
Express (MCE, Monmouth Junction, NJ, USA).

Western blotting (WB) and co-immunoprecipitation (co-IP) analysis
The WB analysis was performed as previously described.20

Antibodies for the WB analysis are shown in Supplementary
Table 1. For co-IP assays, whole cell lysates were incubated with
primary antibodies at 4 °C for 2 h, and with ProteinA/G PLUS-
Agarose beads (Cell Signaling Technology (CST), Danvers, MA,
USA) at 4 °C overnight. The agarose beads were gathered, washed

with cold phosphate-buffered saline and further detected by the
WB analysis.

Quantitative real-time polymerase chain reaction (qRT-PCR)
Total RNA from CRC cells and specimens was extracted with
RNAiso Plus (TaKaRa, Kyoto, Japan). The SYBR® Premix Ex Taq
(TaKaRa) was utilised for the qRT-PCR assay. The primers were
listed in Supplementary Table 2. The mRNA expression was
quantitated using the 2-(△Ct sample–△Ct control) method.

Cell proliferation assay
2 × 103 cells were seeded into 96-well plates and observed for 120
h. In each sample, the medium with 10% CCK-8 reagents (Dojondo
Laboratories, Kumamoto, Japan) was used to replace the original
medium at the scheduled time points (24, 48, 72, 96, and 120 h).
After incubation at 37 °C for 2 h, the absorbance of each sample
was then detected at 450 nm. An EdU cell proliferation assay kit
(RiboBio, Guangzhou, China) was also used to further assess the
cell growth. 1 × 105 cells were planted in 96-well plates. Briefly, the
cells were incubated with 50 µM EdU at 37 °C for 2 h before
fixation, permeabilisation and EdU staining. Hoechst 33342 was
utilised to counterstain the nuclei at room temperature for 30 min.
Cell proliferation was investigated by counting the cells with
incorporated EdU and there were 5 samples per group.

Colony formation assay
Transfected SW480 and LOVO cells were planted in 6-well plates
(500 cells/well) and cultured in the recommended growth
medium for 2 weeks. Changing culture medium was performed
every 3–4 days. We fixed the cell colonies with 4% paraformalde-
hyde for 15 min, stained the colonies with 1% crystal violet, and
then counted the colonies.

Cell cycle analysis
The transfected cells were harvested for cell cycle analysis, washed
with cold PBS, and fixed with 75% cold ethanol. Before analysis
with a BD FACS Flow Cytometer, the cells were incubated with
propidium iodide (PI) (50 μg/mL, AntGent, Wuhan, China) for 30
min.

Wound-healing assay
The transfected cells were cultured in 6-well plates. After the cells
reached 90% confluence, a standard 200 μl pipette tip was
subsequently utilised to scratch linear wounds. In addition, the
cell monolayers were cultivated in FBS-free medium. After
scratching, the images of the wound closure were captured at 0,
24 and 48 h.

Transwell migration and invasion assay
8 × 104 cells, suspended in medium without FBS, were seeded into
transwell chambers (Costar Corning, Kennebunk, ME, USA), with or
without Matrigel (Sigma-Aldrich) coating. The lower chamber
contained medium with 10% FBS as chemokine. Twenty-four
hours later, the migratory or invasive cells on the lower surface of
the chamber were photographed and counted in 10 random
microscopic fields after crystal violet staining.

Immunofluorescence (IF) assay
The IF assay was carried out as described previously.21 Primary
antibodies specific for E-cadherin (1:100), Vimentin (1:100), N-
cadherin (1:100) and ZEB1 (1:100) were obtained from Proteintech
(Rosemont, IL, USA). The primary antibody specific for β-catenin
(1:150) was obtained from CST (Danvers, MA, USA). The
Fluorescence images were captured (Olympus, Tokyo, Japan).

Immunohistochemistry (IHC)
IHC analysis was conducted as described elsewhere.22 The IHC
staining results were evaluated by two independent pathologists

PLAGL2 promotes epithelial–mesenchymal transition and mediates. . .
L Wu et al.

579

1
2
3
4
5
6
7
8
9
0
()
;,:



(double-blinded). Briefly, the percentage of stained tumour cells
(0, 0–5%; 1, 6–25%; 2, 26–50%; 3, 50%–100%) and staining
intensity scores (0, negative; 1, weak; 2, moderate; 3, strong) were
summed. The CRC tissues were categorised into four groups:
negative, ≤5% cells stained, regardless of intensity; weak
expression, 1–2 points; moderate expression, 3–4 points; and
strong expression, 5–6 points. The total score ≥3 was classified as
significant overexpression and was considered as positive expres-
sion. Antibodies for the IHC analysis are shown in Supplementary
Table 1.

Transfection
Lentiviral vectors with PLAGL2 shRNA and negative control shRNA
were acquired from Genechem (Shanghai, China) and utilised in
our study: PLAGL2 shRNA 5′-GACCCATGATCCTAACAAA-3′. SW480
was transduced with a lentiviral vector with PLAGL2 shRNA. LOVO
was then transfected with a lentivirus carrying full-length PLAGL2
or control sequences (OBiO Technology, Shanghai, China). The
knockdown or overexpression of PLAGL2 was detected by qRT-
PCR and WB analysis. Short interfering RNAs for ZEB1 and β-
catenin were purchased from RiboBio. The sequences for the
siRNAs were as follows: siZEB1, 5′-CCTAGTCAGCCACCTTTAA-3′,
siβ-catenin, 5′-AUUACAAU CCGGUUGUGA ACGUCCC-3′.

Chromatin immunoprecipitation (ChIP)
The ChIP assay was performed with a Simple ChIP Plus Enzymatic
Chromatin IP Kit (CST), with anti-β-catenin (1:50, CST) and anti-TCF4
(1:50, abcom, Shanghai, china) antibodies. The bound DNA
fragments were amplified by qRT-PCR, and then the products of
qRT-PCR were examined by gel electrophoresis on 2% agarose gels.
Input and IgG were used simultaneously to ascertain that the
captured signals were derived from specific bonding. The PCR
primers for ZEB1 were follows: forward primer (5′-ATGGACCAAT
AAATAACG-3′), reverse primer (5′-TCTTCAAACCTTTCAA CT-3′).

Xenograft assay
Lentivirus carrying specific DNA sequences were transduced into
SW480 and LOVO cells. Five-week-old BALB/c male nude mice
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). To assess the proliferation
in vivo, 5 × 106 cells, suspended in 150 μl PBS, were implanted
subcutaneously into the groin of the mice. There were 7 mice in
each group. Tumour size was measured every 4 days using the
following formula: V= 0.5 × (length) × (width)2. Mice were sacri-
ficed at 28 days after implantation. To assess the tumour
metastasis in vivo, 3 × 106 cells were injected into the tail vein
of mice, and all mice were sacrificed after 6 weeks. The care and
handling of the mice were approved by the Institutional Animal
Care and Use Committee of Tongji Medical College, Huazhong
University of Science and Technology.

Statistical analysis
The data analysis were conducted using a Student’s t-test for the
comparison between groups. The χ2 test was utilised to evaluate
the association between the protein levels and clinical character-
istics. The correlations in the gene expression levels were analysed
by Spearman’s rank correlation coefficients. Differences were
thought to be significant at *p < 0.05, **p < 0.01 and ***p < 0.001.
n.s: no significance. The results were analysed with SPSS 19.0 soft-
ware (SPSS Inc., Chicago, IL, USA). All in vitro experiments were
repeated at least three times.

RESULTS
PLAGL2 is overexpressed in CRC
Forty-two CRC specimens and matched adjacent normal colon
mucosa were utilised to investigate the aberrant expression of
PLAGL2. PLAGL2 was significantly overexpressed in CRC speci-
mens relative to that in matched tissues (Fig. 1a and
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Supplementary Fig. 1A), which is consistent with the results
derived from the Oncomine cancer microarray database (https://
www.oncomine.org/resource/main.html)23 and the GEPIA data-
base (http://gepia.cancer-pku.cn/detail.php)24 (Fig. 1b, c). Interest-
ingly, the CRC samples with distant metastasis exhibited higher
PLAGL2 expression than those without distant metastasis (Fig. 1d).
In addition, the positive expression rate of EMT-related proteins
and their correlation with PLAGL2 in 42 CRC tissues were explored.
The data revealed that the expression levels of EMT-related
proteins were significantly different between CRC specimens and
matched tissues (Supplementary Fig. 1B–D and Table 1).

Associations between the expression levels of all of the above-
mentioned proteins and clinicopathologic characteristics are
shown in Table 2. Notably, the expression of all of these proteins
was significantly correlated with the tumour invasion depth and
lymph node metastasis. Moreover, PLAGL2 was positively
associated with the expression of N-cadherin, Vimentin and β-
catenin, but was inversely associated with E-cadherin (Supple-
mentary Fig. 1B–D and Table 3). Collectively, these data suggested
that the enhanced PLAGL2 expression in CRC patients was
associated with aggressive behaviour.

Table 1. Expression of PLAGL2, E-cadherin, N-cadherin, β-catenin and
Vimentin in 42 cases of colorectal cancer and adjacent normal mucosa
tissues (X2 test).

Proteins Colorectal cancer
tissues

Adjacent normal
mucosa tissues

P-value

PLAGL2

Positive 27 5 0.000

Negative 15 37

E-cadherin

Positive 14 26 0.009

Negative 28 16

N-cadherin

Positive 25 12 0.004

Negative 17 30

β-catenin
Positive 24 14 0.028

Negative 18 28

Vimentin

Positive 28 13 0.001

Negative 14 29

Table 2. Correlation between PLAGL2, E-cadherin, N-cadherin, vimentin β-
catenin expression and clinicopathologic features in 42 cases of CRC tissues (χ2 test).

Parameters n PLAGL2 E-cadherin N-cadherin Vimentin β-catenin

+ − P + − P + − P + − P + − P

Age (years)

< 60 24 16 8 0.71 9 15 0.51 12 12 0.15 18 6 0.19 16 8 0.15

≥ 60 18 11 7 5 13 13 5 10 8 8 10

Gender

Male 26 15 11 0.26 10 16 0.37 15 11 0.76 18 8 0.65 14 12 0.58

Female 16 12 4 4 12 10 6 10 6 10 6

Size of tumour

<5 cm 15 9 6 0.67 7 8 0.17 11 4 0.17 12 3 0.17 10 5 0.35

≥5 cm 27 18 9 7 20 14 13 16 11 14 13

Differentiation

Well-moderate 19 14 5 0.25 8 11 0.27 10 9 0.41 14 5 0.38 13 6 0.18

Poor 23 13 10 6 17 15 8 14 9 11 12

T Stages

T1–T2 15 6 9 0.01 9 6 0.01 5 10 0.01 7 8 0.04 4 11 0.00

T3–T4 27 21 6 5 22 20 7 21 6 20 7

Metastasis

N Stages

N0 14 6 8 0.04 8 6 0.02 5 9 0.03 4 10 0.00 5 9 0.047

N1–2 28 21 7 6 22 20 8 24 4 19 9

M Stages

M0 38 24 14 0.64 12 26 0.46 22 16 0.51 24 14 0.12 22 16 0.76

M1 4 3 1 2 2 3 1 4 0 2 2

Table 3. The correlation between expression levels of PLAGL2 and E-
cadherin, N-cadherin, Vimentin and β-catenin in 42 cases of colon
cancer tissues by immunohistochemistry (Spearman’s rank
correlation).

PLAGL2

+ − r P-value

E-cadherin

+ 6 8 −0.316 0.041

− 21 7

N-cadherin

+ 20 5 0.398 0.009

− 7 10

Vimentin

+ 22 6 0.422 0.005

− 5 9

β-catenin
+ 19 5 0.359 0.020

− 8 10
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PLAGL2 promotes the proliferation, migration and invasion of CRC
cells in vitro
All five CRC cell lines exhibited higher PLAGL2 expression than
that in the normal colon epithelial cell line FHC (Fig. 2a and
Supplementary Fig. 2A). To examine the biological function of
PLAGL2, stable PLAGL2-knockdown (SW480) and PLAGL2-
overexpression (LOVO) cell lines were established (Fig. 2b and
Supplementary Fig. 2B). Both CCK-8 and EdU assays showed that
the depletion of PLAGL2 strongly diminished the CRC cell growth
compared to that of the controls. By contrast, enhanced PLAGL2

expression significantly promoted the proliferation of LOVO cells
(Fig. 2c, d). In addition, the colony formation assay revealed that
PLAGL2 overexpression significantly increased the colony num-
bers relative to those in the controls (Fig. 2e). The elevated
expression of PLAGL2 increased the expression of crucial cell cycle
proteins, while it diminished p27kip1 expression (a vital cell cycle
inhibitor) (Fig. 2f and Supplementary Fig. 2C). Furthermore, the
results of cell cycle analysis demonstrated that PLAGL2 depletion
increased the G0G1 fraction and decreased the S and G2M
fraction. Conversely, PLAGL2 overexpression decreased the G0G1
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fraction, and increased the S and G2M fraction (Fig. 2f and
Supplementary Fig. 2D–G). In all, these results demonstrate
that PLAGL2 promotes the growth of CRC cells in vitro. Meanwhile,
the effects of PLAGL2 on the metastatic ability of CRC cells
was evaluated with wound-healing and transwell migration
assays. These results demonstrated an enhanced invasion and
migration ability in cells with enhanced PLAGL2 expression
compared to those in the controls (Fig. 2g–i). These results
indicate that enhanced PLAGL2 expression contributes to CRC
development.

PLAGL2 promotes CRC cell growth and metastasis in vivo
To evaluate the in vivo effects of PLAGL2 on CRC cell growth, the
transfected cells were implanted subcutaneously into the groin of
nude mice. The elevated PLAGL2 expression markedly promoted
tumour growth in vivo compared to that of the controls (Fig. 3a–c).
The experimental lung metastasis assay was utilised to assess the
in vivo role of modified PLAGL2 expression in tumour metastasis.
Lower PLAGL2 expression strongly reduced the number of
metastatic nodules and the lung weight (Fig. 3d–g). Collectively,

these results were consistent with the in vitro findings, suggesting
that PLAGL2 enforces CRC metastasis in vivo.

PLAGL2 induces the ZEB1- mediated EMT process and
tumorigenesis of CRC
In consideration of the correlation between enhanced PLAGL2
expression and EMT-related proteins in CRC samples, we
wondered whether EMT could account for the PLAGL2-mediated
phenotypic changes described above. We demonstrated that
PLAGL2 significantly diminished the expression of E-cadherin and
elevated the levels of N-cadherin and vimentin compared to those
of the controls (Fig. 4a), which was also confirmed by immuno-
fluorescence (Fig. 4b). Furthermore, the involvement of EMT was
further investigated by WB and IHC analysis (Supplementary
Fig. 3A–B), which were conducted with mouse tumours formed by
corresponding cells, indicating that PLAGL2 promotes EMT in vivo.
These data suggest that PLAGL2 induces EMT and progression of
CRC.
Given the significant inverse association between ZEB1 and E-

cadherin across various carcinomas, we also wondered whether
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ZEB1 was involved in PLAGL2-induced EMT. A significantly positive
correlation between PLAGL2 and ZEB1 was observed in CRC
tissues (Fig. 4c). Besides, the correlations between PLAGL2 and
other EMT transcription factors (snail1, slug, twist1, twist2 and

ZEB2), were also explored. As shown in Fig. 4d and Supplemental
Fig. 3C. We have not observed a statistically significant correlation
between PLAGL2 and any other EMT transcription factor. PLAGL2
remarkably increased the expression of ZEB1 compared to that of
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Fig. 5 PLAGL2 regulates β-catenin expression by modulating AKT/GSK-3β signalling. a The GEPIA database showed that a significantly
positive correlation between PLAGL2 and β-catenin could be observed in CRC tissues. The data from this study also revealed a significant
positive correlation between PLAGL2 and β-catenin. b The nuclear β-catenin and total β-catenin protein levels in SW480 and LOVO cells.
GAPDH and H3 were used as cytoplasmic or nuclear protein controls, respectively. c The immunofluorescence assays demonstrated that
PLAGL2 increased the expression of β-catenin and the nuclear translocation of β-catenin. Scale bars, 100 μm. d The depletion of PLAGL2
markedly diminished the expression of the β-catenin target genes Axin2, c-Myc and Cyclin-D1, which were examined by the qRT–PCR analysis.
e The WB analysis revealed that enhanced PLAGL2 expression promoted AKT and GSK-3β phosphorylation, impeding β-catenin
phosphorylation. No significant difference was observed in the total GSK-3β and AKT levels. f CHIR98014, a small-molecule GSK-3β inhibitor,
partly blocked the effect of modified PLAGL2 expression on β-catenin. g Stable LOVO cells were treated with the AKT specific inhibitor MK-
2206. The corresponding protein levels were detected by the WB analysis. h Stable SW480 cells were treated with the AKT specific activator
SC79. The corresponding protein levels were detected by the WB analysis. i–k The downregulation of β-catenin could rescue the regulatory
effect of PLAGL2 on cell proliferation and migration. The cell proliferation was examined by CCK8 (i) and colony formation assays (j). Scale
bars, 1 cm. The migration capacity was detected with a wound-healing assay (k). Scale bars, 500 μm. The data are presented as the mean ± SD
from three independent experiments. n.s: no significance. *P < 0.05, **P < 0.01, ***P < 0.001, based on Student’s t-test.
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Fig. 6 PLAGL2 modulates ZEB1 expression through a β-catenin-dependent pathway. a The GEPIA database showed that a significant
positive correlation between ZEB1 and β-catenin could be observed in CRC tissues. The data from this study also revealed a significant positive
correlation between ZEB1 and β-catenin. b The WB analysis showed that the depletion of β-catenin neutralised the promotion of ZEB1 caused
by enhanced PLAGL2 expression. (c) Depletion of β-catenin neutralised the promotion of ZEB1 caused by enhanced PLAGL2 expression, which
was confirmed by immunofluorescence assays. Scale bars, 100 μm. d The validity of the small-molecule inhibitor PNU-74654 was verified by
the WB analysis. e The WB analysis revealed that the PNU-74654, which blocked the interaction between β-catenin and TCF4, thereby
neutralising the promotion of ZEB1 caused by enhanced PLAGL2 expression. f, g The ChIP assays were performed to verify the binding
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the controls (Fig. 4e). Besides, the depletion of PLAGL2 did not
further decrease the proliferation, migration and invasion in the
ZEB1-knockdown SW480 cells (Fig. 4f–h, Supplementary
Fig. 3D–G). PLAGL2 also did not further increase the proliferation,
migration and invasion in the ZEB1-knockdown LOVO cells
(Supplementary Fig. 3E, Supplementary Figs. 3H and 4A–B). The
downregulation of ZEB1 could rescue the levels of the EMT-related
and cell cycle regulatory proteins in PLAGL2-depleted SW480 cells
and PLAGL2-overexpressed LOVO cells (Fig. 4i and Supplementary
Fig. 4C).
Grainyhead-like-2 (GRHL2) is a broad suppressor of oncogenic

EMT by inhibiting the TGF-beta signalling pathway and directly
inhibiting ZEB1 expression.25 ZEB1 repressed GRHL2 expression by
directly binding to the GRHL2 promoter.25–27 The GRHL2-ZEB1
bidirectional negative feedback loop drives EMT or MET in
response to extracellular signals.26–28 It was worth exploring
Whether GRHL2-ZEB1 reciprocal feedback loop was involved in
PLAGL2-mediated EMT process and tumorigenesis of CRC. We
demonstrated that GRHL2 was significantly overexpressed in CRC
specimens relative to that in matched tissues, which is consistent
with the results derived from the GEPIA database (Supplementary
Fig. 5A–B). We also detected the correlations between GRHL2 and
ZEB1. No statistically significant correlation between GRHL2 and
ZEB1 could be observed in our CRC samples, which is consistent
with the results derived from the GEPIA database (Supplementary
Fig. 5C). Besides, no statistically significant correlation between
PLAGL2 and GRHL2 could be observed (Supplementary Fig. 5D).
Neither at protein level or at mRNA level, we have not detected
any regulatory effect of PLAGL2 on GRHL2 expression (Supple-
mentary Figure 5E). Overall, these data suggest that PLAGL2 plays
a role in promoting EMT process and CRC tumorigenesis
through ZEB1.

PLAGL2 regulates β-catenin expression by modulating AKT/GSK-
3β signalling
β-Catenin is a hub molecule of the Wnt/β-catenin signalling
pathway, which is involved in EMT and cancer cell metastasis.
PLAGL2 was positively correlated with β-catenin expression
(Fig. 5a, Tables 2 and 3). Besides, PLAGL2 increased expression
of total β-catenin and β-catenin nuclear translocation, which was
confirmed by immunofluorescence assays (Fig. 5b, c). The
depletion of PLAGL2 markedly diminished the expression levels
of the β-catenin target genes Axin2, c-Myc and cyclin-D1
compared to those of the controls (Fig. 5d).
GSK-3-mediated β-catenin phosphorylation and degradation is

the main method of regulating β-catenin expression levels. AKT
phosphorylation can inactivate GSK-3β. Therefore, the phosphor-
ylation status of β-catenin, AKT and GSK-3β was detected.
Compared to the controls, enhanced expression of PLAGL2
promoted AKT and GSK-3β phosphorylation, impeding β-catenin
phosphorylation. No significant difference was observed in the
total AKT and GSK-3β levels in response to enhanced PLAGL2
expression compared to those in the controls (Fig. 5e). To further
determine whether PLAGL2 exerts its function through GSK-3β, a
small-molecule GSK-3β inhibitor (CHIR98014) was utilised.
CHIR98014 partly blocked the effect of modified PLAGL2
expression on β-catenin (Fig. 5f). Moreover, the AKT specific
inhibitor MK-2206 and the activator SC79 were also used to reveal
that AKT/GSK-3β is essential for the PLAGL2-induced regulation of
β-catenin levels (Fig. 5g, h).
Besides, the depletion of β-catenin could diminish the effect of

PLAGL2 on CRC cells proliferation, migration and invasion (Fig. 5i–k
and Supplementary Fig. 6A–C). The downregulation of β-catenin
also rescued the levels of the EMT-related and cell cycle regulatory
proteins in PLAGL2-depleted SW480 cells and PLAGL2-
overexpressed LOVO cells (Supplementary Fig. 6D). Taken together,
PLAGL2 induces β-catenin expression by modulating AKT/GSK-3β
signalling.

PLAGL2 modulates ZEB1 expression through a β-catenin-
dependent pathway
PLAGL2 induces the expression of ZEB1 and β-catenin. The β-
catenin-TCF complex modulates transcriptionally ZEB1 expression.
These results prompted us to ascertain whether PLAGL2
modulates ZEB1 expression through a β-catenin- dependent
pathway.
To prove this hypothesis, we examined the correlation between

β-catenin and ZEB1 expression. β-Catenin was also positively
correlated with ZEB1 expression (Fig. 6a). In addition, compared to
the controls, the depletion of β-catenin reversed the promotion of
ZEB1 that was caused by enhanced PLAGL2 expression, and
further decreased the ZEB1 levels in the cells with lower PLAGL2
expression (Fig. 6b, c). The small-molecule inhibitor PNU-74654,
which block the interaction between β-catenin and TCF4, also
reversed the regulation of ZEB1 resulting from modified PLAGL2
expression (Fig. 6d, e). These results demonstrated that PLAGL2
modulates ZEB1 expression through a β-catenin- dependent
pathway. Specifically, PNU-74654 blocked β-catenin/TCF4 com-
plexes from directly binding to the ZEB1 promoter (Fig. 6f, g),
which impaired regulation of PLAGL2 on ZEB1 expression. In all,
these results illustrate that PLAGL2 modulates ZEB1 expression
through a β-catenin-dependent pathway.

DISCUSSION
Here we identify the signalling mechanism through which
elevated PLAGL2 expression involved in CRC progression. The
data in this study illustrate that PLAGL2 induces EMT and an
aggressive phenotype in CRC through β-catenin-dependent
regulation of ZEB1. Tumour invasion and metastasis, regarded as
the most important feature of malignant tumours, are complex
and multistep processes.29,30 EMT is thought to initiate the early
steps of these processes and has traditionally been deemed to a
binary process involving a complete conversion from epithelial to
mesenchymal state. Nevertheless, it has been increasingly
accepted that EMT also includes a range of hybrid states, a
phenotype known as “partial EMT’’ (P-EMT).31–33 Because p-EMT is
not well defined at the molecular level,34 it is not clear whether
this hybrid status represents an intermediate phase in the process
of a mesenchymal transition or its own terminal state.31 Therefore,
our research mainly focused on the molecular mechanisms of
PLAGL2 inducing EMT and an aggressive phenotype in CRC. The
EMT subtype has not been thoroughly explored and further
research is needed. In this study, we discovered that PLAGL2 was
remarkably overexpressed in CRC samples compared to the
expression in control samples, and was correlated with worse
clinical outcomes. Enhanced PLAGL2 expression was significantly
associated with the expression of EMT-related proteins in CRC.
Specifically, PLAGL2 promoted the expression of mesenchymal
markers and impeded the expression of an epithelial marker (E-
cadherin). These results were confirmed by a xenograft tumour
assay, indicating that PLAGL2 modulates EMT in vivo. Previous
studies have demonstrated that PLAGL2 impeded differentiation
in neural stem cells and gliomas.12 PLAGL2 modified the
proliferation of haematopoietic progenitor and leukaemia cells,15

and promoted cell migration and invasion in various cancers.16,35

The data in our present study showed that PLAGL2 promoted the
proliferative and metastatic properties of CRC cells in vitro.
Similarly, the xenograft assay also indicated that PLAGL2 enforced
the metastasis and tumorigenesis of CRC.
Recent studies have described ZEB1 as a vital activator of the

EMT process that mediates the EMT-related protein
expression.36,37 ZEB1 also induced tumorigenesis by impeding
the expression of stemness-inhibiting microRNAs.38 In addition,
ZEB1 was involved in 5-fluorouracil resistance in CRC cells.39 Given
that ZEB1 plays a crucial role in CRC progression, it is urgent to
reveal the potential signalling pathway that regulate the
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expression of ZEB1. Many oncogenes have been implicated in the
regulation of ZEB1 expression. Myocyte enhancer factor 2D
(MEF2D) transduced multiple signals that activated ZEB1 expres-
sion and EMT, promoting metastasis in CRC.40 Polypyrimidine tract
binding protein 3(PTBP3) promoted EMT in breast cancer by
regulating the ZEB1 mRNA stability.41 GRHL2 protein was the first
direct transcriptional repressor of the ZEB1 gene to be reported.25

In different biological backgrounds, the function of GRHL2 is not
consistent, sometimes even completely opposite. The GRHL2/
ZEB1 feedback loop has been reported to control EMT/MET
primarily in breast cancer,26–28 but no statistically significant
correlation between GRHL2 and ZEB1 could be observed in the
present study. In this study, a positive correlation between PLAGL2
and ZEB1 was observed in CRC samples, but we have not seen a
statistically significant correlation between PLAGL2 and any other
EMT transcription factor. We demonstrated that the expression of
ZEB1 was diminished by the depletion of PLAGL2. The data also
illustrated that ZEB1 is required for PLAGL2 to function as an
oncogene in CRC. These results indicate that ZEB1 is a vital target
gene of PLAGL2.
The β-catenin signalling pathway plays a significant role in the

EMT process and is activated by the overexpression or by β-
catenin nuclear translocation. The dysregulation of this signalling
pathway involves in numerous biological processes, including cell
apoptosis,42 cell migration43 and cell autophagy.44 Mutations in
crucial regulatory factors of the β-catenin signal mechanism have
been widely noted in CRC. The nuclear translocation of β-catenin
impeded the expression of E-cadherin and subsequently activated
the EMT process. The effects of EMT-TFs on the induction of EMT
could be blocked by the depletion of β-catenin. Microtubule-
associated serine/threonine kinase like (MASTL) induced CRC
progression and chemoresistance by activating the β-catenin
signalling pathway.45 The ring finger protein 6(RNF6)-mediated
degradation of transducin-like enhancer of split 3 (TLE3)
remarkably impeded the binding of TLE3 with TCF4/LEF, which
promoted the recruitment of β-catenin to TCF4/LEF and activated
β-catenin signalling in CRC.46 Our study demonstrated that
PLAGL2 was significantly associated with the expression of β-
catenin. In addition, the elevated expression of PLAGL2 resulted in
the overexpression of β-catenin and in the nuclear translocation of
β-catenin. Moreover, PLAGL2 induced AKT phosphorylation,
thereby enforcing GSK-3β phosphorylation and inactivating its
activity. Due to the inactivation of GSK-3β, β-catenin degradation
was diminished, and the cellular β-catenin levels increased. Taken
together, PLAGL2 induced β-catenin expression by regulating
AKT/GSK-3β signalling. However, further investigation is warranted
to identify the molecular mechanisms driving the PLAGL2
regulation of AKT phosphorylation.
Interestingly, ZEB1 was demonstrated to be a vital activator in

the EMT process, and the β-catenin pathway was involved in EMT.
Previous studies have shown that β-catenin forms a transcriptional
activation complex with TCF4, then binding to the ZEB1 promoter
region and inducing its expression.9 TP53BP2 prevented β-catenin
from activating the expression of ZEB1 by forming a TP53BP2-β-
catenin- E-cadherin complex, maintaining the plasticity of
epithelial cells and suppressing metastasis.8 Our study showed
that β-catenin was also positively correlated with ZEB1 expression.
The depletion of β-catenin neutralised the regulation of ZEB1
expression that was caused by modified PLAGL2 expression. The
inhibitor PNU-74654 had almost identical effects as β-catenin
depletion on the regulation of the expression of ZEB1.
Overall, this study illustrates that enhanced PLAGL2 expression

in CRC is positively associated with overexpressed N-cadherin and
Vimentin, and is inversely correlated with the expression of E-
cadherin. PLAGL2 increases AKT and GSK-3β phosphorylation. The
inactivation of GSK-3β reduces β-catenin degradation and
elevates β-catenin levels, promoting β-catenin nuclear transloca-
tion. Elevated β-catenin forms a transcriptional activation complex

with TCF4, then binding to the promoter region of ZEB1 and
inducing its expression. Thus, PLAGL2 induces EMT and an
aggressive phenotype in CRC through β-catenin-dependent
regulation of ZEB1.
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