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Abstract: Virus spreading problems in wireless rechargeable sensor networks (WSNs) are becoming a
hot topic, and the problem has been studied and discussed in recent years. Many epidemic spreading
models have been introduced for revealing how a virus spreads and how a virus is suppressed.
However, most of them assumed the sensors are not rechargeable sensors. In addition, most of
existing works do not consider virus mutation problems. This paper proposes a novel epidemic
model, including susceptible, infected, variant, low-energy and dead states, which considers the
rechargeable sensors and the virus mutation factor. The stability of the proposed model is first
analyzed by adopting the characteristic equation and constructing Lyapunov functions methods.
Then, an optimal control problem is formulated to control the virus spread and decrease the cost of
the networks by applying Pontryagin’s maximum principle. Finally, all of the theoretical results are
confirmed by numerical simulation.

Keywords: WRSNs; mutation virus; stable analysis; optimal control

1. Introduction
1.1. Research Background

In recent years, wireless sensor networks (WSNs) have played a crucial role in the
internet of things (IoT), and WSNs has been widely developed and applied in many fields,
for example: industrial, military and healthcare applications. Benefiting from the recent
breakthrough in WSNs, they have attracted increasingly attention [1,2]. WSNs encompass
numerous sensor nodes and nodes connect with each other with the radio signal, but it
is difficult to create a complex security protective structure. Due to the vulnerability, the
network is always destroyed by malware and this leads to information leakage and even
network paralysis. Thus, security is an essential problem in WSNs to ensure accuracy and
efficiency. Scholars have done a lot of research on the security of WSNs [3–7].

WSNs suffer from the issue of the vulnerability of the network and energy limitation.
Wireless rechargeable sensor networks (WRSNs) [8] are considered wireless power transfer
(WPT) technology which greatly improve WSNs. The security of WSNs has been pushed
to a new level by optimizing the charging scheduling and analyzing the results of denial
of charge attacks [9,10]. It is popular to apply epidemic dynamics analysis in WRSNs
attacked by malwares. The classical mathematical models have been researched by scholars,
including susceptible, infected (SI), susceptible, infected, susceptible (SIS), susceptible,
infected, removed (SIR), susceptible, exposed, infected, removed (SEIR), etc. However, the
malware can be changed when the malware attacks the network [11], and the same is true
for a virus mutation. Once the virus mutation happens in WRSNs, it is devastating, and
the system of the security strategy is destroyed. However, it has seldom been researched
by scholars before.

Thus, this paper includes virus mutation to establish a new model, which is very
effective to reduce the spreading of the virus, reduce the harm of the virus mutation to
WRSNs and greatly improve the security of WRSNs.
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1.2. Related Work

In order to improve the security in WRSNs, the efficient scheme and energy ef-
ficient secured ring routing (E2SR2) protocol was first proposed by Shafie et al. and
Bhushan et al. [12,13]. For the problem of physical node capture attacks, a response strategy
was proposed by Bonaci et al. [6] to ensure security and stability of the network connectivity
when the network is attacked. Considering detection and correction, Sing et al. [3] also
proposed a selective forwarding attacks technology which increases the QOS and provides
better data transmission.

Applying epidemic dynamics analysis to the study of WSNs, Kephart et al. [14,15]
firstly proposed a model to study and predict the spread of the virus. Since then, many new
models have been proposed to study the problem. Cao et al. [16] considered the recovered
factor to construct the model of WSNs, and the authors patched the dissemination of
security and immunized or healed the nodes to use the security strategy; Zheng et al. [17]
considered the vaccination strategies with temporary immunity and a quarantined strategy
to construct an SEIQR model; Han et al. [18] considered the system of the nonlinear
stochastic system to construct an SEIR model. Liu et al. [19] considered the low-energy
factor to construct a model of WRSNs, and the stability of the model was proved. According
to Liu et al. [19–22], the system is a good combination of an epidemic dynamic model
and wireless sensor network. Thus, the system skillfully blends the information of the
WRSNs with biological characteristics. However, the all of above models do not consider
the problem of virus mutation. Above, Table 1 lists the recent relevant studies.

Table 1. Research on epidemic models which consider virus mutation.

Authors Research Field Model Content

Yang
et al. [23] Dynamic analysis of the virus mutation model SIS Proof of the local and global stability of the system

Dong-Mei
et al. [24]

Model analysis of disease viruses mutated in
the process of transmission SEIR Proof of the local and global stability of the system

that considers the exposed

Gao
et al. [25]

An SEIR epidemic model analysis with logistic
death rate of virus mutation SEIR Proof of the local and global stability of the system

that considers the logistic death rate of virus mutation

Tong
et al. [26]

Dynamic model analysis with delay of the
virus mutation SIS Proof of the local and global stability of the system

that considers the time delay

Dong-Mei
et al. [27]

SIR model analysis with delay of the
virus mutation SIR Proof of the local and global stability of the system

that considers recovered factor and the time delay

De-gang
et al. [28]

A variation epidemic model’s propagation and
analysis in complex networks SIVR Proof of the local and global stability of the system

Cai
et al. [29]

Model analysis of spread of the pathogen with
mutant strain and vaccination SIVR Proof of the local and global stability and analysis of

the Hopf bifurcation of the system

Xu
et al. [30]

Optimal control of the SIVRS epidemic
spreading model with virus mutation in

complex networks
SIVRS Considers the optimal strategy and calculates the

optimal control results of the system

As shown in Table 1, based on the virus mutation, scholars have done some studies.
However, as we all know, the theories of the epidemic dynamics with virus mutation
applied in WRSNs are rarely studied. The infected nodes infect other nodes to cause
mutations because of coding errors, decryption problems, etc. [11], hence, the idea of virus
mutation of artificial life was introduced, and a new way needs to be proposed to analyze
and solve the security of the mutation virus model. Thus, in this paper, a new scheme is
put forward of a model combined with virus mutation and is analyzed to solve the WRSN
spreading problem of a mutated virus.
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1.3. Contributions

In the previous studies, the charging behavior and mutation virus activity of wireless
sensor networks has rarely been investigated. In this paper, the main goal is to introduce a
model that considers the low-energy states and virus mutation. Combined with a practical
application, the system can be applied when the stability of the system is proven and the
other conditions are not taken into account, and the cost can be controlled by an optimal
strategy. It is divided into five variable states. Our contributions are as follows:

1. An epidemic model suitable for WRSNs is established to describe the propagation
process of malwares (the virus and mutated virus).

2. To analyze and calculate the basic reproductive numbers R1 and R2. Then, con-
sidering the existence of equilibrium of the system, the local and global asymptotic
stability is proved by adopting the characteristic equation and the Lyapunov principle.
Numerical simulation is carried out to confirm the results.

3. By constructing the objective function and applying Pontryagin’s maximum principle,
we can obtain the optimal control variable which satisfies the optimal control objective
of the security problem.

The rest of the paper is as follows: In Section 2, the introduction and analysis of
the model is presented; in Section 3, the local and global asymptotic stability is proved;
in Section 4, the optimal strategy is presented; in Section 5, the numerical simulation
verifies the proposed theoretical results; in Section 6, the relevant conclusion of the model
is presented.

2. Epidemic Modeling
2.1. Model Analysis

In this section, the epidemic model of virus mutation in WRSNs is introduced. Sensors
are divided into five sensor node states. The five sensor node states include: S, I1, I2, L and
D. The S state is susceptible to virus attacks. I1 is the infected node state, I2 is the mutant
virus node state, L is the low-energy state of all nodes, D represents death nodes (the sensor
nodes cannot work). N stands for the sum of all nodes, and it is a certain number. Thus,
N(t) = S(t) + I1(t) + I2(t) + L(t). The state transition diagram is shown in Figure 1.
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 Figure 1. State transition diagram of the model.

As shown in Figure 1, A is the number of injected nodes; β1 is the conversion rate of
susceptible to infected; β2 is the conversion rate of the sensor nodes becoming infected
with the virus when the virus mutates; γ1 is the rate of cleaning I1 virus; γ2 is the rate of
cleaning I2 virus; d is the conversion rate when sensors are unable to work; c is the rate of
nodes going into a low-energy state; u is the rate of recovery from L energy, and during
the low-energy state, I1 and I2 have removed the virus; ε is the rate of virus mutation.
In this paper, when infected nodes and mutant virus nodes are converted to nodes of
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the low-energy state, a virus remover is created to eliminate the virus and mutant virus.
According to the parameters and nodes of states, the dynamics equation of the model (1) is
given as the following system (1):

dS(t)
dt = A− (d + c)S(t)− (β1S(t)− γ1)I1(t)− (β2S(t) + γ2)I2(t) + uL(t)

dI1(t)
dt = β1S(t)I1(t)− γ1 I1(t)− cI1(t)− εI1(t)− dI1 (t)

dI2(t)
dt = β2S(t)I2(t)− γ2 I2(t)− cI2(t)− dI2(t) + εI1(t)

dL(t)
dt = c(I1(t) + I2(t) + S(t))− uL(t)− dL(t)

(1)

Obviously, adding Equation (1), we obtain:

dS(t)
dt

+
dI1(t)

dt
+

dI2(t)
dt

+
dL(t)

dt
= A− d(S(t) + I1 (t) + I2(t) + L(t)) (2)

As N(t) = S(t) + I1(t) + I2(t) + L(t), Equation (2) is given by:

dN(t)
dt

= A− dN(t) (3)

Then, considering the limit of (3), we can obtain N(t) ≤ A
d , so the feasible region for

(1) is given by:

Ψ =

{
(S, I1, I2, L) ∈ R4

∣∣∣∣ S(t) + I1 (t) + I2(t) + L(t) ≤ A
d

}
(4)

Above, Ψ is a positively invariant.

2.2. Computing the Equilibrium Points and Basic Reproductive Number

In order to discuss the existence of equilibria, let the left-hand side of Equation (1) be
zero. Obviously, there are three solutions that satisfy this situation. The disease-free equi-
librium is (S0, 0, 0, L0), the individual plant virus equilibrium is (S, 0, I2, L) and the endemic
equilibrium is (S∗, I∗1 , I∗2 , L∗). It is noted that the basic reproductive number determines the
existence of different equilibria. In this paper, there are two basic reproductive numbers
(R1 and R2), where R1 = S0

S∗ , R2 = S0
S

. S0, S and S∗ are given as:

S0 =
A

d + c− uc
u+d

(5)

S =
γ2 + c + d

β2
(6)

S∗ =
γ1 + c + ε + d

β1
(7)

Thus, the basics reproductive numbers are given as:

R1 = β1S0
γ1+c+ε+d

R2 = β1S0
γ2+c+d

(8)

According to the existence of the equilibrium point, if R1 ≤ 1, R2 ≤ 1, the system (1)
has only a disease-free equilibrium point E0 = (S0, 0, 0, L0) given as:

L0 =
cS0

u + d
=

Ac
c + d− uc

(9)
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If R2 > 1, the system has a disease-free point and an individual plant virus equilibrium
point, and the individual plant virus equilibrium E = (S, 0, I2, L) is given as:

L =
c
(

I2 + S
)

u + d
(10)

I2 =
A− (d + c)S + uL

β2S− γ2
=

S0(R2 − 1)
R2

(11)

If R1 > 1, R1 > R2, the system has a disease-free equilibrium point and an endemic
equilibrium point. The endemic equilibrium E∗ =

(
S∗, I∗1 , I∗2 , L∗

)
is given as:

I∗1 =
S0β2(R1 − 1)(R1 − R2)

R1

(
β2(R1 − R2) +

εR1R2
S0

) (12)

I∗2 =
εR1R2 I∗1

S0β2(R1 − 1)
(13)

L∗ =
c
(

I∗1 + I∗2 + S∗
)

u + d
(14)

Thus, we have the following Theorem 1:

Theorem 1. If R1 ≤ 1, R2 ≤ 1, there is only one equilibrium E0; if R2 > 1, there are two
equilibriums including E0 and E; if R1 > 1, R1 > R2, there are two equilibriums including E0
and E∗.

3. Dynamic Stability Analysis

In this section, the epidemic model of virus mutation in WRSNs is divided into local
and global stability analysis.

System (1) is a nonlinear system, and we must turn it into a linear system so as to prove
the local stability of this system. In order to reduce the calculated amount of the system,
L in the first equation of the system (1) can be replaced with N(t)− (S(t) + I1(t) + I2(t)).
Thus, in system (1), the last equation is independent of the other 3 equations, and the linear
equations can be given as the system (15):

dS
dt = J11(S− S+) + J12

(
I1 − I+1

)
+ J13

(
I2 − I+2

)
dI1
dt = J21(S− S+) + J22

(
I1 − I+1

)
+ J23

(
I2 − I+2

)
dI2
dt = J31(S− S+) + J32

(
I1 − I+1

)
+ J33

(
I2 − I+2

) (15)

Then, the Jacobian matrix of (15) is given by:

J
(
E+
)
=

 −(d + c + u)− β1 I1 − β2 I2 −β1S + γ1 − u −β2S + γ2 − u
β1 I1 β1S− (γ1 + c + ε + d) 0
β2 I2 ε β2S− (γ2 + c + d)

 (16)

3.1. Local Stability

Theorem 2. If R1 ≤ 1 and R2 ≤ 1, the disease-free equilibrium is locally asymptotically stable.

Proof. According to the Lyapunov criterion [31], if all of the characteristic values are
negative, the equilibrium is locally asymptotically stable. Thus, the Jacobian matrix is
given by:
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J(E0) =

 −(d + c + u) −β1S0 + γ1 − u −β2S0 + γ2 − u
0 β1S0 − (γ1 + c + ε + d) 0
0 ε β2S0 − (γ2 + c + d)

 (17)

Hence, we have the following characteristic Equation (18):

f1(λ) = (λ + (d + c + u))(λ− β1S0 + γ1 + c + ε + d)(λ− β2S0 + γ2 + c + d) (18)

Obviously, if R1 ≤ 1 and R2 ≤ 1, we have λ1 = −(d + c + u),λ2 = β1S0 −
(γ1 + c + ε + d) and λ3 = β2S0− (γ2 + c + d). All of the characteristic values are negative,
so the disease-free equilibrium is locally asymptotically stable. �

Theorem 3. If R2 > 1 and R2 > R1, the individual plant virus equilibrium is locally asymptoti-
cally stable.

Proof. The Jacobian matrix is given as:

J
(
E
)
=

 −(d + c + u)− β2 I2 −β1S + γ1 − u −β2S + γ2 − u
0 β1S− (γ1 + c + ε + d) 0

β2S2 ε β2S− (γ2 + c + d)

 (19)

Hence, the characteristic equation is given by:

f2(λ) = (λ ++d + c + u)
(
λ− β1S + γ1 + c + ε + d

)(
λ + β1 I1

)
(20)

Then, the characteristic value is λ1 = −(d + c + u), λ2 = β1S − (γ1 + c + ε + d),
λ3 = −β2 I2. Obviously, if R2 > R1, λ2 is always a negative number. Hence, the
individual plant virus equilibrium is locally asymptotically stable. �

Theorem 4. If R1 > 1 and R1 > R2, the endemic equilibrium is locally asymptotically stable.

Proof. The Jacobian matrix is given by:

J(E∗) =

 −(d + c + u)− β1 I∗1 − β2 I∗2 −β1S∗ + γ1 − u −β2S∗ + γ2 − u
β1 I∗1 β1S∗ − (γ1 + c + ε + d) 0
β2 I∗2 ε β2S∗ − (γ2 + c + d)

 (21)

By the transformation of (21), we obtain

J(E∗) =

 −(d + c + u) −(d + c + u) −(d + c + u)
β1 I∗1 β1S∗ − (γ1 + c + ε + d) 0
β2 I∗2 ε β2S∗ − (γ2 + c + d)

 (22)

We have the following characteristic equation:

f3(λ) = (λ + d + c + u)(λ2 − ((β2S∗ − (γ2 + c + d)− β1 I∗1 )λ + β1 I∗1 (γ2 + d + c + ε− β2S∗)) (23)

Obviously, λ1 = −(d + c + u), and the other characteristic values can be calculated
by the following Equation (24):

X(λ) = λ2 − ((β2S∗ − (γ2 + c + d)− β1 I∗1 )λ + β1 I∗1 (γ2 + d + c + ε− β2S∗)) (24)

According to Vieta’s formulas [32], the zero solution of (24) is given by λ2 +λ3 = β2S∗−
(γ2 + c + d)− β1 I∗1 , λ2 ∗ λ3 = β1 I∗1 ∗ (γ2 + c + d + ε− β2S∗), thus, if R1 > 1 and R1 > R2,
the value of λ2 and λ3 can be proved to be λ2 + λ3 < 0 and λ2 ∗ λ3 > 0. Hence, the endemic
equilibrium is locally asymptotically stable. �
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3.2. Global Stability

In this part, three Lyapunov functions are constructed to verify the global stability
of the disease-free equilibrium E0, individual plant virus equilibrium E and endemic
equilibrium E∗.

Theorem 5. If R1 ≤ 1,R2 ≤ 1 and R1 +
ε

γ1+c+ε+d < 1, the disease-free equilibrium is glob-
ally stable.

Proof. The Lyapunov function is constructed as V(I1, I2)=I1 + I2. We obtain

dV
dt = dI1

dt + dI2
dt

= (β1S− (γ1 + c + ε + d))I1 + (β2S− (γ2 + c + d))I2 + εI1
≤ (β1S0 − (γ1 + c + ε + d))I1 + (β2S0 − (γ2 + c + d))I2 + εI1

= (γ1 + c + ε + d)
(

R1 − 1 + ε
γ1+c+ε+d

)
I1 + (γ2 + c + d)(R2 − 1)I2

(25)

Obviously, if R1 +
ε

γ1+c+ε+d < 1 and R2 < 1, the disease-free equilibrium is globally
stable. �

Theorem 6. If R2 > 1, R1 < 1, the individual plant virus equilibrium is globally stable.

Proof. According to the second Equation (1), the number of infected nodes is I0 at t0(t > t0).
We can obtain.

I1(t) = I0e(β1S−(γ1+c+ε+d))(t−t0) (26)

When t→ ∞ , I1(t) will be stable at zero. Thus, the limit Equation (27) is given as:{
dS(t)

dt = A− (d + c + u)S(t)− (β2S(t) + γ2 + u)I2(t) + uL(t)
dI2(t)

dt = β2S(t)I2(t)− γ2 I2(t)− cI2(t)− dI2(t)
(27)

As I1(t) converges to a limit value zero, the Lyapunov function can be given as:

V(S, I2) =
1
2
(
S− S

)2
+

β2S− γ2 + u
β2

(
I2 − I2 − I2ln

I2

I2

)
(28)

The derivative of V(S, I2) of (28) is given by:

dV
dt =

(
S− S

) dS
dt +

β2S−γ2+u
β2

I2−I2
I2

dI2
dt

= −(d + u + c + β2 I2)(S− S)2 −
(

β2S− γ2 + u
)(

I2 − I2
)(

S− S
)

+ β2S−γ2+u
β2

(β2
((

I2 − I2
)(

S− S
))

= −(d + u + c + β2 I2)
(
S− S

)2

(29)

Obviously, if R2 > 1, R1 < 1, the individual plant virus equilibrium is globally stable. �

Theorem 7. If R1 > 1, R1 > R2 and ε = 0, the endemic equilibrium is globally stable.

Proof. It is noted that the rate of infection is higher than the rate of virus mutation. If the
rate of virus mutation is enough small and is equal to be zero, it is assumed that ε = 0.
The Equation (1) is given as:

dS(t)
dt = A− (d + c)S(t)− (β1S(t)− γ1)I1(t)− (β2S(t) + γ2)I2(t) + uL(t)

dI1(t)
dt = β1S(t)I1(t)− γ1 I1(t)− cI1(t)− dI1 (t)

dI2(t)
dt = β2S(t)I2(t)− γ2 I2(t)− cI2(t)− dI2(t)

dL(t)
dt = c(I1(t) + I2(t) + S(t))− uL(t)− dL(t)

(30)
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The Lyapunov function V(S, I1, I2) is given as follows:

V(S, I1, I2) =
1
2
(S− S∗)2 +

c + d
β1

(
I1 − I∗1 − I∗1 ln

I1

I∗1

)
+

c + d
β2

(
I2 − I∗2 − I∗2 ln

I2

I∗2

)
(31)

Obviously, V(S, I1, I2) ≥ 0. Then, the derivative of V(S, I1, I2) of the solution of (31) is
given by:

dV
dt = −(d + c + u + β1 I1 + β2 I2)(S− S∗)2 + (β1S∗ − (γ1 + c + d))(I1 − I∗1 )

2 + (β2S∗ − (γ1 + c + d))(I2 − I∗2 )
2

= −(d + c + u + β1 I1 + β2 I2)(S− S∗)2 + (β2S∗ − (γ1 + c + d))(I2 − I∗2 )
2

If R1 > R2, the endemic equilibrium is globally stable if ε = 0. Theorem 6 is proved. �

4. Optimal Strategy

In this subsection, the cost of cleaning the virus and the cost of charging low-energy
nodes are considered. For this purpose, the control U(·) is introduced as the objective
function, γ1(0 < γ1 < 1) is the rate of cleaning I1 virus; γ2(0 < γ2 < 1) is the rate of
cleaning I2 virus and u(0 < u < 1) is the rate of recovery energy. QI1 is the treatment
cost coefficient of I1, QI2 is the treatment cost coefficient of I2 and QL is the charging cost
coefficient of low-energy nodes. Thus, the optimal control problem is to minimize the
objective function as follows:

U(γ1, γ2, u) = min

I1(t f ) + I2(t f ) + L(t f ) +

t f∫
0

(QI1(γ1 I1)
2 + QI2(γ2 I2)

2 + QL

(
uL)2

)
dt

 (32)

It is clear that the feasible region of the control variable set U of the system is [0, 1].
Hence, the optimization goal is to diminish I1 and I2 during the time interval [0, t f ].
According to the Pontryagin maximum principle, the Hamiltonian function is constructed
as follows:

H(X, U, α, t) = QI1 γ2
1 I2

1 + QI2 γ2
2 I2

2 + QLu2L2 + α1
dS
dt

+ α2
dI1

dt
+ α3

dI2

dt
+ α4

dL
dt

(33)

X is the state variable, U is the control variable set, αi(i = 1, , 2, 3, 4) is the adjoint
variables. The adjoint variables are determined by solving the following equations.

dα1
dt = − ∂H

∂S = α1(t)(d + c + β1 I1 + β2 I2)− (α2(t)β1 I1 + α3(t)β2 I2 + α4(t)c)
dα2
dt = − ∂H

∂I1
= −2QI1 γ2

1 I1 − (α1(t)(γ1 − β1S) + α2(t)(β1S− (γ1 + c + ε + d)) + α3(t)ε + α4(t)
dα3
dt = −2QI2 γ2

2 I2 − (α1(t)(γ2 − β2S) + α3(t)(β2S− (γ2 + c + d)) + α4(t)c
dα4
dt = − ∂H

∂L = −2QLu2L− (α1(t)u− α4(t)(u + d))

(34)

At the moment, the transversality condition of optimal control satisfies the follow-
ing equation:

α1(t f ) = 0; α2(t f ) = 1; α3(t f ) = 1; α4(t) = 1 (35)

According to differential equations of the covariant variable and transversal condition
of optimal control, the optimization condition is given by:

∂H
∂γ1

= 2QI1 γ1 I2
1 + α1(t)I1 − α2(t)I1

∂H
∂γ2

= 2QI2 γ2 I2
2 + α1(t)I2 − α3(t)I2

∂H
∂u = 2QLuL2 + α1(t)L− α4(t)L

(36)
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Finally, Pontryagin’s maximum principle is applied to obtain the optimal control
variable set. The result is given as:

γ1 = min
{(

max
(

0, α2(t)−α1(t)
2QI1 γ1 I1

)
, 1
)}

γ2 = min
{(

max
(

0, α3(t)−α1(t)
2QI2 γ2 I2

)
, 1
)}

u = min
{
(max

(
0, α4(t)−α1(t)

2QLuL

)
, 1)
} (37)

5. Numerical Simulation

In this section, all of the theoretical analyses are proved and the numerical results of
the system (1) are presented to support the analytic results. The result of the numerical
simulation is given as follows.

5.1. Stability Simulation

The parameters are given so that A = 10, d = 0.1, c = 0.5, u = 0.2, ε = 0.2.
It can be seen that rates of β1 and γ1 have significant impacts on the basic reproduction
number R1, shown in Figure 2a. With the increasing of β1, R1 increases rapidly, and with
the increasing of γ1, R1 increases slowly. In the same way, the rates of β2 and γ2 also have
significant impacts on the basic reproduction number R2, shown in Figure 2b. With the
increasing of β2, R2 increases rapidly, and with the increasing of γ2, R2 increases slowly.
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Figure 2. Relation of parameters and the basic reproduction number: (a) Relationship between R1 and β1, γ1; (b) relationship
between R2 and β2, γ2

The relationship between R1, R2 and equilibrium is shown in Figure 3. The parameters
of the system (1) are set as A = 10, c = 0.5, u = 0.2. It is noted that the individual
plant virus equilibrium I2 is determined by d and the basic reproduction number R2.
The rate of death d has significant impacts on the I2 if d is small enough, as shown in
Figure 3a. It can be seen that the relationship between the rate of virus mutation ε and I∗2
is a linear, as shown in Figure 3b. The relationships among R1, R2 and I1, I2 are shown
in Figure 3c,d when the system (1) satisfies the conditions of the existence of endemic
equilibrium (R1 > 1, R1 > R2).
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Figure 3. Relationship between I1, I2, the basic reproductive number: (a) Relationship between I2 and d, R2; (b) relationship
between I∗2 and ε; (c) relationship between I1 and R1, R2; (d) relationship between I2 and R1, R2

If R1 < 1 and R2 < 1, the parameters are set as β1 = 0.003, β2 = 0.002, γ1 = 0.2, γ2 = 0.4,
c = 0.5, u = 0.2, d = 0.1, ε = 0.2 and A = 10. Hence, the basic reproductive numbers are
calculated as R1 = 0.1125 < 1 and R2 = 0.075 < 1. N = S + I1 + I2 + L = 100. The disease-free
equilibrium E0 (S0, 0, 0, L0) can been calculated as S0 = 37.5, L0 = 62.5, I1 = 0, I2 = 0, as
shown in Figure 4.

As shown in Figure 4a–c, according to Theorem 2, the initial values S(0), I1(0), I2(0)
and L(0) do not have any influence on system stability and the system (1) will be stable at
the disease-free equilibrium E0 eventually.

If the parameters satisfy R2 > 1 and R2 > R1, β1 = 0.003, β2 = 0.04, γ1 = 0.2, γ2 = 0.4,
c = 0.5, u = 0.2, d = 0.1, ε = 0.2, A = 10, we have R1 = 0.1125 < 1 and R2 = 1.5 > 1 > R1. The
individual plant virus equilibrium is calculated to be E(S,0,I2,L), S = 25, I2 = 12.5, L= 62.5,
as shown in Figure 5.
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According to Theorem 3, it is noted that the system (1) will be stable at the individual
plant virus equilibrium eventually. From Figure 5a–c, the initial values do not have any
influence on system stability and the system (1) will be stable at the individual plant virus
equilibrium E eventually.

If the parameters satisfy R1 > 1 and R1 > R2, β1 = 0.03, β2 = 0.02, γ1 = 0.2,
γ2 = 0.4, c = 0.3, u = 0.2, d = 0.1, ε = 0.2, A = 10. With the endemic equilibrium
E∗
(
S∗, I∗1 , I∗2 , L∗

)
, we can obtain S∗ = 26.7, I∗1 = 13.3, I∗2 , = 10, L∗ = 50. The simulation

diagram is shown in Figure 6.
Obviously, as shown in Figure 6a–c, it is can be seen that R1 = 1.125 > 1 and

R1 > R2 = 0.75, and the initial values do not have any influence on system stability and
the system (1) will be stable at the endemic equilibrium eventually.

Briefly, the relationship between the system and parameters is shown as a simulation
diagram. The rate of ε has a great influence on the stable solution of the system, and other
parameters have a great influence on the basic reproduction number to affect the equilib-
rium solution. Thus, a good system can be constructed by setting reasonable parameters.
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5.2. Optimal Strategy Simulation

As for the optimal control strategy, the control variable set U(γ1, γ2, u) is calculated by
Pontryagin’s maximum principle, and the numerical result is calculated by implementing a
fourth order Runge–Kutta method [33]. Firstly, for the system (1), the nodes’ number of each
state can be obtained by initializing control variable values, the time interval is [0, t f ] and
the transversality condition Equation (35) is satisfied. It is noted that the numerical result
of adjoint variables can be calculated by the system (34). Then, by updating U(γ1, γ2, u)
iteratively, the control cost converges to a limited value.

The parameter values are given as β1 = 0.04, β2 = 0.03, c = 0.3, d = 0.1, ε = 0.1,
QI1 = 1, QI2 = 2 and QL = 1. The control variable set U(γ1, γ2, u) is γ1 = 0.3,
γ2 = 0.3 and u = 0.3. The simulation diagram of the cost value without optimization
control is shown in Figure 7a. At the end of time t f = 200, the cost J is 52, 244, and the
diagram of the equilibrium point is shown in Figure 7b.
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As shown in Figure 8 considering the optimal control, the rate of cleaning I1 virus (i.e.,
γ1) increases to 1 gradually; the rate of cleaning I2 virus (i.e., γ2) is increased to 0.0226 and
the rate of recovery energy (i.e., u) increases to 0.0067.

It is noted that the cost under the optimal strategy is greatly reduced, as shown in
Figure 9, which is equal to 86.86 at the terminal time t f , shown in Figure 9a. As shown
in Figure 9b, the values of I1 and I2 are smaller than that without optimization control.
It is obvious that the performance under the optimal strategy is superior to that without
optimization control.
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6. Conclusions and Future Work

In this paper, a novel epidemic model in WRSNs is proposed, including susceptible,
infected, variant and low-energy states. The model considers rechargeable sensors and
the virus mutation factor. By analyzing the basic reproductive number, the existence of
equilibriums is first proved, and the local stability and global asymptotic stability are
proved by the Lyapunov stability criterion. Meanwhile, the influence of the rate of virus
mutation and the number of mutated nodes on the endemic equilibrium is revealed. In
addition, an optimal strategy is proposed to minimize the numbers of the infected nodes
and the virus mutation nodes, the cost of cleaning the virus and the cost of charging
low-energy nodes. Finally, the numerical simulation validates the theoretical results.

Future research will attempt to consider the time delay to move closer to practical
application. For WRSNs, it is a key topic of future work to consider the time delay of the
virus mutation and the time delay of charging at the same time. Additionally, the model
can become closer to reality when the time delay is proposed.
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