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The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing
factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function,
general somatic actions of GHmodulate reproductive function. A growing body of evidence supports the hypothesis that GH also
modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in bothmales and
females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion
and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This
review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments.

1. Introduction

We previously published a series of comprehensive reviews of
GH and reproduction in 2000–2002 [1–4]. Like these earlier
works, the present monograph integrates data from clinical,
agricultural, and experimental studies. In addition to incor-
porating recent articles, we have reinterpreted the role of GH
in reproduction in light of two major conceptual develop-
ments: firstly, that autocrine/intracrineGHmay exert distinct
roles from endocrine GH and, secondly, that GH may have
detrimental effects on neoplasm development and insulin
resistance. We do not discuss mammary gland GH, since
its production and action have been comprehensively and
periodically reviewed in the past decade [5–10].

2. An Updated View of the
Mechanism of Action of GH

The classical somatomedin view of GH action, in which GH
of pituitary origin acts at membrane receptors to stimulate
hepatic IGF-I production,which, in turn, alters organ growth,
has been significantly modified in the last 20 years. These

changes have significant implications for understanding
reproductive GH actions, so they will be briefly reviewed
here.

Firstly, the revised hypothesis retains theGH-dependence
of hepatic IGF-I, but this endocrine IGF-I is strictly required
only for the feedback regulation of GH secretion [11, 12].
While GH-induced hepatic IGF-I production is still relevant
to its somatic effects, GH-induced IGF-I production within
GH-target tissues may be equally or more important. To fur-
ther complicate the picture, IGF-I production in newly dis-
covered GH target sites such as the brain, heart, and repro-
ductive organs is largely GH-independent and is instead
controlled by other factors such as gonadotropins or estradiol
[13]. Thus, older studies indicating that reproductive GH
actions are mediated by hepatic IGF-I need to be revisited.

Secondly, GH can activate or induce other receptors
with proven neoplastic effects. GH can activate heterodimers
consisting of the GHR and the prolactin receptor (PRLR)
in breast tissue, activating PRL signaling pathways [14], and
GHR-IGF-1R heterodimers may potentiate GH signaling in
prostate cancer cells [15]. GH also induces EGF receptor
expression [16] and GH can also indirectly activate the EGF
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receptor (EGFR) and activate signaling pathways in pread-
ipocytes [17].

A third major paradigm shift is the distinct secretory
patterns and actions of locally produced and circulating GH.
While the pituitary gland remains the primary source of cir-
culating GH, GH is also produced within reproductive cells
(reviewed by [18]). Unlike the sexually dimorphic pulsatile
nature of pituitary GH secretion [19], extra pituitary GH is
produced more continuously and at lower levels [10]. Newly
synthesized GH can bind GHRs in the endoplasmic reticu-
lum, and the resulting GH:GHR complexes travel to the cell
surface and activate the JAK-STAT pathway [20]. The con-
tinuous activation induced by local GH promotes a different
pattern of gene expression and cell growth than systemic GH
[21]. As discussed later, this distinction may underlie the
increased tumorigenic potential of local GH compared with
endocrine GH [22].

3. Detrimental GH Actions

The reduced incidence of cancer in humans with Laron
Syndrome [23] and in GHR knockout mice [24] suggests that
GHmay exert neoplastic effects. However, these results likely
reflect resistance to the autocrine, rather than endocrine,
actions of GH. Elevated systemic GH does not appear to be
oncogenic, since the overall cancer incidence is normal in
acromegalics [25] and is not increased by GH treatment of
GHD children and adults [26, 27]. Extrapituitary GH, con-
versely, may act as a “one-step oncogene” [9] within the pro-
ducing cells, promoting both proliferative andmetastatic pro-
cesses in sites such as the breast and prostate gland [28–30].
The relevance of autocrine GH to neoplasms has been exten-
sively reviewed in relevance to mammary GH [9] and will
be discussed in the context of prostate GH below. Thus, GH
administration in clinical and agricultural settings does not
appear to increase the cancer risk.

Interactions between GH and insulin are also relevant
to any consideration of therapeutic GH uses. Chronic GH
overexposure may increase the incidence and severity of dia-
betes mellitus, since this chronic disorder is more prevalent is
acromegalics and improves with treatment of the GH excess
[31–33]. While the data is somewhat obscure, it appears that
GH also contributes to insulin resistance and impacts glucose
control in type I diabetics [33].

4. Hypothalamic-Pituitary Interactions

It is increasingly evident that GHmodifies numerous aspects
of hypothalamic function via hypothalamic GH receptors
[34]. Neuroendocrine interactions have, for instance, been
implicated in the reduced responsiveness to pheromonal
stimuli in GHR-KOmice [35]. However, in relation to repro-
duction it appears unlikely that GHmodulates hypothalamic
GnRH release; instead, GH acts at pituitary and gonadal sites
to modify GnRH actions.

Pituitary somatotrophs and gonadotrophs are, in part,
both coregulated and interdependent. Kisspeptin, a potent
GnRH-releasing factor, stimulates both LH and GH release
from peripubertal rat pituitary cells [36]. PACAP similarly

regulates both cell types [37]. Moreover, a subset of rat
pituitary cells secrete both gonadotropins and GH [38], and
some studies show that gonadotroph development is GH-
dependent [4].

Some reproductive actions of GH are, therefore, likely
mediated at the pituitary level. Gonadotrophs contain GH
receptors (GHRs) and/or GH binding proteins (GHBPs) and
LH/FSH secretion is reduced in GH-deficient/resistant rats
[4]. The effects of exogenous GH are not, however, as clear-
cut. Depending on the species and reproductive state of the
animal, GH exerts stimulatory, inhibitory, or minimal effects
on LH and/or FSH secretion [4]. Sirotkin [39] suggests that
gonadotropin secretion in rodents is more sensitive to GH
modulation than that in ruminants and primates.

5. Puberty

The dramatic transformations of puberty include sexual
maturation and accelerated growth. Complex interactions
between the somatotropic and gonadotrophic axes govern
these two interrelated processes. Puberty beginswith the acti-
vation of the GnRH pulse generator, but the factors activating
the pulse generator are complex and species-specific. The
somatometer hypothesis implicates nutritional and growth
signals in the timing and tempo of puberty [40], and GH,
IGF-I, and leptin may be the signals for adequate nutrition
(reviewed by [41]).

Since GHR-KOmice (unlike IGF-I-KOmice) do sexually
mature and are somewhat fertile, GH is not absolutely
required for pubertal development [42]. Instead, data sug-
gests that GH modulates the timing of sexual maturation
(reviewed by [43]). For instance, the timing of both the vagi-
nal opening and the first pregnancy is delayed in femaleGHR-
KOmice [42, 44], and expression of theGH transgene hastens
the pubertal onset [45]. The onset of puberty is similarly
delayed in male GHR-KO mice, GH-deficient dwarf mice,
and GH-deficient rats (reviewed by [43]). Human studies
support these findings, since pubertal onset and/ormenarche
is delayed in GHD and GH-resistant children despite their
increased adiposity [46, 47]. Conversely, GH suppression in
monkeys prolongs puberty but does not alter the timing of
pubertal initiation [48]. In children with idiopathic short
stature, however, most studies do not reveal any impact of
GH treatment on the age of pubertal onset or the pubertal
duration ([49] and references therein). Curiously, some data
suggest that the absence of GH action may delay the age-
related decline in fertility [43].

GH may alter the timing of puberty by participating in
the activation of theGnRHpulse generator [50].This action is
generally thought to be IGF-I mediated [3], but recent studies
in GHD and GH-resistant children demonstrated that IGF-I
could not normalize the timing of pubertal onset.However, in
the studies of Sharara and Giudice [51], GH could only
accelerate puberty when a pubertal pattern of pituitary
gonadotropin secretion is established [51], and others impli-
cate changes in FSH secretion and gonadal LH receptors [52]
or gonadal steroidogenesis with altered GH action [53]. GH
may also act at target sites, by potentiating androgen action
[54].
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The somatotropic-gonadotrophic interactions at puberty
are bidirectional, since the dramatic pubertal changes in
GH secretion are dependent upon sex steroids (particularly
estrogens) [55, 56]. Normal pubertal growth depends on the
resulting coordinated actions of growth hormone and the sex
steroids (see, e.g., [57]).

6. Male Fertility

The male gonad and accessory organs are sites of both
GH production and action. Since GHR-knockout mice have
decreased (but not abolished) fertility [58], physiological GH
levels are profertility, but GH may promote tumorigenesis,
particularly in the prostate.

6.1. Testes. GH promotes testicular growth and development
and stimulates gametogenesis and steroidogenesis in the
adult testes.

6.1.1. Growth and Development. GH promotes seminiferous
tubule differentiation and supports normal testicular growth
(reviewed by [2, 39]). IGF-I may mediate these actions, since
it can rescue testicular differentiation in fetal mice treated
with GH antibodies [59] and growth in GH-resistant boys
[60]. While Lindgren et al. [61] observed normal testicular
development in boys with GH deficiency or idiopathic short
stature regardless of GH treatment status, a newer study
observed increased testicular volume in GH-treated short
children associated with a longer pubertal duration [49].
High-dose GH treatment of GH-replete animals conversely
induces atrophy of the testes and accessory organs in dogs
[62] and has no effect on testicular volume in monkeys [63].
Overexpression of the GH transgene similarly impairs testic-
ular development (reviewed by [2]); thus, testicular actions of
GH, like many other actions, appear to be biphasic.

6.1.2. Steroidogenesis. GH is a potent steroidogenic factor,
particularly in vitro. GH stimulates androgen and/or estradiol
production by Leydig cells isolated from rodents, ruminants,
humans, and fish [39, 64], but not horses [65].The results of in
vivo studies are more controversial. While chronic GH ther-
apy improves chorionic gonadotropin- (CG-) induced testos-
terone production in some studies of fertile GH-deficient
males [66, 67] and the testosterone response to hCG is
attenuated in GHR knockout mice [52], experiments inmon-
keys [63], swine [68], and ruminants [68] failed to demon-
strate an androgenic GH response. Indeed, GH treatment in
hypopituitary ormoderately obesemen actually decreases the
concentrations of total serum testosterone [69, 70], poten-
tially due to a stimulatory effect on aromatase activity and
the resulting conversion of testosterone to estradiol observed
in healthy young men treated with GH [71].

In vitro studies also reveal that GH alters the activity of
enzymes involved early in the steroidogenic pathway; it stim-
ulates the production of steroidogenic acute regulatory pro-
tein (StAR), which mediates cholesterol translocation across
the inner mitochondrial membrane, and 3-beta hydroxys-
teroid dehydrogenase, which converts pregnenolone into

progesterone [53], in rat Leydig cell precursors. The forma-
tion of early steroidogenic intermediates, such as 17-alpha-20-
beta dihydroprogesterone, is similarly upregulated by GH in
fish testicular cells [72].

GH may potentiate gonadotrophic effects on steroidoge-
nesis by enhancing testicular LH sensitivity and promoting
Leydig cell development, since GHR knockout mice have
fewer Leydig cells and LH receptors [52]. Similarly, GH
upregulates LH receptors in both GH-replete (e.g., hamsters
[73]) and GH-deficient (e.g., dwarf mice [74]) animals.

Sex hormone binding globulin (SHBG) reduces testos-
terone bioavailability. Some studies suggest that GH might
potentiate testosterone action by decreasing SHBG produc-
tion. For instance, GH therapy reduces SHBG concentrations
in GHD adults in some [70, 75] but not all [76] studies and in
hypopituitary boys [77]. The pubertal rise in GH production
may potentiate male pubertal development, since the age-
related decrease in SHBG concentration is not observed in
GHD boys [78].

However, other studies in normalmen reveal coordinated
decreases in SHBG and total serum testosterone production
following GH treatment [69], reduced SHBG but unchanged
total serum testosterone [79], or increased LH-induced
testosterone but unchanged SHBG [66]. These discrepancies
may reflect differences in subject age and GH administration
protocol.

Some investigators have implicated IGF-I in the steroido-
genic actions of GH. IGF-I can mimic the effects of GH in
rat testis [80] and partially restore testosterone synthesis in
GH-resistant men [60]. Moreover, in the study of [81], GH-
induced steroidogenesis required IGF-I coadministration.
However GH-induced StAR synthesis does not require de
novo protein synthesis, suggesting that at least some testicular
actions are IGF-I independent [53].

The study of Ramdhan et al. [82] observed a correlation
between testicular GHR expression and StAR and P450
expression following exposure to nanoparticle-rich diesel
exhaust (NR-DE) in rats. However, more studies are required
to identify a causal relationship between GH and pollutant-
induced androgenesis.

6.1.3. Gametogenesis. The impact of GH on testicular growth
may reflect germ cell proliferation, particularly in situations
that impair spermatogenesis. GH partially compensates for
GnRH immunoneutralization by increasing the number of
mature spermatids in prepubertal male rats [83]. In GH-
deficient dwarf rats, GH prevents the decrease in sper-
matid count and spermatozoa motility resulting from treat-
ment with cyclophosphamide, a chemotherapeutic drug with
strong testicular toxicity [84]. Similarly, GH protects against
the inhibitory effect of MTX on sperm count and motility,
testosterone production, and testicular atrophy inGH-replete
Wistar rats [85]. GH may thus be a useful adjuvant to
chemotherapy regimens in order to preserve male fertility.
However, GH overexpression in the testes of transgenic
zebrafish reduces spermmotility, fertility, and the production
of offspring [86], highlighting the importance of careful
dosing.
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GH also improves sperm morphology and motility in
GH-deficient dw/dw rats [87] and prolongs overall equine
spermatozoa motility in vitro, possibly by extending sperm
longevity [88]. Moreover, GH gene polymorphisms are asso-
ciated with numerous indicators of sperm quantity and qual-
ity in bulls [89]. Gametogenesis is similarly enhanced by GH
in in vitro cultures of eel testicular cells [90]. In contrast,
GH does not appear to enhance gametogenesis in many
GH-replete animals, since GH supplementation does not
alter germ cell apoptosis in bulls [91] nor sperm number in
monkeys [63] and postpubertal rats [92].Moreover,menwith
the GHR3d (3rd exon) deletion do not have improved semen
quality or steroid production, despite the increased GH
sensitivity conveyed by this mutation [93].

Many (but not all) azoospermic infertile men are rela-
tively GH-deficient, as manifested by a reduced GH response
to arginine and/or clonidine [94], and GH adjuvant therapy
improves spermatogenesis and improves sperm motility in
this subset of infertile men [95, 96]. Local application of GH
appears to restore germ cell number and morphology [97].
However, other studies fail to show a beneficial effect of GH
in gonadotropin-treatedmen (e.g., [98]), reflecting the highly
heterogeneous etiology of male infertility.

Local IGF-I production may mediate spermatogenic
effects of GH, since IGF-I can also improve sperm mor-
phology and motility [87] and GH coordinately increases
seminal IGF-I and spermmotility in some (but not all) studies
(reviewed by [2]). However, some studies report discordant
effects of GH and IGF-I [99], suggesting that GHmay also act
independently. Similarly, the stimulatory effect of GH on eel
spermatogenesis is both IGF-I and steroid independent [90].

The reduced, but not abolished, fertility in GH-resistant
men and mice and GH-deficient rats [42, 100, 101] suggests
that enough GH-independent testicular IGF-I production
occurs to enable a low degree of fertility. GH-independent
testicular IGF-I production in chickens, conversely, appears
to be at a sufficient level to completely restore fertility, since
seminal IGF-I concentrations, sperm viability, motility, mor-
phology, and fertility do not vary between GH-resistant and
GH-replete chickens [102].

6.1.4. The Testicular Minihypophysis. Circulating GH cannot
readily access testicular cells within the blood-testis barrier,
such as spermatids or spermatozoa.The ligands for the GHRs
on these cells are thus likely to be produced within the testis.
In support of this contention, GH gene expression has been
detected within the rat, human, and chicken testis (reviewed
by [2]) and, more recently, the eel testis [90]. Curiously,
the GH-variant gene products, previously thought to be
pregnancy-specific, are the most abundant GH mRNA iso-
form in the human testis [103]. Moreover, while GH-N gene
products are detectable in both cancerous and normal testic-
ular tissue, GH-V gene products are only detected in normal
tissue [104].

The testis is the only detectable site of extrapituitary GH
mRNA expression in pejerrey fish [105] and fatheadminnows
[106]. GH mRNA abundance increases with sexual develop-
ment, at least in fathead minnows, highlighting the potential

importance of local testicular GH production in piscines
[106].

To our knowledge, GH-producing cell types have only
been elucidated in chickens and eels. GH mRNA and
immunoreactivity are largely absent from avian Sertoli and
Leydig cells [107, 108]. Instead, GH mRNA is largely con-
fined to spermatogonia and primary spermatocytes, but GH
immunoreactivity is only detectable in secondary spermato-
cytes and spermatids [108]. Similarly, GHmRNA is abundant
in germ cells in eel testes, but GH immunoreactivity is
particularly abundant in the surrounding Sertoli cells [90].

Testicular GHR immunoreactivity and/or binding sites
have been detected inmale fetal and adult rats [109, 110]. GHR
mRNA is similarly present in the testis of teleost fish [111],
particularly in Sertoli cells [112], and in eels [90], particularly
in developing gametes. In chickens, GHR gene expression
has been detected in Sertoli, Leydig, and peritubular cells
[113]. GHR immunoreactivity in the human testis, conversely,
appears concentrated in Leydig cells [114]. Testicular GH-
binding activity is not inconsequential, reaching 40% of
hepatic levels in prepubertal boar testis [115].

The testicular GHR mRNA concentration decreases with
sexual maturity in Nile Tilapia [116] and rainbow trout [112],
in stark contrast to the increase observed in ovarian tissues
[116]. The lower concentration of GHR mRNA in the testis
than in the ovary of Tilapia implicates sex steroids in the
regulation of testicular GH sensitivity [117]. However, other
investigators have observed equal ovarian and testicular GHR
mRNA concentrations in tilapia [118] or higher testicular
levels in sea bream [119].

Potential GH regulators are similarly expressed in the
testis. In rats and humans, for instance, testicular GHRH
closely resembles placental GHRH and is capable of stimu-
lating pituitary GH release and Sertoli cell adenylate cyclase
activity (reviewed by [2]). GHRH receptors have a wide
distribution in humans, including Leydig cells, Sertoli cells,
germ cells, and the prostate gland, suggesting GHRH may
exert testicular actions distinct from GH [120]. In chickens,
GHRH is colocalized with GH in Leydig cells and tubular
myocytes and more abundantly in germ-line cells [121].
GHRH receptors are also present in the chicken testes [122].
A recent study in chickens has shown that GHRH stimulates
testicular GH secretion and alters posttranslational process-
ing, increasing the abundance of short (15 kDa and 17 kDa)
forms and decreasing the relative abundance of 21 kDa
GH [121]. Exogenous GHRH stimulates testicular cell pro-
liferation and PCNA production, an effect at least partially
mediated by local GH since it is blocked by GH antibodies
[121]. More recently, Ghrelin and putative Ghrelin receptors
have been localized in the testis, and Ghrelin alters testos-
terone synthesis and other testicular parameters [123, 124].

The relevance of testicular IGF-I to gonadal function is
well-established [125]; however, gonadotropins, rather than
GH, may be its primary regulator [13, 43]. Testicular IGF-I in
rats, for instance, responds poorly to changes in the systemic
GH concentration [126]. GH stimulates IGF-I production in
Leydig cells isolated from rat [81] but not horse [127]. In
chickens, testicular IGF-I production appears to be entirely
GH-independent, since it is elevated in GH-resistant dwarf
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chickens [128]. It may also be of interest to investigate the
regulation of testicular IGF-II in teleosts, since it has been
shown to be GH-dependent in other nonhepatic sites [129].

6.2.TheMale Accessory Organs. Thepresence of GHRs in the
male accessory organs [109, 110] suggests that reproductive
actions of GH in the male are not confined to the testis.
Indeed, Wolffian duct differentiation into the prostate gland
and seminal vesicles in fetal rats is strongly influenced by GH
[59].

Local GH production mediates this effect, since the
pituitary GH synthesis is negligible at this early stage of
embryonic development [130]. The postnatal activity of the
prostate gland and other male accessory organs may be
similarly dependent on GH, of pituitary or local origin.

6.2.1. The Prostate. GH stimulates prostate growth, since the
prostate and seminal vesicles are smaller in mice transgenic
for a GH antagonist [131] and in Laron mice [132]. Similarly,
GH stimulates prostate growth in GH-deficient rats [133] and
prostatic enzyme production in immature GH-replete rats
[35, 134]. Prostate hyperplasia and structural abnormalities
(such as cysts, nodules, or calcifications) aremore common in
acromegalics [135]; thus, GH also stimulates prostate growth
in humans. However, numerous epidemiological studies sug-
gest that endocrine GH promotes prostate hyperplasia but is
not neoplastic in this tissue. For instance, studies attempting
to correlate endocrine GH status with prostate cancer risk
have observed no relationship [136] or an inverse relationship
[137]. PSA levels and the risk of prostate cancer are normal
in acromegalics [138], and GH suppression in these patients
decreases prostate volume but does not affect PSA levels [135].
Similarly, GH replacement in GHD adults increases prostate
volume, particularly when coadministered with testosterone,
without altering prostate-specific antigen expression or
inducing morphological abnormalities [139, 140]. It has
been hypothesized that endocrine GH induces hyperplasia
(but not neoplasms) via hepatic IGF-I [29]. However, this
hypothesis is counterindicated by the observation that cir-
culating IGF-I levels are indicative of prostate cancer risk
(reviewed by [136]).

It may be premature to assume that elevated circulating
GH levels do not increase cancer risk at all, since these studies
used relatively young men but prostate carcinoma is largely
confined to elderlymen.Moreover, numerous studies support
the use ofGH inhibitors such as somatostatin analogs, GHRH
antagonists, or GHRH receptor antagonists in advanced cases
of androgen-independent prostate cancer [141–145]. Larger
prospective epidemiological studies are therefore required to
fully evaluate the link between therapeutically or pathologi-
cally elevated GH titres and prostate cancer.

In contrast to the relatively benign effects of endocrine
GH, recent studies suggest that prostatic GH plays a signif-
icant role in prostate tumorigenesis. Rodents with an intact
GH axis expressing the C3(1)/T antigen (Tag) transgene
invariably develop prostatic carcinoma [146]. However, dis-
ruption of the GH or GHR gene in Tag rodents decreases

both the incidence and the severity of prostate malignan-
cies, suggesting that GH is a necessary factor for prostate
tumorigenesis [146, 147]. Similarly, human prostate cancer
cell xenografts do not proliferate well when transplanted into
GH-deficient lit/lit mice [148]. Surprisingly, Nakonechnaya
et al. [149] observed that endocrine GH stimulated prolif-
eration, but autocrine GH actually inhibited prostatic cell
proliferation.The relevance of this finding to prostate tumori-
genesis remains to be established.

GHRs andGHRmRNAare abundantly present in normal
prostate tissue [110, 134] and prostatic carcinoma cell lines
[134, 150–152]. At least in LNCaP cells, these receptors
activate a signaling pathway implicated in the progression
of prostatic tumors involving JAK2, AKT/PKB, and p42/p44
MAPK [152]. However, the role of this signaling path-
way remains unclear, since GH-induced proliferation was
observed by Untergasser et al. [150] but not by Weiss-Messer
et al. [152].

GHR upregulation may be part of the tumorigenic pro-
cess, since GHR expression is higher in cancerous prostate
cell lines than in normal prostatic cell lines [134, 149], and
GHR immunoreactivity in the prostatic epithelium of TAg
rodents increases in parallel with tumor development [146].
Patterns of GHR autoregulation may partially account for
differences between prostatic cell lines and, by extension,
prostate tumours. For instance, prostate cell lines express a
GHR isoform (GHRtr) lacking exon 9, which has a lower
affinity for GH and generates more GHBPs than the full-
length receptor [152]. The impact of GH on the relative
expression of the normal and GHRtr isoforms varies between
cell lines [153].

The GH gene is coexpressed with the GHR gene in both
normal and cancerous prostate cell lines [151] and in human
prostate tissue [154] and is upregulated in many prostate
cancers (Oncomine). Chopin et al. [151] detected numerous
GH transcripts, including those encoding the 20 kDa and
22 kDa variants of both the pituitary (GH-N) and placental
(GH-V) GH proteins. Like the GHR, GH expression is higher
in cancerous than normal prostate cell lines [149], and GH
immunoreactivity increases in parallel with IL-6 expression
and tumor progression [155].

The roles of hepatic and prostatic IGF-I as mediators of
GH action remain unclear. Numerous studies support a role
for circulating IGF-I in prostate growth (reviewed by [156])
and tumorigenesis (reviewed by [157]). Moreover, Ruan et al.
[131] did not observe any effect of GH on prostate growth in
IGF-I-null mice, and GH stimulates IGF-I gene expression
in some, but not all, prostate carcinoma cell lines [158]. As
a result of these and other studies, Bidosee et al. [158] con-
cluded that GH potentiates estradiol- and IGF-I stimulated
cell proliferation by stimulating IGF-I receptor and estradiol
receptor synthesis, but it is ineffective alone. However, other
investigations suggest that GH alters prostate function inde-
pendently of IGF-I. For instance, serum and prostate IGF-I
and prostate IGF-1 receptors do not increase during prostate
tumor progression inTAg rats, and prostate IGF-I production
actually decreases [146].Moreover, the effects ofGHand IGF-
I on prostate enzyme production in rats are overlapping but
distinct [133, 134].
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Normal prostate growth and function require adequate
concentrations of androgens, but numerous lines of evi-
dence suggest that prostatic actions of GH are androgen-
independent. For instance, the protective effect of GHR or
GH knockdown on tumorigenesis in TAg mice is indepen-
dent of changes in serum testosterone or prostate andro-
gen receptors [146], and GH activates signal transduction
pathways in prostate tumor cell lines but only transiently
upregulates androgen receptor levels [152]. Moreover, unlike
the association between PR and GH expression in mammary
cell lines, a consistent relationship betweenGH and androgen
receptor expression in prostate cancer lines has not been
observed [6]. Moreover, androgens may actually suppress
GH-induced tumorigenesis by upregulating the expression of
SOCS2, an inhibitor of GH signaling [159].The loss of SOCS2
signalling may contribute to prostate tumorigenesis [159].

6.2.2. Penile Growth and Erectile Function. GH may be
required for penile growth, since GH deficiency and GH
resistance are frequently associated with micropenis [160].
Accordingly, GH therapy improves penile growth in GH-
deficient boys [161, 162]. IGF-I may mediate this effect, since
IGF-I administration to GH-resistant boys augments penile
size, and this effect ceases when IGF-I therapy is withdrawn
[60]. Similarly, Dykstra et al. [163] observed a stimulatory
effect of IGF-I (but not GH) on the proliferation of cultured
foreskin fibroblasts, independent of any changes in androgen
receptors or 5-alpha reductase activity. However, a more
recent study by Lee et al. [164] observed a stimulatory effect
of GH on foreskin fibroblast proliferation that was at least
partially mediated by local IGF-I.

In contrast, erectile function may be modulated by
autocrine/paracrine GH. Erection requires modulation of
blood flow and relaxation of penile smooth muscle. GH
may facilitate both venous constriction and smooth muscle
relaxation. The GH concentration in systemic and cavernous
blood increases during penile tumescence in healthy men
or men with psychogenic erectile dysfunction but does
not increase in sexually aroused patients with organogenic
erectile dysfunction [165, 166]. An earlier study, conversely,
did not observe any changes in systemic GH concentrations
during sexual arousal and orgasm [167].

GH improves the erection frequency and maximal intra-
cavernous pressure in aged rats by stimulating nNOS expres-
sion in intracavernosal nerves [168, 169]. GH also improves
the regeneration of nNOS-containing nerves following cav-
ernous nerve neurotomy, accelerating the resumption of erec-
tile function [170, 171]. This regenerative effect may involve
local IGF-I and TGF-beta2, both of which were increased
followingGH stimulation [172]. NOSmaymediateGHeffects
in humans, since GH, NO, and cGMP are tightly correlated
in systemic and cavernous blood of individuals with erectile
dysfunction [165] andGH induces both relaxation and cGMP
production in human cavernous strips [173]. However, a
later study showed that GH enhances cGMP signaling in
human corpora cavernosa (isolated from transsexual patients
receiving hormonal therapy) independently of NO [174].

Erectile effects of GH may be biphasic, since the patho-
physiological GH concentrations in acromegalics are asso-
ciated with erectile dysfunction [175] and GH at doses
present in acromegalics stimulates contraction of dog corpus
callosum strips [176]. The biphasic effects of GH on erectile
function may partially reflect altered libido, since libido is
impaired in acromegalics [175] and boars transgenic for the
GH gene [177–179] as well as in GH-deficient males [180] and
GHR-knockout mice [50].

7. Female Fertility

GH is a necessary factor for optimal female fertility, as
evidenced by the decreased (but not absent) fertility in GHD
women [181] and the ability of GH replacement to enable
successful unassisted pregnancies in previously infertile
GHD women [182]. Various fertility parameters are similarly
reduced in GH-resistant GHR knockout mice (reviewed by
[43]). In agricultural settings, a single GH injection (which
elevates GH titers for 7 days [183]) at the time of either
ovulation induction or insemination improves the pregnancy
rate in cattle [184, 185]. However, as in males, high GH levels
can inhibit fertility and promote neoplasms. These beneficial
and detrimental effects of GH reflect the production and
action of GH in the ovary and uterus.

7.1. The Ovary. The possibility that GH might enhance
fertility by acting at the ovary (or upon ovarian components
in vitro) has attracted significant attention in the last decade,
with the aim of optimizing the successful outcomes from in
vitro and in vivo fertilization protocols in agricultural and
clinical settings. In addition to the fertility-related processes
discussed below, GH also contributes to overall ovarian
health, since its administration in vivo diminishes injury-
induced tissue damage by acting as an antioxidant [186].
To our knowledge, no direct link has been found between
GH and ovarian cancer. While GHRH antagonists are useful
adjuvants in ovarian cancer treatment [187], the investigators
did not implicate the GH axis in this effect.

The two ovarian processes required for normal fertility—
oogenesis and folliculogenesis—depend upon an intricate
systemof intracrine, juxtacrine (via gap junctions), autocrine,
paracrine, and endocrine signals. Of particular interest are
the signals exchanged between the oocyte and granulosa cells
that control early, gonadotropin-independent maturation
and modulate and/or mediate the effects of gonadotropins
upon later stages of folliculogenesis and oogenesis [188, 189].
As discussed in this section,GH, both of pituitary and ovarian
origin, may be a modulatory signal in this complex interplay.
While the processes of steroidogenesis, folliculogenesis, and
oocyte maturation are discussed independently, they are
intrinsically linked, and all must be optimized in order to
produce a viable embryo.

7.1.1. Steroidogenesis. Timely changes in ovarian estradiol
and progesterone secretion are essential for all aspects of
reproductive function, including follicular and luteal devel-
opment, ovulation, and blastocyst development. It should
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also be noted that larger follicles/corpora lutea produce more
steroids; thus, increased steroid productionmay reflect follic-
ular size as well as altered enzyme activity.

Although pituitary gonadotropins are the primary reg-
ulators of ovarian steroidogenesis, the preponderance of in
vitro evidence suggests that GH also modulates progesterone
and estradiol release (reviewed by [3, 39]). For example,
GH stimulates progesterone and estradiol production from
bovine granulosa cells [190, 191] and human luteinized gran-
ulosa cells [192, 193]. GH effects vary throughout the ovarian
cycle, since GH stimulates basal progesterone production in
porcine corpora lutea but not follicles [194] and enhances
leptin-induced progesterone production in follicles [195].
Karamouti et al. [192] observed a biphasic interaction, with
low doses of leptin enhancing GH-induced estradiol produc-
tion from human luteinized granulosa cells but high doses
inhibiting the GH effect.

Nakamura et al. [196] observed a role for GH in FSH-
induced but not basal steroidogenesis in rat granulosa cells,
potentially mediated by antagonization of the BMP signaling
system. In the presence of FSH, GH promotes early reac-
tions in the steroidogenic pathway (such as StAR synthesis)
via increased local IGF-I, thereby enhancing progesterone
synthesis. Conversely, GH inhibits FSH-induced aromatase
activity and thus estradiol synthesis, by an IGF-I independent
pathway, since IGF-I alone stimulates aromatase activity. Sim-
ilar results have been observed in Leydig cells (see references
in Section 6.1.2). The fact that other investigators noted GH-
induced increases in estradiol production (see references
above) could reflect species and methodological differences,
the stimulatory effects of GH on the early pathway steps
overwhelming the inhibitory effect on the last step, and/or a
concomitant increase in IGF-I resulting from GH treatment
overwhelming the direct GH inhibitory action. In contrast,
GH stimulates StAR expression in macaque MII oocytes
independently of IGF1 and FSH [197].

In vivo studies of GH-induced steroidogenesis have pro-
duced inconsistent results. While some studies demonstrate
increases in plasma estrogen or progesterone concentration
(e.g., cattle [198] and pigs [199]), many others conclude
that GH has either an inhibitory or no effect on ovarian
steroidogenesis (reviewed by [3, 39]). A recent clinical study,
for instance, correlated urinary GH with progesterone and
estradiol concentrations, but it only observed an in vitro effect
of IGF-I, not GH [200]. GH actions documented in vitro
may be masked by other factors modified by exogenous in
vivo GH administration, such as ovarian GH production.
Nevertheless, the partial progesterone deficiency in GHR-
deficient cattle suggests that GH is physiologically relevant to
ovarian steroidogenesis [201]. The GH sensitivity of ovarian
steroidogenesis is likely temporally dependent, since cGH
in vivo increased ovarian estradiol and progesterone content
prior to sexual maturity in chickens but only progesterone
content at the time of sexual maturity [202]. Curiously, an in
vivo study by Singh and Lal [203] observed augmented ovar-
ian steroidogenesis following GH injections in the morning,
but not in the evening.

7.1.2. Folliculogenesis. Two of the most important oocyte-
secreted factors (OSFs) in folliculogenesis are members of
the TGF-beta superfamily, growth differentiation factor 9
(GDF-9) and bone morphogenic factor 15 (BMP-15) [204].
These OSFs (among others) direct the formation of cumulus
cells from granulosa cells via a paracrine pathway and
subsequently maintain and control these critical cells [205].
Also critical to their function is inhibiting progesterone pro-
duction, thereby inhibiting luteinization [204]. The follicular
actions of GH discussed below may reflect interactions with
the BMP system, sinceGHdownregulates BMP receptors and
upregulates inhibitors of BMR signaling (Smad 6/7) [196].
Conversely, BMP signaling inhibits the formation of GHRs,
IGF-I, and IGF-1Rs [196].

In Vivo Studies. In vivo studies indicate that the proliferative
and antiapoptotic effects of GH extend to the ovarian follicle.
Generally, GH administration increases follicular size and/or
number (reviewed by [3, 39, 206]) and increases ovarian
weight [203]. GH appears necessary for optimal follicular
maturation and survival, since GHR knockout mice have
more primordial follicles and fewer primary, secondary,
preantral, and antral follicles, as well as increased follicular
atresia [207, 208].The impaired folliculogenesis in these GH-
resistant animals results in lower ovulation and implantation
rates, fewer corpora lutea, and smaller litter sizes [207].

In GH-replete animals, in vivo GH improves the number
of developing follicles in young, but not aged, mice [209], in
buffalo [210] and in superovulated sheep [211]. In chickens, in
vivo GH promotes proliferation and inhibits apoptosis in the
ovarian stroma and small (white) follicles [202]. GH similarly
increases follicle size in undernourished cows [212]. In the
latter study, exogenousGHmay be neutralizing the inhibitory
effect of suboptimal body condition on reproduction that
is communicated by somatotropic axis suppression. Even
in normally fed cows, the absence of GH action resulting
from GH resistance completely blocks the development of
the dominant follicle [201]. GH expression in transgenic
mice [45] and ewes [213] enhances follicular development,
increasing ovary weight, the ovulation rate, and/or the size
and health of the ovarian follicles. Despite these apparent
improvements in reproductive health, the conception rate
and fetal survival are reduced in GH transgenic sheep,
perhaps because of poor maternal glucose control [213].

The interpretation of these in vivo studies is complicated
by the concomitant increase in circulating IGF-I induced
by exogenous GH administration, since IGF-I exerts well-
documented ovarian effects. Indeed, administration of exoge-
nous GH results in an artificial situation in which both GH
and IGF-I are elevated, whereas physiological increases in
IGF-I normally result in a decrease in pituitary GH produc-
tion. The absence of ovarian GHR mRNA observed in some
studies, particularly in bovines, has led some investigators to
conclude that “GH acts via other metabolic hormones, such
as insulin and IGF-I, to influence follicular development”
[188]. However, as discussed shortly, the extensive in vitro
effects of GH on the ovarian follicle and the presence of
ovarian GHR mRNA in most species suggest otherwise.
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In Vitro Studies. Optimizing the in vitro maturation (IVM)
of primordial and immature follicles is of clinical interest, in
order to preserve the fertility of prepubertal girls undergoing
chemotherapy. Moreover, IVM avoids or greatly reduces the
costs and unpleasant side effects of gonadotropin-induced
ovarian hyperstimulation associated with conventional in
vitro fertilization (using oocytes matured in vivo). It is also of
considerable agricultural interest, since the pool of immature
follicles is much larger than that of mature follicles. However,
while IVM oocytes can be successfully fertilized, their ability
to produce viable offspring is limited [205]. Recent genetic
analyses reveal that the transcription of numerous genes dif-
fers between oocytes matured in vivo and in vitro, including
those encoding proteinsmodulating the interactions between
oocyte and cumulus cells [214].

GH supplementation of the IVMmediummay be part of
the answer, since GH promotes the survival, activation, and
growth of preantral follicles originating from goats [215, 216],
sheep [217], andmice [218]. Inmice preantral follicles, at least,
GH promotes proliferation of both thecal and granulosa cells
in these immature follicles [219]. GH similarly improves the
oocyte retrieval rate and fertilization rate in human oocytes
subjected to IVM but does not significantly alter the overall
pregnancy rate [220]. Of particular interest is the ability of
GH to promote cumulus expansion [221], since this may be
a rate-limiting step in IVM. These studies were also able to
use the GH-treated follicles in IVF protocols, resulting in the
production of at least morulae [217] and in some cases live
embryos [216]. Indeed, Izadyar et al. [222] and Mtango et al.
[223] observed that the addition of GH to the IVM mat-
uration medium enhanced the eventual number of cleaved
embryos and blastocysts, while other studies observed similar
numbers but increased quality [224–226]. Curiously, Shirazi
et al. [227] observed that GH and FSH coincubation during
IVM actually decreased the blastocyst rate, whereas each
hormone alone promoted blastocyst production.

The activation of primordial follicles and their devel-
opment into late preantral follicles is not gonadotropin-
dependent and appears to rely upon a host of locally acting
growth factors [228]. This effect may be mediated by the
local growth factor GDF-9, sinceGDF-9 effectively stimulates
preantral follicle development alone but does not act syner-
gistically with GH [215]. Activin and other ovarian growth
factors may mediate the actions of GH, since folliculostatin
(which inactivates activin) blocks the proliferative response
to GH in murine preantral follicles [218]. Leptin is also a
candidate, since GH upregulates the long leptin receptor in
prepubertal pig ovaries [229]. GH may play an important
role in the development of follicles to the gonadotropin-
dependent stage.

7.1.3. Oocyte Maturation. The oocyte must undergo mat-
urational processes before it can be successfully fertilized
[230]. Nuclearmaturation encompasses numerous sequential
events, including the breakdown of the germinal vesicle and
the resumption of meiosis, the first meiotic division, and
the appearance of second metaphase chromosomes. These
processes can be evaluated cytologically by the appearance of
the first polar body or metaphase II chromosomes.

In vivo studies suggest that GH may improve nuclear
maturation and thus oocyte quality.The addition of GH to an
FSH-induced superovulation regime increases the percentage
of ovulated follicles containing MII oocytes [209]. A con-
tradictory study suggests that the combination of FSH and
GH may have a negative effect on nuclear maturation, since
overall ovulation rates were increased but the number of MII
oocytes retrievedwas unchanged in sheep receiving both FSH
and GH [211].

Of significant interest is the possibility that GH might
improve oocyte quality when administered in vitro. Accord-
ingly, GH accelerates nuclear maturation in cumulus-oocyte
complexes (COCs) ofmany species (e.g., bovine [223], canine
[231], ovine [227], and equine [232]). Early GH exposure
in vitro (prior to both IVM and IVF) also increases the
percentage of oocytes resuming meiosis, suggesting that GH
might establish optimal conditions for nuclear maturation,
perhaps by promoting follicular development [216]. In equine
COCs, the effect of GH is reduced in the presence of cAMP
inhibitors [233].

Previous reviews postulated that GH affected nuclear
maturation indirectly, bymodulating cumulus cell expansion,
since Apa et al. [234] observed a GH response in cumulus-
enclosed oocytes but not in denuded rat oocytes. The degree
of cumulus expansion is a strong predictor of oocyte quality,
because cumulus cells play a critical role in oocyte nour-
ishment and protection. GH enhances cumulus cell expan-
sion by stimulating proliferation and inhibiting apoptosis
[235, 236]. Cumulus cells also secrete various inhibitory
factors that maintain oocytes in meiotic arrest via the cAMP
signaling system [237]. These inhibitory factors may pass
from surrounding cumulus cells to the oocyte through gap
junctions, and the loss of connexin-43 gap junctions may
release the oocyte to resume meiosis. GH may control the
timing of meiotic resumption, since it upregulates connexin-
43 expression in bovine granulosa cells from early follicles
[34] but downregulates connexin-43 expression in maturing
bovine COCs [236]. This effect is not observed in equine
oocytes [238].

Conversely, the ability of GH to promote nuclear mat-
uration of denuded oocytes from mice [239] and humans
[240] suggests that GH also acts directly at the oocyte. GHR
mRNA is readily detectable in oocytes as well as cumulus
cells from many species, including human [241], rat [196],
cow [236], horse [238], pig [242], and tilapia [118]. In the
rhesus monkey [221] and rat [110], GHRs are present both in
the oocyte cell membrane and within the ooplasm. In mature
human ovaries, GHR immunoreactivity was also detected in
the oocyte nucleus [243]. GHR expression increases during
development and decreases at maturity in piscine [118, 244],
porcine [245], and bovine oocytes [246], although not in
human [241] or rhesus monkey [211], suggesting that these
GHRs are physiologically relevant in some species at least.

Curiously, while both low (10 ng/mL) and high
(100 ng/mL) GH improve nuclear maturation, only the low
dose enhances cumulus cell expansion [221]. This result may
reflect the peculiarities of GH:GHR stoichiometry; the higher
dose may cause inactive complexes to form on cumulus cell
membranes containing equal numbers of GH and GHR
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molecules. However, fewer GH molecules penetrate the
cumulus layer to bind with oocyte GHRs, thereby maintain-
ing optimal stoichiometry.

Cytoplasmicmaturation occurs alongside of nuclearmat-
uration, involving dramatic changes in oocyte gene expres-
sion, protein synthesis, and organelle organization [247]. In
vitro oocytes frequently complete nuclearmaturationwithout
completing cytoplasmic maturation, resulting in decreased
fertilization and poor quality embryos after fertilization.
Cytoplasmicmaturation is conventionally evaluated based on
the distribution of cortical granules, which become evenly
dispersed in healthy metaphase II oocytes. The incubation
of in vitro bovine [222] and equine [248] oocytes with GH
significantly increases cortical redistribution.

7.1.4. Ovulation Rate. The previously mentioned actions of
GH on the follicle and oocyte likely impact the number of
oocytes released in polyovulatory species, since the ovulation
rate and resulting litter size are reduced inGHR-KOmice [44]
and increased in GH transgenic mice [45].The ovulation rate
is also increased in GH transgenic sheep, but this increase
did not translate into more live births due to increased fetal
loss [213]. The addition of GH to superovulation regimens
increases the abundance of retrieved follicles in sheep and
thus may increase the number of gonadotropin-responsive
follicles [211]. Daily GH administration to gilts similarly
increases the ovulation rate [249], but long-term (at least 8-
9 days) exposure suppresses subsequent estrus [250]. Con-
versely, high-level transgenic expression of the GH gene in
pigs completely abolishes ovulation [178]. Extended premat-
ing GH treatment (about 80 days) did not affect ovulation or
fetal survival but resulted in smaller fetuses [250].

GH administered at the time of superovulation induction
increases the number of transferable embryos in FSH-treated
ewes and lambs born per donor ewe, by decreasing the
number of unfertilized eggs and degenerate embryos [251].
Conversely, Montero-Pardo and colleges [252] administered
GH prior to superovulation and observed increased numbers
of larger blastocysts but the increase did not translate into a
greater percentage of transferable embryos.

7.1.5. Luteal Function. Themaintenance of the corpus luteum
is critical for pregnancy viability.This postovulatory structure
is effectively a transitory endocrine organ thatmaintains early
pregnancy by secreting progesterone. It regresses at the end
of nonproductive ovarian cycles or later in pregnancy by
apoptosis. GHR mRNA and/or immunoreactivity are readily
detectable in luteal cells from humans, rats, pigs, and cattle,
implicating GH in luteal function [110, 253–255].

As expected, GH is proliferative and antiapoptotic in
regard to the corpus luteum (reviewed by [3, 39]). For
instance, GH stimulates the proliferation of human luteinized
granulosa cells [254] and suppresses caspase-3 activity in
bovine corpora lutea [194]. The proliferative and antiapop-
totic effects are nevertheless distinct, since GHR knockout
mice have fewer corpora lutea but also fewer apoptotic antral
follicles [44]. Curiously, while most in vivo studies suggest
that GH stimulates luteal growth and steroidogenesis in

cattle [256], long-term GH infusion decreases luteal size and
progesterone production [257].

The proluteal effects of GH may partially reflect GH-
induced progesterone secretion (discussed above [258, 259]),
since progesterone is antiapoptotic. However, other media-
tors have also been proposed. In cows in vivo, the continued
survival of the corpus luteum relies on the embryonic
secretion of IFN-𝜏, which inhibits uterine secretion of PGF-
2𝛼, which maintains the CL and prevents embryonic loss
[260]. GH increases IFN-𝜏, perhaps by increasing embryonic
growth [261]. GH also stimulates prostaglandin F2alpha
production in the early bovine corpus luteum [262]. This
maintenance of high endogenous PGF2alpha production
maintains the corpus luteum directly, by rendering it insen-
sitive to the luteolytic effects of exogenous PGF2alpha and,
indirectly, by stimulating progesterone production [262].

7.1.6. InVitro Fertilization Protocols. Over 20 years ago,Owen
et al. [263] concluded that GH improves the ovarian response
to conventional ovarian stimulation regimens in womenwith
poor ovarian responses (POR).This conclusion was based on
studies by Homburg et al. [264] and others demonstrating
that GH sensitizes the ovary to the ovulation-inducing
actions of gonadotropins. Despite numerous more recent
studies, the addition of GH to the IVF treatment regimens of
poor responders remains controversial and “off-label” [265].
One complicating issue is the definition of a poor responder.
According to the Bologna Criteria, a POR must meet at
least two of these three conditions: (1) one or more risk
factors for POR (including maternal age over 40); (2) a
previous result in which fewer than three oocytes result
from a conventional controlled ovarian stimulation (COS)
protocol; and (3) an abnormal ovarian reserve test [266]. In
support of this definition, the number of oocytes produced
in response to gonadotropin stimulation (i.e., the ovarian
response) can be prognostic of fertility [267, 268]. A recent
review from de Ziegler et al. [265], however, questions the
inclusion of condition of an abnormal ovarian reserve test,
since they conclude that the most important determinant of
artificial reproductive technology (ART) success is oocyte
quality rather than oocyte quantity. Indeed, they conclude
that the number of oocytes retrieved following ovarian stim-
ulation is not necessarily a good indication of ART success.
Meta-analysis of previous studies reveals that most links
between poor ovarian response andART failure simply reflect
increased maternal age (which affects both quantity and
quality). Oocyte quantity is not a useful predictor of ART
success in patient populations other than older women.

As reviewed by Kolibianakis et al. [269] and Homburg
et al. [270], earlier studies analyzing GH and ART have
also been plagued by underpowered statistical analysis, the
pooling of patients with diverse risk factors such as age,
and heterogeneous protocols of GH administration, ovarian
stimulation, and luteal support. Several large-scale meta-
analyses, however, have addressed these drawbacks and
concluded that GH is a useful in vivo adjuvant for human pro-
tocols. For example, Kolibianakis et al. [269] reanalyzed the
results from multiple smaller studies and concluded that GH
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improves ART success, as indicated by an increased clinical
pregnancy rate. Duffy et al. [271] similarly analyzed 10 studies
and observed a statistically significant increase in the rates
of pregnancy and live births when GH was included in the
IVF protocol. Indeed, a recent meta-analysis by Kyrou et al.
[272] determined that, out of all of the recently proposed
protocol alterations, only GH supplementation and earlier
embryo transfer significantly increased the IVF success rate.

Theoriginal study byOwen et al. [263] concluded thatGH
promotes oocyte quantity. Moreover, a study by Kucuk et al.
[273] using a more extensive GH treatment regimen in a
patient population with a significant proportion of smokers
observed an improved ovarian response as well as increased
ART success. However, most studies conclude that the
outcomes improved by GH are generally those reflecting
increased oocyte quality, such as the fertilization rate [273],
the number of embryos reaching the transfer stage [269], the
pregnancy rate [274], and the rate of live births [271]. A sim-
ilar result was observed in a study targeting poor responders
over 40 years old, in which GH was found to improve
ART success (clinical pregnancy, implantation rates, delivery
rates, and live-birth rates) without altering oocyte retrieval
numbers [275]. GH is particularly effective in GH-deficient
women,many of whom requireGH therapy to induce normal
ovulation [276]. GH supplementation to an ART protocol
in this discrete population improves both the fertilization
rate and the quality of the resulting embryos, as indicated
by improved blastomere uniformity and cleavage rate and
decreased apoptosis [277].

GH would thus appear to increase the efficiency of ART
in poor responders and, in the meta-analyses of Kolibianakis
et al. [269] and Duffy et al. [271], is not associated with any
adverse events except for slight edema. Potential side-effects
observed with GH treatment in other populations (such
as aging males and GH-deficient adults) include increased
fluid retention, resulting in edema, headaches, and/or joint
pain, neoplasms, cerebrovascular events, and altered glucose
metabolism (reviewed by Kokshoorn et al. [278]). The short
duration of theGH treatment inART, however, would suggest
that these adverse effects would be quite rare. One potential
downside of adjuvant GH therapy is cost, since Kolibianakis
et al. [269] conclude that the addition of GH effectively
doubles the treatment cost of ART. The potential that GH
could cause long-term issues in the offspring could also be
considered, since epigenetic changes in the embryo resulting
ART are the topic of considerable current research [279,
280]. Official sanction of GH use in this context may also
await additional large-scale studies, since the diversity of the
population of PORs has ledmultiple authors to call for studies
specifically addressing each subgroup (e.g., older women,
polycystic ovary syndrome, and endometriosis) [265, 271].

7.1.7. Ovarian Growth Hormone Production. While Silva et al.
[206] suggest that systemic GH modulates ovarian function,
granulosa cells and oocytes are avascular and separated from
the systemic circulation by the basal lamina [281].Theovarian
actions of GH must thus be mediated either via ovarian
stromal tissue or by locally produced GH. Indeed, GH
expression is higher in the ovary than in the anterior pituitary

or endometrium in goats and higher in prolific goats than in
nonprolific goats [282].

GH mRNA and immunoreactivity are readily detectable
in ovarian stromal and follicular tissue from numerous
species, including bovine [283], porcine [245], chicken [284],
and human [285]. Ovarian GH production is greater in the
inner, largely avascular follicular compartments, since GH
mRNA is detectable in granulosa cells and oocytes but is
absent from cumulus cells and is less abundant in or absent
from thecal cells [283, 284].

GH gene expression is initiated very early in follicular
development in humans, since GHmRNA and immunoreac-
tivity were detected in the oocyte cytoplasm and occasionally
the granulosa cells of fetal primordial follicles [243]. GH
mRNA was also detected in immature follicles of chickens
[284] and pigs [245], but not in preantral follicles of rats [286]
or cows [283]. Izadyar et al. [283] proposed that the GH gene
expression increases during follicular development, since
they detected GH transcripts in mature (but not immature)
bovine follicles. Conversely Zhu et al. [245] observed a
quantitative decline in porcine oocyte GH gene expression as
immature follicles reinitiated meiosis. In any case, these tem-
poral and spatial patterns of follicular GH expression parallel
those of GHR expression in chicken [284], porcine [245], and
human [243] follicles, adding further support to the possibil-
ity of autocrine/paracrine ovarian GH actions.

Modina et al. [287] observed a higher GH concentration
in developmentally compromised bovine oocytes, suggesting
that oocyte-specific factors also regulate GH expression. The
authors reason that this upregulation is the cell’s attempt
to improve developmental competence. However, in human
studies, follicular GH levels were positively correlated with
ART success [275], and follicles containing higher GH levels
gave rise to the highest quality embryos [288], so the link
between GH production and oocyte quality remains unclear.

Local factors regulating ovarian GH synthesis remain
elusive. Initial efforts focused on the traditional GH sec-
retagogues such as GHRH and SRIF. GHRH mRNA [289]
and GHRH receptor immunoreactivity [120] are present in
human and rat [290, 291], although the rat GHRH transcript
is distinct from the well-characterized hypothalamic tran-
script [291]. GHRH receptors, conversely, are notably absent
from avian [292], bovine [283], and porcine [245] follicles,
suggesting that GHRH does not control ovarian GH in these
species. Ghrelin may instead act as the primary ovarian
GH secretagogue, since ghrelin increases GH secretion but
not synthesis in cultured whole porcine follicles [293]. The
temporal increase in oocyte GH expression in some studies
discussed abovemay partially reflect a local positive feedback
loop between GH and ghrelin, since GH reciprocally stimu-
lates ghrelin synthesis and secretion [293], although it does
not affect GHS-R1a mRNA or protein levels [294]. Both
ghrelin and the putative ghrelin receptor (GHS-R1a) have also
been detected in the hen ovary [295], although their link to
ovarian GH secretion has not yet been established.

7.1.8. Involvement of IGF-I and IGF-II in Ovarian Actions. In
addition to the extensive documented in vitro effects of GH,
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the finding of follicular GHRmRNA in many species further
supports follicular GH actions independent of hepatic IGF-
I [3, 39, 111]. GHR mRNA and/or binding activity is consis-
tently higher in granulosa cells than in thecal cells, regardless
of species (e.g., chicken [284], human [296], rat [196, 297],
porcine [242], and bovine [246, 255]). The temporal pattern
ofGHRexpression, conversely, is species-dependent, peaking
during early folliculogenesis in pigs [242] and fish but not in
humans [296] or rats [297]. In bovines, GHR mRNA expres-
sion is highest in estrogen-active dominant follicles, suggest-
ing thatGHRupregulationmay be a turning point to enter the
ovulatory phase [298]. This upregulation is independent of
the concomitant increase in estrogen production but may be
induced by FSH. GHR mRNA is present in preantral caprine
follicles at levels equivalent to that of LHRs but significantly
lower than FSHRs [216].

The involvement of local IGF-I in GH-mediated ovarian
actions remains controversial and is likely species-specific. In
support of its involvement, GH stimulates IGF-I expression
in porcine [299] and rat [196] granulosa cells, via activation
of the JAK/STAT pathway [196]. Also, IGF-1 antibodies (and
cAMP blockers) block GH-induced oocyte maturation in rat
follicles [300], and IGF-I administration improves follicular
maturation in GHR knockout mice [207] and the maturation
of mouse oocytes nonsynergistically with GH [239]. How-
ever, other lines of evidence suggest that GH and IGF-I act
independently, at least in part. Follicular IGF-I levels are nor-
mal in GHR-knockout mice despite delayed follicular mat-
uration [207, 208], likely reflecting the ability of other hor-
mones (such as hCG and estradiol) to activate IGF-I produc-
tion [301]. Also, IGF-1 antibodies cannot block the stimula-
tory effect ofGHon cumulus cell expansion andoocytematu-
ration in bovine follicles [302], and, unlike GH, IGF-I cannot
promote the maturation of primordial rat [228] or murine
[218] follicles or the nuclear maturation of bovine COCs
[236]. Arunakumari et al. [217] observed synergistic (and
thus at least partially independent) effects of IGF-I andGHon
the development of ovine preantral follicles. The coordinated
upregulation of IGF2 and StAR in GH-incubated macaque
follicles [197] and the ability of GH to stimulate IGF2 pro-
duction in cultured human granulosa cells [303] suggest that
IGF2, instead of or in addition to IGF1, may be an important
follicular mediator of GH action, at least in primates.

7.2. GH and the Preimplantation Embryo. Despite major
improvements in in vitro maturation and fertilization pro-
tocols, the success rate remains at about 33%, and in vitro-
produced blastocysts show reduced quality compared to
those fertilized and grown in vivo [304]. Embryos expressing
an overactive GH gene polymorphism have an advantage in
vitro but not in vivo, suggesting that GH helps overcome the
effects of a suboptimal in vitro culture environment [305].
Embryonic quality is most vividly demonstrated by its sur-
vival after transfer, but earlier measures are highly useful for
determining which embryo has the best chance of survival.
Measures associated with posttransfer viability include the
timing of the first cleavage (embryos cleaving earlier generally
fare better), the cleavage rate, blastocyst diameter, and apop-
tosis in individual cells (blastomeres) [224].

GHRs are expressed in the 2-cell embryo, and GH in
the blastocyst [306]. Incubation of 2-cell murine or bovine
embryos in the presence of GH significantly increases the
proportion of embryos successfully developing into blasto-
cysts [225, 307–309]. In addition, GH-cultured blastocysts
contain more blastomeres [308] and are of larger diameter
[157]. The effects of GH are biphasic, with high concentra-
tions inhibiting embryonic development [309], and are not
observed in porcine embryos despite the presence of GH
receptors [310]. GHmRNA is expressed consistently between
the 2-cell and blastocyst stages [311]; thus, local GH may be
acting in an autocrine or paracrinemanner. ParacrineGHhas
been implicated in the enhanced growth of 2-day embryos
cultured at higher density, sinceGH antibodies retard embry-
onic growth [309]. Of the two major cell populations in the
blastocyst, GH appears to directly target the trophoblasts
rather than the inner cell mass [309], despite the fact that
GHRs are present on both cell types [307]. The trophoblast
layer is critical for the formation of the blastocyst cavity as
well as implantation (discussed shortly). IGF-I, conversely,
appears to target the inner cell mass, and the lack of
interference of antiserum against IGF-I or the IGF-1 receptor
in GH actions suggests that IGF-I and GH act independently
[225, 309]. Kölle et al. [312], conversely, concluded that GH
reduced apoptosis of both trophoblasts and inner cell mass
cells by reducing the expression of the antiapoptotic factor
bax and, furthermore, that this effect was IGF-I dependent.

Equally important are the embryonic and maternal mod-
ifications necessary for successful embryonic implantation
and placental formation, and 2-cell embryos incubated to the
blastocyst stage in the presence of GH show higher levels of
in vivo implantation [308].The early blastocyst is surrounded
by the zona pellucida, a protective matrix of glycoproteins
and carbohydrates. The blastocyst must escape, or “hatch,”
from this matrix before it can implant into the maternal
endometrium [313]. GH improves the hatching rate in bovine
[226] and murine [314] blastocyst populations. Increased
production of matrix metalloproteinases (MMP) may poten-
tially be involved, since these proteins play a role in implan-
tation and are produced in response to GH (at least in liver)
[315]. GHmay also facilitate implantation by selectively stim-
ulating trophoblast cell proliferation, since these epithelial-
derived cells participate in blastocyst cavity formation and
invasion of the maternal endometrium [309]. Furthermore,
placental GH (and, to a lesser extent, pituitary GH) stim-
ulates the invasive activity of these trophoblasts, and GHR
expression is correlated with the degree of invasiveness [316].
An autocrine/paracrine interaction is possible, since invasive
extravillous cytotrophoblast cells express GH-V mRNA and
secrete placental GH [316].

Optimization of the maternal environment may be initi-
ated very early in gestation, since a single, sustained-release
injection of GH in sheep at breeding results in a smaller
but more efficient placenta and heavier birth-weights [317].
Both endometrial gland development and secretory capacity
are stimulated [318]. GH increases the amniotic glucose
concentration and endometrial protein synthesis in in vivo
pig embryos, suggesting a beneficial effect on nutrient trans-
fer to the embryo [319]. Finally, pregnancy maintenance
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requires significant uterine hypertrophy. GH stimulates uter-
ine growth, as discussed further below.

GH also alters the metabolic profile of in vitro-derived
embryos to more closely resemble that of their in vivo-
produced counterparts [320, 321]. These metabolic alter-
ations may be critical for improvements in embryo quality.
For instance, GH stimulates glucose uptake and glycogen
utilization in preimplantation embryos [306, 321] and the
maturational effects of GH are not observed in glucose-free
medium [322]. Kidson et al. [310] suggest that the lack of GH
effect on porcine blastocyst development reflects the glucose
independence of early porcine embryo development, com-
paredwith the glucose dependence observed in other species.
GH treatment of preimplantation embryos similarly reduces
lipid accumulations, which may improve cryotolerance, and
increases the number of specialized embryonic mitochon-
dria, the abundance of which is strongly correlated with
embryo quality [321].

Placental GH is the major isoform produced during
gestation and exerts many wide-ranging effects on both
mother and fetus. This increasingly complex field has been
comprehensively reviewed elsewhere [323–328].

7.3. The Uterus. As mentioned above, the uterus is a site of
both GH production and GH action. Both GH and GHRs are
expressed in pregnant and nonpregnant uteri and GHRs are
differentially regulated during pregnancy and the menstrual
cycle compared with their hepatic counterparts [3]. For
instance, GHRs are expressed in glandular cells of the human
endometrium and decidua (but not stromal cells) during the
mid and late luteal phases but not during the proliferative
or early luteal phases [329]. In cattle, endometrial expression
of GHR transcripts peaks at estrus through day 5 and
subsequently declines [330]. While uterine IGF-I is abundant
throughout gestation, its relevance to GH effects remains
questionable. GH injection at breeding increases uterine IGF-
I birth [317] but GH infusion in early gestation (day 16–30)
does not [318].

GH is a uterine growth promoter, since GHD women
have smaller uteruses than GH-replete women when cor-
rected for body surface area [331]. Indeed, a normal GH axis
may be necessary for estrogen-induced uterine hypertrophy,
since uterine GHR mRNA abundance is strongly correlated
with estrogen-induced uterine growth [332]. GH may thus
facilitate implantation by stimulating uterine growth, since
GHR-KO mice have fewer uterine implantation sites [44].
However, GH administration to GHDwomen did not appear
to increase endometrial thickness [277].

In dogs, themost important ligand for uterine GHRsmay
be of mammary, rather than pituitary or uterine, origin. As
reviewed by others (e.g., [6]), the canine mammary gland
produces large amounts of GH, and mammary GH gene
expression (but not uterineGH gene expression) is associated
with endometrial hyperplasia [333, 334].

The mitogenic effects of GH have been implicated in
uterine and cervical cancers. Autocrine GH may be partic-
ularly mitogenic, since uterine GH expression is upregulated
in endometriosis and endometrial adenocarcinoma [155] and

the degree of autocrine GH expression in endometrial carci-
nomas is strongly associated with the degree of tumor aggres-
siveness (as manifested by uterine invasion and the presence
of ovarian metastases) [335]. In vitro studies in an endome-
trial carcinoma cell line have subsequently revealed that the
oncogenic potential of autocrine GH reflects increased
anchorage-independent proliferation, cell survival, and cell
migration and invasion [336]. Subcellular GHR distribution
may be an important determinant of tumor aggressiveness,
since nuclear GHR expression is associated with high prolif-
erative activity [337]. Selective upregulation of nuclear (but
not cytoplasmic) GHRs may be a contributing factor in the
enhanced aggressiveness of cervical cancers in young patients
[338].

GHRH and its receptor are also expressed in normal and
tumorous endometrial tissue [339], and GHRH antagonists
are promising chemotherapeutic agents for endometrial car-
cinoma [340]. However, GHRH antagonists may interfere
with direct antiapoptotic effects of GHRH rather than sup-
pressing endometrial GH production [341].

8. Conclusion

Growth hormone is intimately involved in reproduction
in both males and females. For instance, it is critically
required for timing the onset of puberty and the induction
of sexual maturation. It also regulates the growth and
actions of secondary sexual tissues, activating the uterus in
females and the prostate and seminal vesicles in males. In
adults, GH modulates gonadotropin secretion and it exerts
gonadotropin-dependent and gonadotropin-independent
actions on gonadal function, including steroidogenesis and
gametogenesis. It also promotes ovulation and corpus luteum
function, as well as improving the development of the preim-
plantation embryo. Growth hormone also improves placenta-
tion and is progestational. It is additionally mammogenic
and galactopoietic. These actions promote fertility in both
males and females and partially reflect the endocrine roles
of pituitary GH, but as reproductive tissues are not just sites
of GH action but also sites of GH synthesis, they may reflect
autocrine, paracrine, and intracrine actions of GH produced
within the reproductive system.
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[109] J. Garćıa-Aragón, P. E. Lobie, G. E. O. Muscat, K. S. Gobius, G.
Norstedt, and M. J. Waters, “Prenatal expression of the growth

hormone (GH) receptor/binding protein in the rat: a role for
GH in embryonic and fetal development?” Development, vol.
114, no. 4, pp. 869–876, 1992.

[110] P. E. Lobie,W. Breipohl, J. G. Aragón, andM. J.Waters, “Cellular
localization of the growth hormone receptor/binding protein in
the male and female reproductive systems,” Endocrinology, vol.
126, no. 4, pp. 2214–2221, 1990.

[111] A. L. Pierce, B. K. Fox, L. K. Davis et al., “Prolactin receptor,
growth hormone receptor, and putative somatolactin receptor
in Mozambique tilapia: tissue specific expression and differen-
tial regulation by salinity and fasting,”General and Comparative
Endocrinology, vol. 154, no. 1–3, pp. 31–40, 2007.

[112] J. M. Gomez, M. Loir, and F. Le Gac, “Growth hormone
receptors in testis and liver during the spermatogenetic cycle
in rainbow trout (Oncorhynchus mykiss),” Biology of Reproduc-
tion, vol. 58, no. 2, pp. 483–491, 1998.

[113] C. G. Mart́ınez-Moreno, L. Palma, M. Carranza, S. Harvey, C.
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