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Abstract: Silver nanowires (AgNWs) show promise for fabricating flexible transparent conductors
owing to their excellent conductivity, high transparency, and good mechanical properties. Here,
we present the fabrication of transparent films composed of AgNWs with diameters of 20–30 nm
and lengths of 25–30 µm on polyethylene terephthalate substrates and glass slides substrates using
the Meyer rod method. We systematically investigated the films’ optoelectronic and electrothermal
properties. The morphology remained intact when heated at 25–150 ◦C and the AgNWs film showed
high conductivity (17.6–14.3 Ω·sq−1), excellent transmittance (93.9–91.8%) and low surface roughness
values (11.2–14.7 nm). When used as a heater, the transparent AgNW conductive film showed rapid
heating at low input voltages owing to a uniform heat distribution across the whole substrate surface.
Additionally, the conductivity of the film decreased with increasing bending cycle numbers; however,
the film still exhibited a good conductivity and heating performances after repeated bending.

Keywords: silver nanowire; optoelectronic properties; electrothermal properties; transparent
conductive film

1. Introduction

Transparent conductive films (TCFs) are one of the important parts of many optoelectronic devices
such as touch panels, film heaters, and organic light-emitting diodes [1–5]. It is anticipated that TCFs
will be applied as transparent film heaters (TFHs) in various applications, such as outdoor displays,
vehicle window defrosters, or heat retaining windows [4–10]. Currently, indium tin oxide (ITO) is
the most widely used TCF because of its outstanding optoelectronic properties compared with other
materials [1–4]. However, its brittle ceramic properties and expensive vacuum deposition process
limit its application in flexible TCFs. Meanwhile, ITO shows a slow temperature response owing to its
intrinsic properties [2].

To replace ITO, several emerging materials have been developed, such as metal nanowires and
meshes [6–9], graphene [3,4], Ga-doped ZnO [10], and carbon nanotubes [5]. However, some problems
still need to be solved before those materials can be widely used for TFH application. Carbon nanotubes
have large resistance and graphene’s fabrication process is highly complex [11].

In recent years, silver nanowires (AgNWs) have been developed and now rank among the most
promising candidate for replacing ITO owing to their excellent optoelectronic properties and large-scale
and cost-effective fabrication process [12–16]. However, it has been a challenge to achieve both excellent
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optical transmittance and high conductivity because these two properties follow opposing trends, and
this often results in optoelectronic performances far inferior to those of ITO [17–20]. Additionally,
it is hard to obtain uniformly interconnected large-area AgNWs networks, particularly when using
solution processes. Randomly non-uniform AgNWs networks result in the discontinuous heating of
TFH. The literature indicates that the underlying reasons for the limited performance of AgNW films
may be related to the morphology of the AgNWs and the processes used to obtain high quality AgNW
film [21–26]. However, experimental and theoretical studies have shown that AgNWs with high
aspect ratios are better for forming the uniform conductive networks that improve the optoelectronic
properties of AgNW film [27–31], which is related to the various models for electrical percolation [32,33].

To the best of our knowledge, there are few reports that systemically investigate the effects of
temperature on the optoelectronic and electrothermal properties transparent conductive AgNW films.
The reason for this may be because AgNW films are mainly used at low temperatures, especially
when used as flexible TCFs. In this study, we fabricated transparent films composed of AgNWs
with diameters of 20–30 nm and lengths of 25–30 µm on polyethylene terephthalate (PET) and glass
slides substrates using the Meyer rod method and systematically investigated the optoelectronic and
electrothermal properties of AgNW films.

2. Experimental Approach

A 10 wt % solution of AgNWs (20–30 nm in diameter and 25–30 µm in length from Suzhou
Gushi New Materials Co., Ltd., Suzhou, China) in isopropyl alcohol was diluted to 3.3 mg·L−1. Then,
the AgNWs solution was agitated in an ultrasonic bath for 5 min. Further, 1 mL AgNWs solution
was placed onto a PET substrate (from Hefei Microcrystalline Materials Co., Ltd., Hefei, China) with
dimensions of 210 mm × 297 mm or onto a glass slide substrate (from Jiangsu Shitai Experimental
Equipment Co., Ltd., Shitai, China) with dimensions of 25 mm × 75 mm. Finally, a thin film was formed
via the Meyer rod coating technique at a speed of 0.05 mm/s. Our coating process was performed at
26 ◦C and at a relative humidity of 50–60%. The wet films were air dried at room temperature for 2 min
and then treated on digital hotplate at temperature between 25 and 250 ◦C for 20 min. After the films
had cooled down to room temperature, we measured their optoelectronic properties and analyzed the
films’ microstructures.

AgNWs-based film heater was made by attaching the two ends of the film to two electrodes (clips
coated with copper foil). A direct current voltage was supplied by a power supply (GPD-3303s, Suzhou
Guwei electronics Co., Ltd., Suzhou, China) to the film heater through those two clips coated with
copper foil that contacted the film edges. An infrared thermal imager (UTi160G, Youlide Technology
(China) Co., Ltd., Shenzhen, China) was used to measure the temperature of the film. Figure 1 shows a
schematic of the process for preparing TCF of AgNWs (Figure 1a) and AgNWs film heater (Figure 1b).
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Differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis were conducted via
simultaneous differential thermal analysis (STA449F5, NETZSCH-Gertebau GmbH, Selb, Germany).
The microstructures of AgNWs films were observed using scanning electron microscope (SEM, Zeiss
sigma 500, Carl Zeiss, Jena, Germany), atomic force microscopy (Dimension Edge, Bruker, Billerica,
MA, USA), and an optical microscope (Nikon LV100, Nikon Co., Ltd., Tokyo, Japan) with a digital
camera. The sheet resistances of films were characterized using a four-point-probe system (ST2253,
Suzhou Jingge Electronic Co., Ltd., Suzhou, China) and the optical transmittances were collected by
a thin film transmittance meter (GZ502A, Shanghai Guangzhao Photoelectric Technology Co., Ltd.,
Shanghai, China). The optical transmittance and sheet resistance of each sample were each measured at
twenty different sites and calculated from the average value of those measurements. The transmission
and diffuse reflectance were measured with PET film as the reference. The surface morphology was
analyzed via atomic force microscopy (Dimension Edge, Bruker, Billerica, MA, USA) and six different
areas of the surface of sample were selected to obtain root mean square roughness (RMS) value and
calculated as average value.

3. Results and Discussion

3.1. Characterization of Silver Nanowires

To further characterize the AgNWs, we observed the AgNW films via SEM (Figure 2a) and tested
their thermal properties (Figure 2b). The inset image in Figure 2a shows a magnified view of the
surface. Silver nanowires with diameters of 20–30 nm and lengths of 25–30 µm and nanoparticles can
be observed in Figure 2a. As shown in Figure 2b, the DSC curve has three distinct endothermic peaks
and one exothermic peak. In combination with the TG analysis curve, the rate of weight loss of the
sample in the temperature of the first endothermic peak was as high as 91.50%, which was caused by
the volatilization of the isopropanol in the silver nanowire solution. The temperature of the second
endothermic peak was about 189.52 ◦C and the rate of weight loss of the sample was about 92.10%,
which was caused by the surfactant decomposing and melting of the silver nanoparticles. Meanwhile,
the third endothermic peak was at a temperature of about 332 ◦C and was caused by the melting of the
silver nanostructures. The melting point of the AgNWs was about 197.35 ◦C, which is far below the
melting point of bulk silver (961.78 ◦C).
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Figure 2. SEM image (a); and DSC and TG curves (b) of the AgNWs. The inset is the local magnification.

3.2. Characterization of the Silver Nanowires Films

Figure 3 shows SEM images of AgNWs films on glass slide substrates treated at 25, 100, 150,
170, 200, and 250 ◦C for 20 min. AgNWs were coated to form random networks by overlapping one
another on the substrate surface (Figure 3, 25 ◦C). After heat-treating the sample at 100 ◦C for 20 min,
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the morphology of the AgNWs did not show any obvious change. When the sample was heated
at 150 ◦C, it was found that the size of nanoparticles attached to the AgNWs became slightly larger.
Increasing the heat treatment temperature further to 170 ◦C caused the size of the nanoparticles to
increase obviously larger and several notches formed in the AgNWs. Increasing the heat treatment
temperature to 200 ◦C caused the AgNWs to sinter, breaking them into discontinuous segments;
this indicates that the temperature of the heat treatment was above the melting point of AgNWs,
which accelerated the diffusion of silver atoms at the nanowire surface. We then further increased
the temperature of the heat treatment to 250 ◦C, which caused the AgNWs to fuse into large droplets.
Previous reports have also pointed out that high temperature heat treatment induced defects in
AgNWs caused by vaporizations, resulting in the emergence of droplets from the AgNWs [31–33].
Here, the temperature at which the AgNWs fused into droplets was far lower than the temperatures
reported in the literature [34,35]. The same phenomena were also confirmed by optical microscopy
(see the Supplementary Materials, Figure S1). The sintering behaviors of nanomaterial are known
to be similar to those of the bulk material, including Ostwald ripening, migration, and diffusion
of atoms, which can then coalesce elsewhere [35–40]. The driving force for surface diffusion is the
effective curvature of the free surface of the contact, and the larger is the curvature, the larger is the
surface diffusion [40]. The driving force for surface diffusion changes with interface type following:
nanoparticle–nanoparticle > nanoparticle–nanowire > nanowire–nanowire [36]. The driving force
for neck growth between nanoparticles and interfaces with nanowire is higher than that between
nanowire–nanowire interfaces [36]. This is also because atoms are tightly bonded along the nanowire,
while the same does not occur at the nanoparticle level as they are “truncated” wires. We observed
that the contact interfaces between the nanoparticles and the nanowires melted readily.
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The surface topography of the AgNWs films treated at 25, 100, 150, 170, 200, and 250 ◦C for 20 min
were characterized using AFM operated in tapping mode, and the results are shown in Figure 4 (for
three-dimensional (3D) images, see Supplementary Materials, Figure S2). The measured root mean
square (RMS) roughness values for the corresponding samples were 11.2, 13.4, 14.7, 17.5, 17.9, and
19.1 nm, respectively; these values are all smaller than the diameter of the AgNW. However, it is clear
that the RMS film roughness increased along with the temperature of heat treatment. As shown in
Figures 3 and 4, possible reasons for this are that the heat-treated nanoparticles and nanowires increased
in size or that they formed discontinuous segments or droplets that protruded from the surface.
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3.3. Optoelectronic Properties of Silver Nanowires Films

To understand the effects of temperature on the optoelectronic properties of the AgNWs films,
we measured the transmittance values (Figure 5a) and sheet resistances (Figure 5b) of films treated at
different temperatures for 20 min. Curve a–f in Figure 5a represent the results for films treated at 25,
100, 150, 160, 170, and 180 ◦C, respectively. The inset in Figure 5a shows the relationship between the
transmittance of the film at 550 nm and the heat treatment temperature. The transmittance and the sheet
resistance of the films heated at 200 ◦C are not shown in Figure 5 because the sheet resistance of the film
could not be determined, indicating that the film was not conductive. In Figure 5, it can be seen that
the transmittance of the films gradually decreased as the temperature of the heat treatment increased.
After heating at 25, 100, 150, 160, 170, and 180 ◦C, the transmittance values at 500 nm were 93.9%,
93.1%, 91.8%, 91.3%, 90.7%, and 87.0%, respectively, and the sheet resistances of the corresponding
films were 17.6, 16.5, 14.3, 19.7, 30.1 and 108.1 Ω·sq−1, respectively. Based on the experimental results
presented in Figures 2–4, we can conclude that the AgNWs heated at 25–150 ◦C remained intact, and
that those AgNW films had high conductivities (17.6–14.3 Ω·sq−1), excellent transmittance values
(93.9–91.8%) and low surface roughness values (11.2–14.7 nm); the films therefore have properties that
are well-suited for applications in transparent heaters, touch-screen panels, and displays.
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3.4. Electrothermal Performances of the Silver Nanowires Films

To demonstrate the applicability of the flexible transparent conductive AgNWs film in the field of
TFH, we fabricated AgNWs films with sheet resistances of 10, 35, and 130 Ω·sq−1 on PET substrates.
The electrothermal performances of the AgNWs film heater were studied by applying direct current to
the AgNWs films in a laboratory environment, as schematically illustrated in Figure 1b. Figure 6 shows
a plot of temperature versus time for the AgNWs conductive film with a sheet resistance of 10 Ω·sq−1

under the operation for input voltage from 2 to 10 V (Figure 6a) and for different sheet resistances
with an input voltage of 10 V (Figure 6b). As shown in Figure 6a, when the input voltages were 5,
7, and 10 V, the electrical powers were 2.5, 4.9, and 10 W, respectively, and the film’s temperatures
reached 57, 70, and 110 ◦C, respectively, confirming that the devices were able to operate with low
input voltages. The experimental results indicate that the efficient transduction of electrical energy
into Joule heating was caused by the good conductivity of the AgNWs film. Meanwhile, it is worth
pointing out that, when the input voltage was in the range of 2–10 V, the film took less than 40 s to
reach its steady-state temperature, demonstrating fast response of the AgNWs film heater. The results
therefore demonstrate that the film is very suitable for applications in the field of the fast temperature
switching with low input voltages. As shown in Figure 6b, when the input voltage was fixed at 10 V,
the maximum steady-state temperature achieved increased when the sheet resistance of AgNW film
was decreased. When the sheet resistance of the AgNWs film was 10, 35, or 130 Ω·sq−1, the maximum
steady-state temperature was 56, 67, or 110 ◦C, respectively; those values indicate that a sheet resistance
of the film in the range of 10–35 Ω·sq−1 is ideal for heating application and that the film exhibited good
electrothermal conversion properties.

In addition, it should pointed out that we measured the transmittance and sheet resistance of
corresponding samples (Figure 6a) after being treated at 3, 5, 7, and 10 V. There were no significant
changes in the sheet resistance and the transmittance. This result might be an indication that the
temperature of the sample was not too high.
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Figure 7 shows infrared images of AgNWs film heaters with 10 Ω·sq−1 after being operated at
different input voltages for 2 min (Figure 7a) and AgNW films with different sheet resistances under
the operation at input voltage of 10 V (Figure 7b). The infrared image in Figure 7a shows low contrast
owing to the low temperature generated by the low input voltage (2 V). However, as the input voltage
was increased, the temperature of the AgNW film increased, and the infrared images clearly displayed
a uniform heat distribution across the film. Conversely, non-uniform AgNWs networks often cause
“hot spots”, as can be seen in Figure 7b (130 Ω·sq−1); these hot spots were mainly caused by aggregates
of the AgNWs.
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To demonstrate the applicability of the AgNW film and the large-area scalability of our process,
we fabricated AgNWs film with size of 360 × 270 mm2 on a PET substrate. The film was prepared using
3 mL of a AgNWs solution with a concentration of 2.0 mol·L−1 and the Meyer rod was moved at a speed
of 0.03 mm/s. We measured the film’s sheet resistance, transmittance, haze, and RMS roughness value.
Figure 8 shows a photograph and a 3D AFM image of the sample. We placed a device operating with a
blue light emitting diode (LED) on the AgNWs film to measure its transmittance and constructed an
AgNWs film heater, as shown Figure 1b. The sheet resistance, transmittance, and haze were found to
be 38.6 Ω·sq−1, 92.3%, and 1.16%, respectively, indicating that the sample has excellent optoelectronic
properties when applied to PET substrate. The RMS roughness was 16.9, which demonstrates the good
surface topography of the sample.
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Figure 9 shows the photographs of the LED light on the AgNW film (Figure 9a) and infrared
images of the AgNWs film heater (Figure 9b) as well as the relative change in sheet resistance of the
film (R and R0 represent the sheet resistance of films before and after bending test, respectively) versus
the number of conducted bending cycles (Figure 9c). Figure 9 clearly shows that the LED’s light was
transmitted through the sample and that the bent conductive film still worked normally. Furthermore,
the infrared images of the sample show a uniform heat distribution across the whole surface of the film
during both outward and inward bending, indicating that the AgNWs films have a good mechanical
flexibility. Figure 9c shows that the relative change in sheet resistance of the film over 300 bending
cycles of outward and inward bending was less than 1.5, indicating that the mechanical stability of the
AgNW film is insufficient owing to weak adhesion between the AgNWs and the substrate. However,
the film still exhibited a good conductivity and heating performance, as shown in Figure 9a,b.
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4. Conclusions

We fabricated transparent films composed of AgNWs with diameters of 20–30 nm and lengths of
25–30 µm on PET substrates and glass slides via the Meyer rod method. We systematically investigated
the AgNW films’ optoelectronic and electrothermal properties. Our experimental results demonstrate
that the morphology of the AgNWs showed no significant change when heat-treated at 25–150 ◦C, and
that the AgNW film had a high conductivity (17.6–14.3 Ω·sq−1), excellent transmittance (93.9–91.8%),
and low surface roughness (11.2–14.7 nm). We then increased the heat treatment temperature from
170 to 250 ◦C, which caused the AgNWs to gradually sinter, thereby fusing them together (initially
into discontinuous segments and finally into large droplets), which resulted in the conductivity of
the film decreasing, until it became non-conductive. We fabricated a transparent AgNW film heater
that displayed effective and rapid heating at low input voltages owing to the good conductivity of
the AgNW film. With an input voltage in the range of 2–10 V, the film took less than 40 s to reach a
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steady-state temperature, demonstrating the fast response of the AgNW film heater. When the sheet
resistance of the AgNWs film was 10, 35, and 130 Ω·sq−1, the maximum steady-state temperature
was 56, 67, and 110 ◦C, respectively, which indicates good electrothermal conversion behavior of the
film for a sheet resistance in the range of 10–35 Ω·sq−1. The conductivity of the film decreased for an
increasing number of bending cycles; however, the film still exhibited a good conductivity and heating
performances after repeated bending.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/6/904/s1,
Figure S1. Optical microscope photos of AgNW films treated at (a) 25, (b) 100, (c) 150, (d) 170, (e) 200, and (f) 250 ◦C
for 20 min. (1000×magnification); Figure S2. 3D AFM images of the AgNWs films treated at (a) 25, (b) 100, (c) 150,
(d) 170, (e) 200, and (f) 250 ◦C for 20 min.
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