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Abstract

Background: Heparanase, endoglycosidase that cleaves heparan sulfate side chains of heparan sulfate proteoglycans, plays
important roles in cancer metastasis, angiogenesis and inflammation.

Design and Methods: Applying a mouse model of bone marrow transplantation and transgenic mice over-expressing
heparanase, we evaluated the effect of heparanase on the engraftment process and the development of graft-versus-host
disease.

Results: Analysis of F1 mice undergoing allogeneic bone marrow transplantation from C57BL/6 mice demonstrated a better
and faster engraftment in mice receiving cells from donors that were pretreated with heparanase. Moreover, heparanase
treated recipient F1 mice showed only a mild appearance of graft-versus-host disease and died 27 days post transplantation
while control mice rapidly developed signs of graft-versus-host disease (i.e., weight loss, hair loss, diarrhea) and died after 12
days, indicating a protective effect of heparanase against graft-versus-host disease. Similarly, we applied transgenic mice
over-expressing heparanase in most tissues as the recipients of BMT from C57BL/6 mice. Monitoring clinical parameters of
graft-versus-host disease, the transgenic mice showed 100% survival on day 40 post transplantation, compared to only 50%
survival on day 14, in the control group. In vitro and in vivo studies revealed that heparanase inhibited T cell function and
activation through modulation of their cytokine repertoire, indicated by a marked increase in the levels of Interleukin-4,
Interleukin-6 and Interleukin-10, and a parallel decrease in Interleukin-12, tumor necrosis factor-alfa and interferon-gamma.
Using point mutated inactive enzyme, we found that the shift in cytokine profile was independent of heparanase enzymatic
activity.

Conclusions: Our results indicate a significant role of heparanase in bone marrow transplantation biology, facilitating
engraftment and suppressing graft-versus-host disease, apparently through an effect on T cell activation and cytokine
production pattern.
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Introduction

Heparan sulfate proteoglycans (HSPGs) are ubiquitous macro-

molecules associated with the cell surface and extracellular matrix

(ECM) of a wide range of cells [1,2,3]. The basic HSPG structure

consists of a protein core to which several linear heparan sulfate

(HS) chains are covalently O-linked [1,2,3]. HS chains, unique in

their ability to bind a multitude of proteins, ensure that a wide

variety of bioactive molecules bind to the cell surface and ECM

and thereby function in the control of diverse normal and

pathological processes [1,4,5]. The majority of studies on cell

interaction with the microenvironment focused, among other

approaches, on proteolytic enzymes [6]. The involvement of

glycosaminoglycan (e.g., heparan sulfate) degrading enzymes (e.g.,

heparanase) was underestimated, primarily due to a lack of

appropriate molecular probes to explore their causative role in

cell-ECM interactions and related effects. A long-term research on

the biology of heparanase led to the cloning of a single gene

encoding a HS-degrading endoglycosidase (heparanase) which

plays important roles in cancer metastasis, angiogenesis and

inflammation [7,8,9,10,11,12,13,14,15,16,17]. Heparanase is syn-

thesized as a 65 kDa latent precursor that subsequently undergoes

proteolytic processing by cathepsin L [18,19], yielding 8 kDa and

50 kDa protein subunits that undergo heterodimerization to form

the active enzyme [20,21,22]. The enzyme has been identified in

invasive normal and malignant cells, including activated cells of

the immune system, cytotrophoblasts, keratinocytes, lymphoma,

melanoma, myeloma and carcinoma cells [7,8,9,10,11,12,13,14].
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Extravasation of circulating hematopoietic and immune cells is

accompanied by degradation of various components of the

subendothelial ECM. Activated immune cells produce and secrete

a variety of ECM degrading enzymes, including heparanase

[10,11,23,24,25]. Degradation of HS disintegrates the supramo-

lecular structure of the subendothelial basal lamina, consequently

facilitating trans-endothelial migration of neutrophils and activat-

ed lymphocytes, thereby mediating their extravasation during

immune responses [10,11,15,23,24,25]. Allogeneic hematopoietic

stem cell transplantation (SCT) is a therapeutic modality in a

growing number of malignant and non-malignant diseases. It

provides a powerful anti-tumor activity through the graft-versus-

leukemia/tumor effect mediated by donor T cells [26,27,28].

Since donor alloreactive T-cells are also being activated against

host epitopes presented on normal tissues, graft-versus-host disease

(GVHD) [29,30] is the most common threatening complication

post allogeneic transplantation.

We have recently demonstrated that heparanase modulates the

bone marrow (BM) microenvironment as well as basic features of

hematopoietic stem and progenitor cells, including development,

proliferation and retention [31]. We have also found a marked

increase in the number of hematopoietic stem cells in the BM of

heparanase over-expressing transgenic (Hpa-tg) mice compared to

wild type (wt) control mice [31]. Moreover, a minimal dose of white

blood cells from the BM of hpa-tg mice, but not wt mice, was sufficient

to rescue lethality irradiated C57BL/6 recipient mice, indicating that

a higher number of hematopoietic repopulating cells exists in the BM

of the hpa-tg mice [31]. These results and the recently reported

protective effect of heparanase against autoimmune type-1 diabetes

[32] prompted us to investigate the effect of heparanase on

engraftment and GVHD in transplantation animal models.

In the GVHD process, antigen-specific CD4+ cells polarized

toward the Th1 phenotype mediate inflammatory damage in the

host body, resulting in tissue dysfunction, multi-organ failure and

high mortality rate [26,28,29,30]. On the other hand, increased

production of Th2 cytokines and a parallel suppression of Th1

cytokines, lead to amelioration of GVHD [28,33,34,35]. Mature T

cells infused with the bone marrow graft respond to alloantigens

and other changes in the allogeneic host tissues induced by the

pre-transplantaion conditioning. The injured host tissues produce

proinflammatory cytokines such as interleukin-2 (IL-2) and

interferon-gamma (IFN-c) which in turn activate donor effector

cells to release IL-1 and tumor necrosis factor-alfa (TNF-a),

further activating the alloreactive T cells, thereby causing direct

tissue destruction [36,37,38,39].

Our results indicate an enhancing effect of heparanase on

engraftment, as well as a protective activity against GVHD. The

anti-GVHD effect appears to be attributed to suppression of T cell

activation and a shift from a Th1 to Th2 cytokine profile.

Materials and Methods

Mice
Eight to 12 weeks old C57BL/6 (H-2b) and (Balb/c x C57BL/6)

(H-2d/b) F1 mice, male and female, were purchased from Harlan

Breeding Facility (Jerusalem, Israel). Heparanase overexpressing

C57BL/6 transgenic (hpa-tg) mice were previously described in

detail [40]. The heparanase transgene was introduced under the

actin promoter to drive overexpression of heparanase in most

tissues [40]. All mice were maintained in top filtered cages in a

standard animal facility. Cages, sawdust and water bottles were

autoclaved weekly. All the animal experiments were approved by

the animal committees of the Hebrew University, Jerusalem Israel

(MD-89.49-4) according to the NIH guidelines.

Conditioning by radiation
F1 and Hpa-tg mice were exposed to a sublethal (750 cGy) total

body irradiation by a linear accelerator (Varian Clinac 6X GC,

Palo Alto, CA) at a dose rate of 170 cGy/min, and a source-to-

skin distance of 80 cm [31].

Spleen cell preparation
Spleen cells from donor mice were suspended in PRMI 1640

medium supplemented with 10% fetal calf serum, glutamine

(2 mM), penicillin (100 U/ml) and streptomycin (100 mg/ml)

(Biological Industries, Beit-Haemek, Israel), washed twice and

resuspended in the same medium [41].

Transplantation design
One day following irradiation, F1 mice were transplanted

intravenously with 106106 allogeneic (C57BL/6) spleen cells.

Animals were divided into 4 groups (10 mice each): mice

transplanted with spleen cells obtained from C57BL/6 mice

pretreated with saline (3–5 days) followed by daily intraperitoneal

(i.p) injection of saline (group 1), or recombinant heparanase

(group 2), post transplantation; mice transplanted with spleen cells

obtained from C57BL/6 mice pretreated with heparanase (3–5

days, i.p.) followed by daily injection of saline (group 3), or

recombinant heparanase (group 4) for 7 days post transplantation.

The first injection was given 15 min before transplantation. In

another set of experiments, hpa-tg and wt mice were injected with

256106 or 506106 C57BL/6 splenocyes one day post irradiation.

One month after transplantation, the number of donor-type cells

present in the blood was determined by flow cytometry.

Chimerism was assessed by the ameloginin gene expression

method, as previously described [42].

Monitoring of GVHD
Recipient mice were monitored for clinical signs of GVHD

(ruffled fur, diarrhea, runt disease, weight loss) and survival, as

described [41].

Heparanase
Single-chain GS3 active heparanase gene construct, composed

of the 8 kDa and 50 kDa heparanase subunits, was kindly

provided by Dr. Christian Steinkuhler (IRMB/Merck Research

Laboratories, Pomezia, Italy) [22], and the protein was purified

from the conditioned medium of baculovirus infected cells, as

described [21,22]. Recombinant 65 kDa latent human hepar-

anase and inactive heparanase mutated in glutamic acid residues

225 and 343 that comprise the enzyme active site [43] were

purified from the culture medium of transfected HEK-293 cells,

as described [44]. Heparanase preparations were assayed for the

presence of bacterial endotoxin by Biological Industries (Beit

Haemek, Israel), using the gel-clot technique (Limulus amebocyte

lysate–LAL test) and were found to contain ,10 pg/ml

endotoxin.

Modified heparin
Compound ST1514 was kindly provided by Dr. Claudio Pisano

(Sigma-Tau, Research Department, Pomezia, Italy). Briefly,

heparin was subjected to controlled alkali-catalyzed removal of

sulfate groups of iduronic acid 2-O-sulfate residues, giving rise to

the corresponding epoxide derivative. The epoxide rings were

opened, followed by oxidative glycol-splitting of the newly formed

(and the preexisting) nonsulfated uronic acid residues [45,46]. The

ST1514 compound is 50% glycol-split modified heparin (H50gs;

MW 11,200) [45,46].

HPSE in Stem Cell Transplant
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T-cell activation
a) ConA. Mouse spleen cells were cultured in RPMI-1640

medium supplemented with 10% heat-inactivated human AB

serum in flat-bottomed 96-well microtiter plates (Nunc,

Wiesbaden, Germany) containing 0.56106 cells/well/0.2 ml.

Response to 2 mg/ml concanvalin-A (ConA, Sigma, St. Louis,

MO) was assessed by 3H-thymidine incorporation, as described

[47].

b) Mixed lymphocyte culture (MLC). Mouse spleen cells

were cultured in RPMI-1640 medium, supplemented with 10%

heat-inactivated human AB serum in 96-well flat-bottomed

microtiter plates (Nunc, Wiesbaden, Germany) containing 16106

responding cells and 16106 irradiated (3000 cGy) stimulating cells

per 0.2 ml well. Cells were cultured for 5 days in a 5% CO2

humidified incubator. Twenty hours before harvesting, 1 mCi 3H-

thymidine was added to each well and thymidine incorporation

was measured, as described [47].

Cytotoxicity assay
ConA activated splenocytes were co-cultured with 3–56106

target Yac (H-2a, NK-sensitive tumor cell line) cells [48], with or

without active (5 mg/ml) or latent (30 mg/ml) heparanase in order

to evaluate their killing capacity. The Yac cells were first

incubated overnight with 5 ml 35S-methionine (Easytag methio-

nine, L-[35S], TBq/mmol; Perkin Elmer Life Science, Boston,

MA) in RPMI medium without methionine. Cytotoxic activity

was measured in a 5 h 35S-release assay, as previously described

[48].

Cytokine analysis
In order to assess Th1 vs. Th2 cell phenotypes, medium from

C57BL/6-derived spleen lymphocytes, cultured for 24 h in the

absence or presence of heparanase, was subjected to ELISA

analysis of IL-4, IL-6, IL-10, IL-12, IFN-c and TNF-a, as

described [38,39,41,49].

Statistics
Student’s t test was used for statistical analysis of the results.

Asterisk (*) indicates statistical difference (p,0.05). Two Asterisks

(**) indicate highly statistical differences (p,0.01).

Results

Effect of heparanase on engraftment
Heparanase facilitates release of ECM-bound growth factors

and chemokines via degradation of heparan sulfate [9,16]. Hence,

we investigated whether heparanase enhances engraftment of

hematopoietic cells. F1 mice were sublethally irradiated (750 cGy)

and transplanted with 106106 spleen cells derived from hepar-

anase (5 mg/mouse/day, i.p. for 3 days)- or saline (control)- treated

C57BL/6 mice. The recipients were injected with recombinant

heparanase (5 mg/mouse/day, i.p.) from the day of transplantation

until day +7. Control recipient mice were injected with saline

alone. Heparanase treatment of both the donor and recipient mice

resulted in a significant shortening of time to engraftment. The

mean WBC counts on day +14 post transplantation in the

heparanase treated mice was 1.366109/L (range 1.2–1.686109/

L), as compared to 0.486109 cells/L (range 0.3–0.746109/L) in

the control group (p,0.01). Significantly higher counts were

obtained after 3 weeks, 2.856109 cells/L (range 2.4–3.46109/L)

vs. 0.856109 cells/L (range 0.6–1.26109/L), respectively (Fig. 1)

(p,0.001). Donor engraftment was confirmed by the ameloginin

gene expression method [42] (not shown).

Effect of heparanase on GVHD
Prolonged survival of mice treated with heparanase. F1

mice were sublethally irradiated (750 cGy) and transplanted with

106106 spleen cells from heparanase treated or untreated C57BL/

6 mice (5 mg/mouse/day, i.p. for 3 days). The recipient mice were

injected with heparanase (5 mg/mouse/day, i.p. daily) or saline

from the day of transplantation until day +7. Thus, the 4

experimental groups were as follows: a) Both donor and recipient

mice treated with heparanase; b) Only donor mice treated with

heparanase; c) Only recipient mice treated with heparanase; d)

Both donor and recipient mice treated with saline. Figure 2A

demonstrates a highly significant prolongation in survival when

both the donor and recipient mice were treated with heparanase

(group a) as compared to group (d) where both the donor and

recipient mice received saline alone. A partial effect was achieved

when either the donor or recipient mice received heparanase.

Next, F1 recipient mice were sub-grouped and received different

doses of heparanase (1 mg/mouse/day, 5 mg/mouse/day) for 7

days starting on the day of transplantation, or 35 mg heparanase

per mouse, twice weekly for 5 weeks. Control mice received saline

instead of heparanase. While all mice in the control group died of

GVHD, all mice treated with 35 mg heparanase twice weekly and

the vast majority of mice receiving 1 and 5 mg heparanase daily,

remained alive for .45 days. Mice receiving 1 mg heparanase

displayed mild signs of GVHD (Fig. 2B).

Prolonged survival of transgenic mice over-expressing

heparanase. We investigated the outcome of BMT in

transgenic (hpa-tg) mice over-expressing the heparanase gene in

most tissues [40]. For this purpose, hpa-tg and control host mice

were injected with 106106 spleen cells obtained from C57BL/6

mice. Mice were evaluated for the extent of GVHD and survival

Figure 1. Heparanase potentiates engraftment of WBC. F1 mice
were sublethally irradiated (750 cGy) and transplanted intravenously
with 106106 spleen cells taken from heparanase (5 mg/mouse/day, i.p.
for 5 days) or saline (control) treated C57BL/6 mice. The recipient mice
were treated with heparanase (5 mg/mouse/day, i.p.) from the day of
transplantation until day +7. Control recipient mice were injected with
saline alone. Each group consisted of 8 mice. Heparanase treatment of
both the donor and recipient mice caused a significant increase in the
mean WBC count on day +14 post transplantation. 1.366109/L (range
1.2–1.686109/L) (%) vs. 0.486109/L (range 0.3–0.746109/L) in the
control group (&). Significantly higher WBC counts were maintained in
the heparanase treated group 3 weeks post transplantation. Chimerism
was assessed by the ameloginin gene expression method. Each bar
represents mean 6 SD (n = 8 mice) and the experiment was performed
3 times with similar results.
doi:10.1371/journal.pone.0010135.g001
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time. The clinical parameters of follow-up included weight loss,

hair loss and diarrhea. All the donor mice were male and the

recipient mice were females and engraftment was monitored by

ameloginin gene expression [42] (not shown). As demonstrated in

figure 2C, the hpa-tg mice failed to develop clinical signs of GVHD

and all mice survived at least 45 days post transplantation, when

the experiment was terminated. On the other hand, more than

80% of the control mice developed GVHD and died during the

same period of time (Fig. 2C). Similar results were obtained when

the number of injected donor cells was increased to 256106, or

even 506106 cells/mouse, further supporting the protective effect

of heparanase generated by the hpa-tg mice (Fig. 2C).

Heparanase regulates T cell function
Reduced activation and killing capacity of splenocytes in

vitro. GVHD is characterized by an attack of alloimmune

donor T-cells on host tissues and organs. CD4+ cells are polarized

toward the Th1 phenotype and thereby mediate the inflammatory

process through which tissue damage occurs [28,33,34,35,50].

Having demonstrated a protective effect of heparanase against

GVHD in mice, and in an attempt to elucidate the mode of

heparanase action in this process, we investigated its effect on

activation of lymphocytes. For this purpose, mouse splenocytes

were cultured (12 h, 37uC) without or with increasing amounts of

either active (8+50 kDa) or latent (65 kDa) heparanase, and

Figure 2. Effect of heparanase on GVHD. A. Prolonged survival of mice treated with heparanase. Mice were sublethally irradiated
(750 cGy) and transplanted i.v with 106106 spleen cells from heparanase treated or un-treated C57BL/6 mice (5 mg/mouse/day, i.p. for 3 days). The
recipient mice were injected with heparanase (5 mg/mouse/day, i.p. daily) from the day of transplantation until day +7, or with saline for the same
period of time. Altogether, 4 experimental groups (10 mice each) were tested: Donor and recipient mice treated with heparanase (N); Only donor
mice treated with heparanase (%); Only recipient mice treated with heparanase (#); Donor and recipient mice treated with saline alone (D). A
significant prolongation of survival was documented when both the donor and recipient mice were treated with heparanase (N), as compared to the
control group where both the donor and recipient mice were treated with saline alone (D). In the two other groups, where heparanase was
administered to either the donors (N) or recipients (%), a partial effect was achieved. B. Mice treated with different doses of heparanase. Mice
were sublethally irradiated (750 cGy) and transplanted with 106106 spleen cells from heparanase treated C57BL/6 mice (5 mg/mouse/day, i.p. for 3
days). The recipient mice were sub-grouped with each arm (8 mice each) receiving a different dose of heparanase per day. Injections were given from
the day of transplantation as follows: 1 mg/mouse/day, for 7 days until day +7 post transplantation (%); 5 mg/mouse/day, for 7 days until day +7 post
transplantation (#); 35 mg/mouse twice weekly (D); Both the donor and recipient mice treated with saline alone, as control (N). All the control mice
died of GVHD. In contrast, all the mice treated with 35 mg heparanase/mouse and all the mice (except one in each group) in the two other groups,
remained alive until the end of the experiment (.45 days). Mice that received 1 mg heparanase/mouse/day exhibited clinical signs of mild GVHD. C.
Transgenic mice over-expressing heparanase. Spleen-derived progenitor cells obtained from C57BL/6 mice were injected with 256106 cells/
mouse (n), or 506106 cells/mouse (m) into heparanase transgenic (Hpa-tg) and control mice (n = 10). All the Hpa-tg mice survived until the end of the
experiment. In contrast, more than 80% of the control mice, receiving either 256106 cells/mouse (%), or 506106 cells/mouse (#), died of GVHD. The
experiment was performed twice with similar results.
doi:10.1371/journal.pone.0010135.g002

HPSE in Stem Cell Transplant

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e10135



exposed to ConA to induce cell proliferation. Addition of

heparanase to the culture medium resulted in a substantial, dose

dependent decrease in ConA activation and proliferation of the

spleen cells (Fig. 3A). The Active (8+50 kDa) form of heparanase

was more potent than the latent 65 kDa pro-enzyme (Fig. 3A). A

similar decrease in ConA activation was obtained in the absence

or presence of 100 mg/ml of the heparanase inhibitor ST1514

(glycol-split heparin [15,45,46]) (Fig. 3B). Under this condition,

heparanase activity was fully inhibited, further emphasizing that

heparanase enzymatic activity is not required for its inhibition of

lymphocyte activation. In order to verify this finding, we utilized

heparanase in which glutamic acid residues 225 and 343 that

comprise the enzyme active site [43] were point mutated, yielding

an inactive enzyme, as previously described [51]. The inactive

enzyme inhibited the activation of lymphocytes by ConA to an

extent comparable in magnitude to that of active (8 + 50 kDa)

heparanase (Fig. 3B), further substantiating that a non-enzymatic

activity of heparanase is responsible for its inhibition of ConA

induced lymphocytes activation. In a subsequent experiment,

spleen cells were taken from Balb/C mice and reacted against

C57BL/6 splenocytes in a one way mixed lymphocyte culture

(MLC), in the absence or presence of 30 mg/ml latent heparanase.

As demonstrated in figure 3C, latent heparanase markedly

inhibited (,4 fold) the MLC response. Similar results were

obtained using 5 mg/ml of the active enzyme (not shown).

Killing capacity of activated splenocytes. Spleen derived

lymphocytes were subjected to ConA activation and the activated

lymphocytes were then co-cultured with target Yac cells, with or

without addition of active (5 mg/ml) or latent (30 mg/ml)

heparanase, in order to evaluate their killing capacity.

Figure 3. Effect of heparanase on activation of T lymphocytes. A. ConA activation. Mouse spleen cells were isolated and subjected to
activation with ConA in the absence (control) (&) and presence of 10 or 30 mg/ml recombinant latent (65 kDa) ( ) or active (8+50 kDa) (%)
heparanase, followed by measurements of 3H-thymidine incorporation, as described under ‘Materials & Methods’. Addition of heparanase to the
culture medium resulted in a significant (p,0.01) dose dependent decrease in ConA activation and proliferation of the spleen cells. The asterisk (*)
indicates statistically significant differences between the control and the different treatments. B. Heparanase-mediated inhibition of ConA
stimulated T-cell proliferation is independent of its enzymatic activity. Mouse spleen cells were isolated and subjected to activation with
ConA in the absence (control) and presence of active heparanase, active heparanase plus glycol split heparin (100 mg/ml, compound 1514), or
inactive heparanase (point mutated in glutamic residues 225 and 343). 3H-thymidine incorporation was inhibited to a similar extent regardless of
whether the heparanase was enzymatically active or inactive (p,0.001). C. Mixed lymphocyte culture (MLC). One way MLC reaction was
performed in the absence (control) (&) or presence ( ) of 30 mg/ml recombinant latent (65 kDa) heparanase. A marked decrease in activation (3H-
thymidine incorporation) of Balb/c-derived lymphocytes sensitized against C57BL/6-derived lymphocytes was noted in the heparanase treated
culture (p,0.01). D. Killing capacity of activated T cells. ConA activated splenocytes were co-cultured with target Yac cells in the absence (&) or
presence ( ) of 5 mg/ml active (8+50 kDa) or 30 mg/ml latent (65 kDa) heparanase in order to evaluate their killing capacity. Treatment with either
the latent or active forms of heparanase markedly inhibited the ability of the activated lymphocytes to kill their target cells (p,0.01). Each bar
represents mean 6 SD from triplicate wells. All experiments were performed at least three times; variations between different experiments did not
exceed 620%.
doi:10.1371/journal.pone.0010135.g003
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Incubation with either the active or latent enzyme, caused a

marked reduction (3- and 2-fold, respectively) in the capacity of

the ConA activated lymphocytes to kill their target cells. Thus,

heparanase appears to suppress not only the activation of

lymphocytes, but also their killing capacity (Fig. 3D), resulting in

a robust lymphosuppressive effect.

Effect of heparanase on cytokine production in

vivo. Development of Th1 or Th2 cells from naı̈ve CD4+ T-

cells is determined by the cytokine milieu during the initial phase

of the immune response. CD4+ T-cells from donor origin with

polarization towards the Th1 phenotype exhibit accelerated

alloimmune activity against components of their target organs,

causing the symptoms observed in GVHD [35]. Increasing the

level of cytokines characteristic of Th2 cells and a parallel decrease

in the amount of Th1-type cytokines, ameliorate the signs and

symptoms of the disease [35]. IL-12 plays a major role in driving

differentiation of uncommitted T-cells towards a Th1 phenotype

[52]. Conversely, IL-4, IL-6 and IL-10 are produced primarily by

Th2 cells [53]. We therefore studied the effect of heparanase on

the Th1/Th2 balance in mice. For this purpose C57BL/6 mice

were subjected to a daily injection of active (8+50 kDa) heparanase

(3 days, 5 mg/mouse/day). Splenocytes were then harvested,

activated with ConA (24 h, 37uC, RPMI + 10% FCS) and the

levels of secreted IL-4, IL-6, IL-10 and IL-12 were determined by

ELISA. The amount of Th2-type cytokines such as IL-4, IL-6 and

IL-10, was increased 25.0, 17.2, and 2.2 fold, respectively,

following exposure of mice to heparanase (p,0.001, Fig. 4A). In

contrast, under the same conditions, there was a marked decrease

(8.3 fold, p,0.01) in the level of IL-12 (Fig. 4A). We also studied

the effect of heparanase on TNF-a and IFN-c. TNF-a promotes

inflammation and its neutralization suppresses a broad spectrum

of inflammatory autoimmune diseases [39,54]. Similarly, IFN-c is

a potent pro-inflammatory cytokine elevated in both acute and

chronic GVHD [55]. The amounts of both TNF-a and IFN-c
secreted by ConA activated splenocytes derived from heparanase

treated C57BL/6 mice were 2-fold lower than those secreted by

splenocytes derived from untreated mice and subjected to ConA

activation (p,0.01, Fig. 4B).

Effect of heparanase on cytokine production in

vitro. Spleen lymphocytes harvested from C57BL/6 mice

were co-activated with IL-2 (24 h, 37uC, RPMI + 10% FCS) in

the presence of latent heparanase (30 mg/ml), or saline alone

(control group). Aliquots of the culture medium were subjected to

ELISA analysis of IL-6, IL-10, and IL-12 levels. The amounts of

secreted IL-6 and IL-10, representing Th2-type cytokines, were

increased by 12.8 and 14.5-fold, respectively (p,0.001, Fig. 4C),

following exposure to heparanase in vitro, as opposed to a marked

decrease (5.8 fold) in the level of IL-12 (p,0.01, Fig. 4C).

Altogether, these results indicate that both active and latent

heparanase exert a direct effect on splenocytes, modulating their

Th-1/Th2 balance.

Discussion

Allogeneic SCT is increasingly used for the treatment of a

growing number of malignant and non-malignant disorders.

However, GVHD remains a major obstacle [30]. Heparanase,

the predominant enzyme degrading heparan sulfate, plays a

significant role in inflammation, exerting both enzymatic and non-

enzymatic activities [9,10,15]. Yet, the involvement of heparanase

in GVHD has not been evaluated. Our results indicate an

important role of heparanase in facilitating engraftment and

suppressing GVHD post SCT, critical to the success of

hematopietic transplantation.

We have demonstrated that heparanase facilitates engraftment

as indicated by a higher WBC counts in the peripheral blood of

the heparanase treated mice, 2 and 3 weeks post transplantation,

as compared to control mice. Degradation of various components

of the subendothelial ECM is mandatory for extravasation and

transmigration of circulating hematopoietic stem and progenitor

cells. Cleavage of HS disintegrates the supramolecular structure of

the subendothelial basement membrane, thereby facilitating trans-

endothelial migration of hematopoietic cells [25], essential for

engraftment. Indeed, Spiegel et al [31] have recently demonstrated

a marked increase in the number of hematopoietic stem cells in the

BM of heparanase over-expressing transgenic (Hpa-tg) mice and

that a limited dose of WBC from the BM of these mice was

sufficient to rescue lethality irradiated recipient mice [31]. This

result further substantiates the relevance of heparanase for

hematopoietic engraftment.

Applying mouse transplantation models, we have demonstrated

up to 100% survival of both heparanase treated and heparanase

over-expressing mice, likely attributed not just to the above

described improved engraftment, but primarily to a marked

suppression of GVHD.

Heparanase was previously demonstrated to facilitate lympho-

cyte invasion through tissue barriers [24,25]. The enzyme has also

been shown to release various growth factors, cytokines and

chemokines sequestered by HS in the ECM, basement membrane

and cell surfaces [16]. The released factors mediate processes such

as angiogenesis and cell proliferation that often accompany the

inflammatory response, including GVHD [16,25]. Recently we

have demonstrated an association between heparanase gene SNPs

and GVHD in patients undergoing allogeneic stem cell transplan-

tation [56]. Discrepancy in heparanase gene SNPs combinations

between recipients and donors was found to be a risk factor for

developing acute GVHD [56]. It was therefore expected that

administration of heparanase to mice in the context of allogeneic

SCT will enhance the allo-inflammatory process through

increased recruitment of T cells to the affected tissue, accelerating

GVHD. In contrast, we observed that administration of

heparanase to the donor and recipient mice resulted in a

significant decrease in the clinical parameters of GVHD and

prolonged survival compared to control saline-treated mice. These

results were further substantiated by using transgenic (hpa-tg) mice

over-expressing heparanase, as recipients of the allogeneic graft.

The survival of these mice was 100%, as opposed to 0–25%

survival (depending on the dose of transplanted stem cells) in the

control mice. Notably, it appears that exogenously added

recombinant heparanase is less effective than the endogenous

enzyme (Hpa-tg mice) in its ability to suppress GVHD, most likely

due to pharmacokinetic considerations.

While heparanase enzymatic activity is traditionally involved in

promoting lymphocyte cell migration and invasion, the currently

observed anti-GVHD effect of heparanase may suggest that a non

catalytic mechanism is responsible. In fact, we have identified

several non-catalytic activities of heparanase (i.e., cell adhesion,

gene transcription, signal transduction) [9,51,57] thought to be

mediated by yet unidentified cell surface receptors [57]. More

recently, we have demonstrated stimulated production and

secretion of cytokines, upon incubation of monocytes with inactive

heparanase (Blich et al., in preparation), further illustrating the

relevance of heparanase non-enzymatic functions to inflammatory

processes and possibly GVHD. Of specific relevance is the up-

regulation of both VEGF-A [58] and VEGF-C [59] in response to

over-expression or exogenous addition of either active or inactive

(double mutated) heparanase. Indeed, inverse correlation between

VEGF levels and the severity of GVHD were reported (patients
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with severe GVHD had significantly lower VEGF levels than those

with mild or no GVHD, indicating that higher VEGF levels post-

transplantation may protect against the development of severe

GVHD [60]. To better elucidate the mode of action of heparanase

in the GVHD mouse model, we investigated its effect on T cells in

vitro. Applying the ConA and MLC lymphocyte activation assays,

we have demonstrated a direct inhibitory effect of heparanase,

either the active (8 + 50 kDa) or latent (65 kDa) forms, on

lymphocyte cell activation and proliferation. Moreover, lympho-

cyte activation by ConA was inhibited also following co-

administration of heparanase and a potent inhibitor (non-

anticoagulant glycol split heparin) of its enzymatic activity

[15,45,46], and, even more so, by an inactive enzyme in which

the active site proton donor (Glu-225) and nucleophil (Glu-343)

[43] were replaced by inert residues. Altogether, these results

support the notion that heparanase enzymatic activity is not

required to ameliorate the clinical signs of GVHD.

Historically, acute GVHD has been considered a primarily

Th1/Tc1-type process based on the predominant of cytotoxic T-

cell mediated pathology and increased production of Th1 type

cytokines, including IL-12 and IFNc, while cytokines that polarize

donor T-cells to Th2 (e.g., IL-4, IL-10) can reduce acute GVHD

[33,34,35]. Th2-shifting of lymphocytes is known to be associated

with suppression of disease signs in the GVHD model

[28,33,35,50]. Notably, we have demonstrated that the stimulated

lymphocytes were shifted towards the Th2 phenotype, character-

ized by increased production of IL-4, IL-6 and IL-10, and a

marked decrease in IL-12, TNF-a and IFN-c secretion by the

activated cells. A similar shift was noted in splenocytes derived

from C57BL/6 mice that were treated with heparanase. The

cytokine release assays in vitro were performed with un-separated

lymphocytes, resembling the situation in vivo. These results support

a role for heparanase in determining the polarity status of

lymphocytes in a way that suppresses their ability to promote the

Figure 4. Effect of heparanase on cytokine production. A, B. In vivo. A. C57BL/6 mice were subjected to a daily injection of active (8+50 kDa)
heparanase (3 days, 5 mg/mouse/day) or saline (control). Splenocytes were then harvested, activated with ConA (24 h, 37uC, RPMI + 10% FCS) and
aliquots of the culture medium were subjected to ELISA analysis of IL-4, IL-6, IL-10 and IL-12. The amounts of secreted Th2-type cytokines such as IL-4,
IL-6 and IL-10, were increased following in vivo administration of heparanase (%) vs. saline (&). In contrast, under the same conditions, there was a
marked decrease in the level of IL-12, representing a Th1-associated cytokine. B. TNF-a and IFN-c. C57BL/6 mice were subjected to a daily injection of
active (8+50 kDa) heparanase (3 days, 5 mg/mouse/day) or saline (control). Supernatants from ConA activated cells were subjected to ELISA analysis of
TNF-a and IFN-c. The amounts of secreted TNF-a and IFN-c were decreased following administration of heparanase (%) as compared to saline (&). C.
In vitro. C57BL/6 derived spleen lymphocytes were harvested and co-activated with IL-2 (24 h, 37uC, RPMI + 10% FCS) in the presence of 65 kDa latent
heparanase (30 mg/ml) (%) or saline (&). Aliquots of the culture medium were subjected to ELISA analysis as above. Each bar represents mean6SD
from triplicate wells. All experiments were performed at least three times; variations between different experiments did not exceed 615%. The
amounts of the secreted Th2-type cytokines IL-6 and IL-10 were increased following exposure to heparanase as compared to saline. In contrast, there
was a marked decrease in the level of IL-12, representing a Th1 cytokine, in cells that were similarly treated with IL-2 and heparanase for 24 h.
doi:10.1371/journal.pone.0010135.g004
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allo-inflammation process of GVHD. It should be noted, however,

that recently a third T cell subset, Th17, has been recognized and

suggested to contribute to development of GVHD [61]. Thus, the

Th1/Th2 theory may be somewhat oversimplified. The mecha-

nism by which heparanase induces a shift from Th1 toward a Th2

phenotype is not clear. We have previously demonstrated that

heparanase enzymatic activity is involved in shedding of syndecan-

1(sdc-1) [62]. Sdc-1 modulates inflammatory responses possibly via

shifting the Th1/Th2 balance towards a Th2 response, illustrated

by decreased Th1 and higher Th2 cytokine/chemokine expression

in sdc-1 null mice [63,64]. Removal of sdc-1 by heparanase may

thus provide a mechanism for its anti-GVHD protective effect.

Alternatively, the observed anti-GVHD effect of heparanase may

be mediated by its non-enzymatic functions, as mentioned above,

possibly through binding to and activation of a putative cell surface

receptor [57]. Apart of HSPGs, several cell surface proteins have

been shown to bind heparanase and mediate its uptake. These

include mannose 6-phosphate receptor (MPR) and low density

lipoprotein receptor-related protein (LRP) [65,66] which poten-

tially can mediate heparanase signaling and non-enzymatic effects.

The existence of cell surface heparanase receptor(s) is supported by

binding experiment, reinforcing the notion that while HSPGs

serve as low affinity, high abundant binding sites, heparanase also

associates with high affinity, low abundant cell surface receptor(s)

[67]. A first indication for the protein nature of this receptor and

its molecular weight emerged from cross-linking experiments

applying several cell types and revealing two distinct complexes

representing 110 and 150 kDa proteins associated with the

heparanae C-terminus domain (C-domain) [57]. Clearly, identi-

fication and characterization of a cell surface receptor for

heparanase constitutes a most relevant challenge for progress in

the field. Regardless of its mode of action, the observed effect of

heparanase on engraftment, its ability to ameliorate GVHD and

improve survival post SCT in mice may be of clinical significance

serving as a new strategy, improving the outcome of SCT.
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