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Understanding when learning begins is critical for identifying the factors
that shape both the developmental course and the function of information
acquisition. Until recently, sufficient development of the neural substrates
for any sort of vocal learning to begin in songbirds was thought to be
reached well after hatching. New research shows that embryonic gene acti-
vation and the outcome of vocal learning can be modulated by sound
exposure in ovo. We tested whether avian embryos across lineages differ in
their auditory response strength and sound learning in ovo, which we
studied in vocal learning (Maluridae, Geospizidae) and vocal non-learning
(Phasianidae, Spheniscidae) taxa. While measuring heart rate in ovo, we
exposed embryos to (i) conspecific or heterospecific vocalizations, to deter-
mine their response strength, and (ii) conspecific vocalizations repeatedly,
to quantify cardiac habituation, a form of non-associative learning. Response
strength towards conspecific vocalizations was greater in two species with
vocal production learning compared to two species without. Response pat-
terns consistent with non-associative auditory learning occurred in all
species. Our results demonstrate a capacity to perceive and learn to recog-
nize sounds in ovo, as evidenced by habituation, even in species that were
previously assumed to have little, if any, vocal production learning.

This article is part of the theme issue ‘Vocal learning in animals and
humans’.
1. Introduction
Vocal learning [1] is generally defined as the capacity to produce vocalizations
based on the imitation of external sounds (vocal production learning), but can
extend to the capacity to associate a vocalization with an outcome (comprehen-
sion learning) or to produce an existing vocalization in a novel context (vocal
usage learning) (reviewed in [2]). However, vocal learning is often presented
as a binary behaviour whereby species are classified as either vocal learners
or non-learners. To overcome this probably incorrect simplification, new
research directions advocate for a multimodal vocal learning continuum
based upon increasing complexity in species’ vocal learning capacities (behav-
ioural, neurobiological, molecular) [2–4]. Most so-called ‘vocal non-learners’
have been classified as non-learners owing to their phylogenetic affinities
with other non-learners, or by omission, because we lack experimental tests
of their discriminatory or learning capacity. Hence, there is a need for
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Figure 1. (a) Simplified phylogenetic tree of the five avian species used in this study and (b) spectrograms of the conspecific and heterospecific vocalizations used in
this study. In (a), we present under each species name the time since divergence from the ancestral sister species in millions of years (Myr), as well as the relevant
reference(s) in brackets. (Online version in colour.)
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cross-species comparisons to fill these major gaps in
knowledge before conclusions about vocal learning are made.

Species-specific vocalizations vary significantly across
species; recognizing and producing the right vocalization
can be critical to interact with conspecifics [5]. Such vocaliza-
tions elicit a stronger neural and behavioural response than
non-specific sounds ([5], reviewed in [6]), even in acoustically
naïve birds, and in the absence of prior conspecific stimulation
[7,8]. Based on such findings, responses to species-specific
vocalizations have often been assumed to be the result of
‘innate’ auditory predispositions that are at least partly geneti-
cally determined [7,9], despite evidence that vocal templates
can be acquired well before hatching (e.g. [10–12]).

Here, we measured response strength and non-associative
learning (habituation) of vocalizations in avian embryos with
different characteristics (e.g. vocal learners versus non-learners;
altricial and semi-altricial versus precocial; ancient versus
recent lineages). We selected these two rudimentary cognitive
dimensions because they are considered fundamental com-
ponents of vocal learning, and yet there is no comparative
information on their general occurrence (or absence) across
avian taxa, nor extensive experimental tests of these capacities
in ovo. The response was measured as a change in heart rate
(HR). In birds and humans, a drop in embryonic HR has
been shown to reflect physiological mechanisms for orientation
and attention [10,13]. The study systems included five species
from four avian families: Maluridae and Geospizidae (typically
classified as vocal learners) and Phasianidae and Spheniscidae
(typically classified as vocal non-learners) (figure 1). We first
exposed embryos of four avian species to conspecific or hetero-
specific vocalizations and measured their auditory response
strengths across 60 s. We then exposed embryos of five avian
species to 180 s of conspecific vocalizations to measure their
potential cardiac habituation response (defined as a decrease
in response strength to repeated stimulation of the same stimu-
lus type [18–20]). We predicted that the precocial embryos
(Phasianidae; classified here also as a vocal non-learner)
would exhibit larger physiological effects in both experiments
because they are physiologically and morphologically more
developed at the same comparative age in ovo than the semi-
altricial (Spheniscidae; classified here also as vocal
non-learners) and altricial embryos (oscine Maluridae and
Geospizidae; both classified here also as vocal learners).
2. Methods
(a) Study species
Between 2012 and 2019, we measured HR in embryos across five
species: (i) the superb fairy-wren (Malurus cyaneus; 2012–2014,
2019); (ii) the red-winged fairy-wren (Malurus elegans; 2016)—
both insectivorous passerines from southern Australia [21];
(iii) Darwin’s small ground finch (Geospiza fuliginosa; 2016)—
one of 17 Darwin’s finch species on the Galápagos Islands [22];
(iv) the little penguin (Eudyptula minor; 2014, 2015, 2016)—a sea-
bird endemic to southern Australia and New Zealand [23]; and
(v) the Japanese quail (Coturnix japonica domestica; 2014)—a dom-
esticated species derived from the Eurasian quail (Coturnix
coturnix) [24]. Electronic supplementary material, table S1 pre-
sents the characteristics of each species and figure 1 their
phylogenetic representation. We conducted all our experiments
in the field on wild eggs, except for those using Japanese quail
(see the electronic supplementary material), and measured HR
using a digital egg monitor (Buddy™, Vetronic Services, UK)
following published methods [10,25,26].

(b) Experiment 1. Response strength
We exposed embryos to 60 s of pre-playback silence (baseline) fol-
lowed by 60 s of playback and 60 s of silence (post-playback). The
60 s of playback included either (i) one conspecific or (ii) one het-
erospecific call or song from the same individual every 10 s. All
embryos were tested once with one randomly chosen stimulus
type (either conspecific or heterospecific). None of the conspecific
vocalizations were from individuals known or related to the
embryos. Electronic supplementary material, table S2 presents
the list of vocalizations used for each species (see also figure 1).
We tested 109 embryos across four species: superb fairy-wren
(n = 33), small ground finch (n = 18), little penguin (n = 25) and
Japanese quail (n = 33).

(c) Experiment 2. Non-associative sound learning
(habituation)

To measure their habituation response, we presented each
embryo with 60 s of pre-playback silence (baseline), followed
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Figure 2. Experiment 1: response strength (n = 109). (a) HR (beats min−1) of the four species tested in our study during the pre-playback (-1), playback (0) and
post-playback (1) phases in response to two stimuli: conspecific and heterospecific. Grey shapes represent the raw data (every egg has six repeated measures within
each phase) and lines the mean change in HR for each egg. Coloured shapes represent the model estimates and the black bars the 95% credible intervals (CrI).
(b) Response strength ( posteriori distribution of playback HR minus pre-playback HR; beats min−1) of vocal learners (squares) and non-learners (circles) from the
pre-playback to the playback phase in response to two stimuli: conspecific (red) and heterospecific (black). Circles represent the mean estimated difference between
the pre-playback and playback derived from the posterior distribution of the model estimates and horizontal bars the 95% CrI. Asterisks/letters indicate statistical
difference (i.e. p(dif ) > 95%), with ‘a’ different from ‘b’ and ‘b’ different from ‘c’. (Online version in colour.)
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by three sets (referred to as H1, H2, H3) of 60 s of playback fol-
lowed by 60 s of silence (electronic supplementary material,
figure S1). Each 60 s of playback included different conspecific
call or songs from the same individual (total 18 different conspe-
cific calls or songs) repeated every 10 s (individuals differed
between embryos). Habituation is defined as a decline in the fre-
quency or magnitude of response with repeated stimulation or
presentations (criterion 1), often followed by a lack of further
shift or apparent response after a certain number of repetitions
(criterion 2) [18–20]. As in most other studies (e.g. [10,27–29],
we considered an individual to have habituated if criterion 1
was fulfilled (H3 <H1; criterion 1), but also checked if it main-
tained comparable HR with the preceding set (H2 =H3;
criterion 2). The response during H1 was calculated as HR
during H1 minus HR during baseline; the response during H2
was calculated as HR during H2 minus H1; the response
during H3 was calculated as HR during H3 minus H2. We
tested 138 embryos across five species: superb fairy-wren (n =
56), red-winged fairy-wren (n = 32), small ground finch (n = 15),
little penguin (n = 19) and Japanese quail (n = 16). In the elec-
tronic supplementary material, we present the findings of the
dishabituation response to support the claim that we measured
a habituation response (electronic supplementary material table
S3 and figure S2).
(d) Statistical analyses
The statistical analyses were performed using the packages
‘lme4’ [30] and ‘arm’ [31] in R-3.3.3 [32] in a pseudo-Bayesian
framework with non-informative priors. We used linear mixed-
effect models with a Gaussian error distribution for all analyses
and performed visual inspections of the residuals to assess the
models’ fit. The posterior distributions of the model parameters
were obtained using the function ‘sim’. We carried out 10 000
simulations to extract the mean estimates and 95% credible inter-
vals [33]. Statistical support was inferred from the posterior
distribution of each parameter [34]. We considered an effect to
be statistically meaningful when the posterior probability of the
mean difference between compared estimates (termed ‘p(dif )’)
was higher than 95% [34]. See details of the models in the
electronic supplementary material.
3. Results
(a) Experiment 1. Response strength
There was no statistical difference in baseline HR (pre-play-
back) between the two playback groups (conspecific versus
heterospecific) in any of the four species tested ( p(dif ) <
49.31% for every species; electronic supplementary material,
table S4; figure 2a). Both vocal learner and non-learner
species responded to conspecific vocalizations ( p(dif )Vocal
learners = 99.99%; p(dif )Vocal non-learners = 99.96%; electronic sup-
plementary material, table S5; figure 2b) and the response
strength was considerably larger in the vocal learners com-
pared to non-learners ( p(dif ) = 97.59%; electronic
supplementary material, table S5; figure 2b). Only vocal lear-
ners responded towards heterospecific stimuli ( p(dif )Vocal
learners = 99.99%; p(dif )Vocal non-learners = 73.65%; electronic sup-
plementary material, table S5; figure 2b), and this effect was
smaller when compared to their responses towards conspeci-
fic stimuli ( p(dif ) = 96.35%; electronic supplementary
material, table S5; figure 2b).

(b) Experiment 2. Non-associative sound learning
(habituation)

Embryos significantly lowered their HR in response to the
first set of vocalizations from a conspecific (H1 < baseline)
in all five of the species tested ( p(dif ) > 99.9% for every
species; electronic supplementary material, table S6; figure 3).
Embryos from all species showed a decrease in delta HR
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between H1 and H3 (i.e. lower H3 values calculated as H3
minus H2 compared with stronger H1 values calculated as
H1 minus baseline, indicating a habituation response (cri-
terion 1); electronic supplementary material, table S6;
figure 3). Strong support for this pattern was found in all
five species (superb fairy-wren: p(dif ) > 99.99%; red-winged
fairy-wren: p(dif ) = 99.99%; small ground finch: p(dif ) >
99.99%; little penguin: p(dif ) > 99.99%; Japanese quail:
p(dif ) > 99.99%; electronic supplementary material, table S6;
figure 3). Superb fairy-wrens, red-winged fairy-wrens, small
ground finches and little penguins maintained comparable
delta HR between H2 and H3 (superb fairy-wren: p(dif ) =
74.30%; red-winged fairy-wren: p(dif ) = 86.13%; small
ground finch: p(dif ) = 86.63%; little penguin: p(dif ) = 78.25%)
electronic supplementary material, table S6; figure 3) whereas
Japanese quail continued to respond to the stimuli and had
not yet fully habituated (criterion 2). Our dishabituation
tests described in the electronic supplementary material
also show an overall dishabituation response when the
embryos were exposed to novel stimuli (electronic sup-
plementary material, table S3 and figure S2).

4. Discussion
Vocal production learning is only believed to occur in
approximately eight lineages of birds and mammals, includ-
ing humans (reviewed in [2]). To understand the complexity
of vocal learning, it is, therefore, important to determine
‘which species are capable of which forms of vocal learning’
[1, p. 1]. With a better understanding of the ontogeny of
response strength to sound, we can test predictions about
the potential for early-life experience to influence neural path-
ways associated with vocal learning. Here, we showed that
embryos of a diverse group of avian species with different
characteristics responded more strongly to conspecific vocali-
zations than to heterospecific vocalizations, and that overall
response strength towards conspecific vocalizations was
greater in vocal learners than non-learners. By contrast, and
contrary to our prediction, we found a similar pattern of
habituation response in all species when embryos were
exposed to repeated stimuli. The findings of this study
suggest that the capacity to perceive and habituate to
sound in ovo in developing birds may be more widespread
taxonomically than previously considered and also support
the idea that vocal perception learning is not a binary
behaviour.

Precocial embryos (Japanese quail; classified as a vocal
non-learner) hatch at a much later relative stage of develop-
ment compared to semi-altricial (little penguin; classified as
a vocal non-learner) or altricial (oscine Maluridae and
Geospizidae; classified as vocal learners) offspring. Despite
this, we found a significant difference in response strengths
between vocal learners and non-learners, which aligns with
the idea that limited (‘the ability to fine-tune acoustic features
of species-specific vocalizations’) or complex (‘the need to
hear a sound to form a learned auditory template before
the animal can develop a vocalization that matches the tem-
plate’) vocal learning may involve different neural
recognition templates [1, p. 1]. Many studies claim to show
genetic predispositions for species-typical vocalizations
that are modified by experience [7,9]. Here, the altricial
vocal learners appeared to have more fine-tuned response
strengths at a much earlier stage of development compared
with the precocial and semi-altricial vocal non-learners.
This may be owing to our selection of heterospecific stimuli
(all songbird species), which may not be ecologically relevant
to the non-learner species. Our results may also reflect
physiological differences linked to developmental modes
(precocial versus semi-altricial and altricial), and further
testing using altricial vocal non-learner species would help
to clarify the effects of various component variables.
However, the pattern that little penguin embryos (semi-
altricial; vocal non-learner) performed similarly to the
Japanese quail embryos (precocial; vocal non-learner) tends
to suggest that the differences may be owing to differences
in vocal production learning. It may also be that altricial
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vocal learning species have different timing to acquire con-
specific recognition templates compared with precocial and
semi-altricial vocal non-learning species, in which vocal
production learning is expected to be limited. Additional
studies comparing species are clearly needed to differentiate
between these possibilities.

Our finding of shared response patterns to habituation
stimuli leads us to conclude that, in general, avian embryos
have the capacity to perceive sound and learn a response to
sound in ovo. This implies that prenatal auditory experience
may guide an individual’s attention to cues experienced
pre-hatch (and early post-hatch) and may result in different
patterns of attention towards familiar and unfamiliar stimuli
(see also [35]). The role of carry-over effects from previous
habituation stimuli still needs to be tested, as well as the
role of enhanced response strength to either familiar or
unfamiliar stimuli following prior habituation response. At
the mechanistic level, prenatal sound experience may result
in earlier onset of gene expression and neural pathway estab-
lishment than previously imagined [11]. During subsequent
ontogenetic stages, the diversity of prenatal sound experience
may influence an individual’s proximity to or preference for
other individuals with a narrow or broad vocal repertoire,
including their selection of vocal tutors [25,36], neighbours
or neighbourhoods.

In conclusion, this study offers new avenues to look at
early-life effects on the ontogeny of auditory learning. We
showed an early onset of auditory recognition learning (i.e.
vocal perception learning) in all families of avian embryos
tested and found initial evidence for lineage differences in
response strength to different categories of sound experi-
enced in ovo. Future research could address changes in
neural organization and gene expression pathways in
embryos reared in sound-poor or -rich environments, identify
how prenatal sound experience shapes phenotypic variation
in vocalization characteristics, measure the effect of pre-
hatch acoustical environment on individual attention to par-
ticular cues/signals/environments post-hatch, and quantify
the strength of selection on adults to guide the prenatal
sound experience of their offspring.
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