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Abstract

Background: The World Health Organization has identified studies of the role of host genetics on susceptibility to severe
influenza as a priority. A systematic review was conducted to summarize the current state of evidence on the role of host
genetics in susceptibility to influenza (PROSPERO registration number: CRD42011001380).

Methods and Findings: PubMed, Web of Science, the Cochrane Library, and OpenSIGLE were searched using a pre-defined
strategy for all entries up to the date of the search. Two reviewers independently screened the title and abstract of 1,371
unique articles, and 72 full text publications were selected for inclusion. Mouse models clearly demonstrate that host
genetics plays a critical role in susceptibility to a range of human and avian influenza viruses. The Mx genes encoding
interferon inducible proteins are the best studied but their relevance to susceptibility in humans is unknown. Although the
MxA gene should be considered a candidate gene for further study in humans, over 100 other candidate genes have been
proposed. There are however no data associating any of these candidate genes to susceptibility in humans, with the only
published study in humans being under-powered. One genealogy study presents moderate evidence of a heritable
component to the risk of influenza-associated death, and while the marked familial aggregation of H5N1 cases is suggestive
of host genetic factors, this remains unproven.

Conclusion: The fundamental question ‘‘Is susceptibility to severe influenza in humans heritable?’’ remains unanswered. Not
because of a lack of genotyping or analytic tools, nor because of insufficient severe influenza cases, but because of the
absence of a coordinated effort to define and assemble cohorts of cases. The recent pandemic and the ongoing epizootic of
H5N1 both represent rapidly closing windows of opportunity to increase understanding of the pathogenesis of severe
influenza through multi-national host genetic studies.
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Introduction

The on-going family clustering of highly pathogenic avian

influenza A/H5N1 cases, as demonstrated by the deaths in 2011

of a mother and son in Cambodia, and of two siblings and their

mother in Indonesia, has led to much speculation that host genetics

play a critical role in susceptibility to H5N1 influenza [1-5].

Although H5N1 is an unusually virulent influenza virus, patterns of

disease in other influenza epidemics also suggest a possible role for

host genetics in susceptibility to severe influenza: around one-

quarter to one-half of patients with severe pandemic influenza A/

H1N1/09 were previously healthy, with no co-existing medical

condition or other predisposing factors [6]. Whilst the viral genetic

determinants of influenza severity have been intensively studied,

host determinants are much less well studied.

A better understanding of the biological predispositions and

pathways leading to severe influenza may lead to improved

therapeutic options, and in 2009 the World Health Organization

identified studies of the role of host genetic factors on susceptibility

to severe influenza as a priority [7,8]. This systematic review was

conducted with the objective of summarizing the current state of

evidence that host genetic factors play a role in human

susceptibility to influenza virus infection or disease.

Methods

The systematic review was conducted and reported in

accordance with the PRISMA guidelines and the protocol was

registered on the international prospective register of systematic

reviews (PROSPERO registration number: CRD42011001380.

Available at: http://www.crd.york.ac.uk/prospero/). Briefly, we

conducted a systematic review to summarize relevant published

and unpublished evidence of host genetic factors influencing the

risk of influenza infection or disease (illness following infection).

This comprised a search of PubMed, Web of Science, the

Cochrane Library, and OpenSIGLE (grey literature bibliographic

database) using a pre-defined search strategy. The full systematic

review protocol, including the search strategy, is shown in the

Supporting Information file S1. Two reviewers independently

screened all the titles and abstracts to identify publications that
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may be relevant. A third reviewer assessed the two independent

lists of selected and rejected sources and made the final selection

where there were discrepancies. The full text of all the sources in

the final list was obtained and reviewed independently by two

reviewers to decide if they met the inclusion/exclusion criteria.

The reference list of all selected sources was reviewed to identify

relevant articles that may have been missed by the search strategy.

Individual researchers were contacted directly to obtain additional

information where the source material could not be obtained or to

enquire about on-going or unpublished research.

Certain categories of research were excluded from this review.

A very large number of genes are up or down regulated during

influenza infection and disease, and it was deemed outside the

scope of this piece of work to review the extensive literature on the

biological responses to natural or experimental influenza infection.

These studies have recently been reviewed elsewhere [9].

Therefore we excluded studies of the molecular biology and

pathogenesis of influenza except where the study directly

compared the response to infection in genetically distinct animal

strains with the objective of identifying host genetic determinants

of response. We also excluded studies that solely examined the

affects of gene knockouts, since a knockout mouse phenotype,

although very useful for understanding pathogenesis, does not

provide information on heritability of susceptibility under normal

conditions, representing null alleles which rarely occur as such in

the human population.

Results

The search strategy was run on 26th June 2011 and identified

1371 unique articles published in English for which the title and

abstract was reviewed. 58 met the criteria for full text review, of

which 29 were considered relevant to the study and could be

obtained (Figure 1). A further 43 relevant articles were identified

through a review of the bibliographies of the 29 selected papers

and through contact with lead authors. A total of 72 articles were

therefore included in the review. The identified published evidence

fell into the following categories: studies in animals of host

genetics; studies or reports of familial aggregation or heritability;

studies in humans of blood group; studies in humans of HLA type;

and studies in humans of host genetics. Key studies of heritability

or genetic susceptibility in mice are shown in Table 1, whilst key

studies of familial aggregation, heritability, or genetic susceptibility

in humans are summarised in Table 2.

Animal studies
It has long been known that susceptibility to influenza varies

between inbred mouse strains because most laboratory strains

carry a mutation in the Mx1 gene, which is a strong resistance

locus for mouse-adapted influenza strains [10]. But more recently,

it has been shown that genetic background also plays an important

role for resistance or susceptibility, independent of the Mx1 allele.

Myxovirus resistance gene. The resistance of certain inbred

mouse strains to influenza A infection was first reported in 1962 [10]

and was subsequently localised to the Mx1 gene on chromosome 16

[11]. The Mx1 and Mx2 genes encode interferon inducible proteins,

and Mx1 is able to inhibit influenza virus replication [12-21]. The

role of Mx proteins in protection against influenza has recently been

reviewed [22]. Susceptible mice have either deletions or a nonsense

point mutation in the Mx1 gene that results in non-functional Mx1

protein [18]. Mice expressing Mx1 are also better protected from the

high mortality caused by the lethal H5N1 (A/Vietnam/1203/04)

and H1N1/1918 viruses and from the lung pathology mediated by

these viruses [23,24]. Influenza viruses differ in their susceptibility to

the action of Mx, with adaptive mutations permitting evasion of the

Mx response or rapid viral replication outpacing the Mx response

[22,24-28]. The H1N1/1918 and H5N1 (A/Vietnam/1203/04)

viruses both demonstrate high replication efficiency and are highly

pathogenic, and although both are sensitive to the antiviral activity

of Mx, H5N1 (A/Vietnam/1203/04) is more sensitive than H1N1/

1918 [23,24,26]. Influenza virus strains of avian origin appear to

have greater sensitivity to Mx than human influenza strains,

indicating that adaptive mutations to escape Mx control may be

required for successful cross-species transmission [26,28].

Mx gene homologues are found in many species and the

homologue in humans is the MxA protein encoded by the MxA

gene on chromosome 21 [29,30]. In humans MxA demonstrates

antiviral activity [13,16,17,19-21] and whilst polymorphisms of the

human MxA gene exist, their relevance to influenza susceptibility

has not been examined.

Other susceptibility loci. Although Mx genes are the best

studied, there are many other candidates genes for influenza

susceptibility. Several groups have directly studied the influence of

genetic background on the susceptibility of different mouse strains to

influenza. All groups confirm that host genetic background plays a

critical role in susceptibility to influenza and that highly susceptible

mouse strains develop high viral loads, an elevated inflammatory

response, and severe lung pathology following infection with a range

of influenza viruses [27,31-33]. These studies were performed on

inbred mouse strains that carried an Mx1 mutant allele.

Figure 1. Identification and screening of articles for inclusion in
systematic review.
doi:10.1371/journal.pone.0033180.g001
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Table 1. Key studies of heritability or genetic susceptibility in mice.

Author (Year) Study/Investigation Main Findings

Mx

Lindenmann J (1962) [10] Experimental inoculation of A2G mice with H1N1/NWS/1933
virus

A2G mice exhibit considerable resistance to intracerebral and
intranasal to H1N1/NWS/1933 inoculation.

Staeheli P (1988) [18] Molecular analysis of Mx1 alleles using restriction fragment
length polymorphism (RFLP) and southern blot analysis of
classical inbred mouse strains.

The establishment of Mx1+ and Mx1- mouse lines was due to a
single nonsense mutation in the Mx gene, which was represented
in present-day mice by the prototype strains A2G and CBA/J.

Horisberger MA (1995) [94] Review article of Mx genes and influenza

Salomon R (2007) [23] Comparison of the effect in mice with and without a
functional Mx1 gene of inoculation with H5N1 A/Vietnam/
1203/04 and reassortants with the non-lethal virus A/chicken/
Vietnam/C58/04.

Compared to Mx1-/- mice, Mx1+/+ mice were protected from A/
Vietnam/1203/04, showing lower viral tires, less pathology, and
no deaths.

Tumpey TM (2007) [24] Comparison of the effect in mice with and without
a functional Mx1 gene of inoculation with H1N1/1918 and
H5N1 A/Vietnam/1203/04.

Compared to Mx1-/- mice, Mx1+/+ mice were protected from 1918
H1N1 and A/Vietnam/1203/04, showing lower viral tires, less
weight loss, and fewer deaths.

Grimm D (2007) [25] Characterization of influenza A H1N1 (PR8) that is unusually
virulent in Mx1+/+ mice.

Virulence of PR8 is due to high replication ability, not inherent
resistance to Mx1.

Dittmann J (2008) [26] In-vitro study of the inhibitory effect of mouse Mx1 protein
and human MxA protein on different influenza strains in cell
culture or minireplicon assay.

Influenza A viruses varied in their sensitivity to Mx proteins, with
avian virus showing greater sensitivity than human viruses.

Haller O (2009) [22] Review article of Mx genes and influenza

Zimmermann P (2011) [28] Study of the inhibitory effect of mouse Mx1 protein and
human MxA protein on H1N1/09 (A/Hamburg/4/09) and
highly pathogenic avian H5N1 (A/Thailand/1(KAN-1)/04)

H5N1 (A/Thailand/1(KAN-1)/04) was more sensitive to Mx
proteins than H1N1/09 (A/Hamburg/4/09). This sensitivity was
associated with the NP gene.

Other susceptibility loci

Toth LA (1999) [34] Study of strain associated variation in slow-wave-sleep
patterns in response to influenza H3N2 (HK-X31) infection.
Sleep measurement of 13 recombinant inbred strains, which
were from a cross between C57BL/6ByJ and BALB/cByJ
mice. Quantitative Trait Loci (QTL) linked to phenotype were
identified using a genome wide linkage scan against 223 loci.

A 10- to 12-cM interval on chromosome 6 between D6Mit74 and
D6Mit188 contains a quantitative trait loci (QTL) affecting the
SWS response to influenza infection during the light phase.

Ding M (2008) [35] Complementary DNA microarray analysis of lung and basal
forebrain of influenza H3N2 (HK-X31) infected and
uninfected BALB/cByJ and C57BL/6J mice

In lung, 361 different genes changed expression after influenza
infection of BALB/cByJ mice as compared with 16 in C57BL/6J
mice. Of 75 genes related to the immune response, 3 showed
increased expression in the lungs of infected C57BL/6J mice,
compared with 70 in infected BALB/cByJ mice.

Trammell RA (2008) [89] Review article of human and animal data on host genetic
susceptibility to influenza.

Srivastava B (2009) [31] Comparison of response to H1N1 (PR8) infection in seven
inbred laboratory mouse strains. Additional comparison of
response to H7N7 (SC35M) infection in one of the susceptible
strains (DBA/2J) and one of the more resistant strains
(C57BL/6J).

Different strains exhibited large differences in their response to
PR8 infection. DBA/2J mice were highly susceptible to both H1N1
(PR8) and H7N7 (SC35M) infection compared to C57BL/6J mice.
DBA/2J mice showed higher viral loads, higher cytokine and
chemokine expression, and greater lung pathology compared to
C57BL/6J mice.

Boon AC (2009) [32] Comparison of response of susceptible (DBA/2J) and resistant
(C57BL/6J) mice, and 66 recombinant inbred mouse strains
to H5N1 (HK213) infection using genome-wide linkage
analysis and RNA expression analysis. HK213 was selected
for its reduced lethality in C57BL/6J mice while retaining
lethality in DBA/2J mice.

Following HK213 infection susceptible strains showed greater
viral loads and pro-inflammatory cytokines than resistant strains.
Gene mapping revealed five Quantitative Trait Loci located on
Chromosomes 2, 7, 11, 15, and 17 associated with resistance to
HK213 virus. 121 unique candidate genes were identified whose
genetic polymorphisms or different expression levels may have
affect H5N1 pathogenesis.

Alberts R (2010) [36] Comparison of response to H1N1 (PR8) infection in
susceptible (DBA/2J) versus resistant (C57BL/6J) mouse
strains, analyzed by microarray gene expression analysis.

DBA/2J mice had a stronger chemokine/cytokine response.
Innate immune response genes were up regulated in both strains
but to a greater extent in the susceptible strain, and overall a
large number of genes were up or down regulated only in the
susceptible strain.

Boon AC (2011) [39] Comparison of viral loads and host responses in 21 inbred
mouse strains infected with H5N1 (HK213). RNA expression
and chemokine/cytokine analysis was undertaken in three
susceptible strains (DBA/2S, 129/SvImS, and A/JS) and three
resistant strains (SMR, C57BL/6R, and BALB/cR).

Susceptible strains exhibited higher viral loads and
concentrations of proinflammatory mediators and expression of
proinflammatory genes compared to resistant strains.
Relationship between viral load and cytokine concentrations was
the same in resistant and susceptible strains.

Influenza Host Genetics
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Toth et al have examined the genetic basis of differences between

mouse strains (BALB/cByJ and C57BL/6J) in sleep patterns during

influenza H3N2 A/Hong Kong/X31/68 (HK-X31) infection,

identifying a quantitative trait loci (QTL) on chromosome 6

associated with influenza-induced slow-wave sleep patterns [34].

The group also showed large differences between mouse strains

(BALB/cByJ and C57BL/6J) in the expression of genes in the lung

following influenza HK-X31 infection [35]. In 2011 the same group

showed significant strain differences in disease severity (as measured

by survival and body temperature), viral titres and cytokine and

chemokine concentrations in the lungs of four inbred strains of mice

(BALB/cByJ, C57BL/6J, A/J, and DBA/2J) but did not demon-

strate any statistically significant genetic loci associated with

influenza HK-X31 severity using a QTL approach, although

suggestive statistical associations were reported for regions on three

chromosomes (G-CSF chromosomes 5; CXCL10 chromosome 9,

and IL-6 and CXCL1 on chromosome 18) [33].

Srivastava et al examined the susceptibility of seven inbred

strains to influenza H1N1 A/Puerto Rico/8/34 (PR8) and

identified one resistant (C57BL/6J) and one highly susceptible

strain (DBA/2J) [31]. The response of these two strains to H7N7

A/Seal/Massachussetts/1/80 (SC35M) was also examined and

DBA/2J mice were highly susceptible to SC35M virus infection

compared to C57BL/6J mice. A cross between these two strains

showed the resistant phenotype, although with a slightly higher

weight loss than the parental resistant strain, suggesting that

susceptibility in mice may be a polygenic trait. Further studies by

this group examined differential gene expression following PR8

infection of susceptible versus resistant mouse strains [36]. Innate

immune response genes were up regulated in both strains but to a

greater extent in the susceptible strain, and overall a large number

of genes were up or down regulated only in the susceptible strain

(75, 538, and 993 on days 1, 2, and 3 after infection respectively).

Blazejewska et al then looked at the effect of three mouse adapted

H1N1 PR8 viruses (‘‘low pathogenic’’ PR8M and PR8F, and

‘‘highly virulent’’ hvPR8) in two mouse strains that had previously

been shown to be resistant (C57BL/6) and susceptible (DBA/2J) to

PR8M [27,31]. They found that whilst PR8M showed differential

pathogenicity in the two strains as previously observed, PR8F and

hvPR8 replicated equally well in both strains and caused similar

weight loss and mortality, demonstrating that pathogenicity is co-

determined by both host and pathogen genetics. Additional studies

of the relative sensitivity of the DBA/2J mouse strain compared to

C57BL/6 have shown that the DBA/2J strain is susceptible to a

wide range of human, avian and swine derived influenza viruses

[37,38].

Boon et al explored the genetic determinants of susceptibility to

an H5N1 virus containing 7 gene segments of A/Hong Kong/

213/2003 H5N1 virus and the PB1 gene segment from A/

Chicken/Hong Kong/Y0562/2002 H5N1 (termed HK213)

infection using gene mapping of 66 strains of inbred mice (inbred

between C57BL/6J and DBA/2J parent strains) and identified five

genetic loci (quantitative trait loci 2, 7, 11, 15 and 17) associated

with resistance to H5N1 HK213 disease [32]. This suggests that

multiple genes determine H5N1 susceptibility in mice. A total of

121 genes located within these five loci were identified as

candidates based on RNA expression analysis, which was

narrowed to 30 candidates based on differential expression

between susceptible and resistant strains. In particular, there were

3, 14, 5, 2 and 6 candidate genes in QTL’s 2, 7, 11, 15 and 17,

respectively. The authors compared the outcome of HK213

infection in one mouse strain that expressed hemolytic comple-

ment and one that did not, finding that strains expressing

hemolytic complement (Hc) gene, which is located on QTL 2,

experienced increased survival rates at a 10-fold higher initial

inoculum. However no association between Hc expression and

susceptibility to influenza was observed in subsequent work by

Trammel or Boon [33,39].

Boon et al further studied the susceptibility of 21 inbred mouse

strains to H5N1 HK213 infection, demonstrating that although

viral loads were much higher in susceptible strains, the relationship

between viral load and cytokine concentrations was the same in

resistant and susceptible strains [39]. The authors concluded that

this indicates that mouse strain differences in susceptibility to

H5N1 lies in a failure to control viral replication rather than the

induction of an aberrant inflammatory response. Gene expression

and pathway analysis in six strains showed that differential gene

expression mostly consisted of up-regulation in susceptible strains

of genes in proinflammatory pathways, indicating the immune

response is quantitatively but not qualitatively different between

strains. Resistant mouse strains (SMR, C57BL/6R, and BALB/

cR) did not express a distinctive set of genes controlling replication

or disease. 85 individual genes, again mostly associated with

proinflammatory pathways, were identified whose expression was

associated with susceptibility to severe disease. Three candidate

genes identified in the 2009 study were also significant in the 2011

publication and are being further explored (Grn, Ifi53, and Dhx58).

In summary the 2011 work by Boon et al suggest that genetic

polymorphisms conferring susceptibility to severe H5N1 disease in

mice lie in pathways that are involved in the early control of virus

replication.

Summary of animal models. Mouse models clearly

demonstrate a strong genetic effect on susceptibility to a range of

influenza viruses. The Mx genes are the best studied but their

relevance to susceptibility in humans is unknown and although the

MxA gene should be considered a candidate gene for further studies,

Author (Year) Study/Investigation Main Findings

Trammell RA (2011) [33] Evaluation of survival, viral load, and cytokine/chemokine
responses in lung of four inbred mouse strains (BALB/cByJ,
C57BL/6J, A/J, and DBA/2J) and QTL mapping 21 recombinant inbred
strains following exposure to H3N2 (HK-X31).

DBA/2J mice demonstrated greater susceptibility to severe
disease. There were variable response patterns of mouse strains
after in vivo and in vitro exposure to HK-X31. No significant QTL
were detected.

Blazejewska P (2011) [27] Comparison between DBA/2J and C57BL/6J mice of
infection with three mouse-adapted variants of the
H1N1 PR8 strain: PR8M, PR8F and hvPR8.

The PR8F and the hvPR8 variants were lethal for both DBA/2J and
C57BL/6J mouse strains; however, the PR8M variant is only lethal
for DBA/2J mice. Infection of C57BL/6J mice with a re-assorted
PR8 virus demonstrated that the HA gene is the primary
determinant of virulence of the PR8F variant.

doi:10.1371/journal.pone.0033180.t001

Table 1. Cont.
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there are many other candidates. Crossbred mouse strain studies

have identified a large number of potential candidates.

Familial aggregation or heritability
Independent of genetic effects it is expected that influenza

infection will aggregate in families since transmission of influenza

is common within households. Family aggregation of severe

influenza disease is however more likely to have a direct genetic

component but such clustering might also be seen with indirect

genetic effects (e.g. genetic predisposition to obesity) or non-

genetic shared risk factors (e.g. air pollution).

From the perspective of genetic epidemiology, familial aggre-

gation is said to occur when the frequency of a phenotype is more

common amongst close relatives of people with the disease than in

the general population [40]. Heritability is the proportion of the

variation in the frequency of the phenotype that can be attributed

to genetic variation. Familial aggregation can occur without

heritability if the increased familial risk is due to shared non-

genetic factors. On the other hand, genetics can still be important

without any detectable heritability, since if there is no genetic

variation in a population then heritability is zero, even though all

cases may require a particular genetic background. However,

significant heritability does suggest the presence of genetic factors

that may be detectable by genotyping studies.

Genealogical studies. Two studies utilised large

genealogical databases to look for evidence of heritability of

susceptibility to death from influenza [41,42]. The study by

Albright et al used a Utah database to look at 4855 deaths from

influenza between 1904 and 2004 [41]. Gottfredsson et al

concentrated on the 1918 influenza pandemic in Iceland and

looked at 455 deaths over a six-week period [42]. Both studies

found evidence of familial aggregation of influenza deaths but

differed in their conclusions regarding heritability. Albright et al

concluded that their results supported heritability since there was

an increased relative risk of influenza death amongst relatives of

people who died of influenza (relative risk 1.54; 95% CI 1.42-1.67;

P-value ,0.001), and this was greater than observed for relatives

of spouses of individuals dying from influenza. Also, influenza

deaths in relatives were frequently not associated closely in time

(they studied deaths over 100 years) and there was greater than

expected relatedness amongst influenza deaths even after close

relatives were excluded. Gottfredsson et al concluded that their

results did not provide evidence of a heritable predisposition to

death from 1918 influenza, as they did not identify a statistically

significant difference in the relative risk of influenza death in

relatives of people who died of influenza (relative risk in 1st degree

relatives = 3.75; 95% CI 2.53-5.24) compared to relatives of their

spouses (relative risk in 1st degree relatives = 2.95; 95% CI 2.01–

4.49. P-value for comparison of relative risk in the two

groups = 0.198). The apparently conflicting conclusions of these

two studies was discussed by Dowell and Bresee, who highlighted

the fact that the highest relative risk of influenza death in both

Table 2. Key studies of familial aggregation, heritability, or genetic susceptibility in humans.

Author (Year) Study/Investigation Main Findings

Albright FS (2008) [41] Study of 4855 deaths from influenza between 1904
and 2004 in a Utah genealogical database.

Evidence of heritability included: risk of influenza death greater in
relatives of people who died of influenza than in relatives of the
spouse of the person dying of influenza. Deaths in related people
frequently did not occur close in time. Greater ’relatedness’ amongst
influenza deaths compared to age, gender and location matched
controls.

Gottfredsson M (2008) [42] Study of 455 deaths from 1918 influenza over a six-week
period in Iceland.

Familial aggregation of deaths was observed but there was no
detectable heritable component as the difference in the risk of death
between relatives of people who died of influenza and relatives of
their spouse was not statistically significant.

Mubareka S (2008) [93] Commentary on the two genealogy studies Heritability is unproven but the high risk in spouses identified in both
studies indicates that people who share households with severe
influenza cases are themselves at increased risk of severe influenza.

Pitzer VE (2007) [53] Analysis of family clustering of H5N1 cases A high proportion of household clusters would be expected to be
limited to ‘blood relatives’ by chance alone.

Horby P (2010) [3] Review of epidemiology of H5N1 cases Epidemiological patterns that suggest host genetic susceptibility
include familial aggregation of cases, related cases occurring
separated by time and place, and low apparent risk in people who are
highly exposed.

Olsen S (2005) [52] Summary of family clustering of H5N1 cases 15 H5N1 clusters occurring between December 2003 and July 2005
were summarised.

WHO (2011) [5] Summary of H5N1 clusters reported to WHO, January
2003-March 2009

Amongst a total of 480 Human H5N1 cases reported to WHO there
were 54 clusters involving 138 cases (29% of cases). The remaining 342
cases were sporadic. In 50 clusters everyone was a blood relative. In
the 4 remaining clusters, 2 clusters that included .3 people, 9/11
people were blood relatives; and in 2 clusters, each contained 2
unrelated people.

Zhang L (2009) [9] Review of candidate genes for influenza disease
and immunity.

Proposed a list of around 100 candidate genes based on published
literature of their potential role in the pathogenesis of influenza.

Zuniga J (2011) [88] Case-control genetic association study. 91 cases of A/H1N1/
2009 associated pneumonia and 98 exposed but
asymptomatic household contacts. Genotyped using a
cardiovascular disease chip with around 50,000 SNPs.

Four SNPs were associated with severe pneumonia with a p,0.0001
after adjustment for gender and comorbidities (obesity, hypertension,
and diabetes).

doi:10.1371/journal.pone.0033180.t002
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studies was in the spouse of cases, so shared social and

environmental conditions are important factors and the family

aggregation of severe influenza (for whatever reason) offers

opportunities to identify and target high risk individuals [43].

The study by Gottfredsson et al had ten-fold fewer subjects than

the study by Albright et al and as such was considerably less well

powered to detect differences in the risk of death in relatives of cases

compared to relatives of spouses. Also Gottfredsson’s study did not

assess the relatedness of cases and was not able to examine deaths

outside the six-week period studied, which would be less confounded

by common exposures. As such the study by Albright et al provides

moderate evidence of a heritable component to the risk of influenza

death, whereas the Gottfredsson study is inconclusive.

Ethnicity. Racial differences in influenza attack rates have

been described historically [44,45]. More recently, an increased risk

of hospitalization or death with pandemic influenza H1N1 in

indigenous and minority ethnic groups has been reported,

particularly in the America’s, Australasia and the Pacific [46-51].

Ethnic disparities are observed for many infectious diseases, much of

which relates to inequalities in socioeconomic status and related

differences in living conditions, access to health care, behaviours,

and the prevalence of chronic diseases. No studies have been

conducted to determine the genetic component of ethnic differences

in rates of influenza hospitalization and death.

Familial aggregation of influenza H5N1. Influenza H5N1

is a rare human infection that displays clustering and familial

aggregation of cases [3,5,52]. Around one third of all H5N1 cases

occur in clusters and of the 54 H5N1 clusters summarised in January

2010, 50 were comprised only of blood relatives [5]. Pitzer et al have

examined the familial aggregation of H5N1 cases andargued that

although familial aggregation of H5N1 cases is observed, it is more

consistent with non-genetic variation in household risk of exposure

to H5N1 than host-genetic factors [53]. Horby et al have disputed the

inferences drawn by Pitzer et al and argued that the totality of the

epidemiological data is suggestive of a host genetic effect on

susceptibility to H5N1 infection [3]. In addition to the familial

aggregation of cases the evidence put forward by Horby et al

includes: the low number of unrelated clusters, the occurrence of

related cases that are separated in time and space (and therefore not

compatible with common source exposure), and the poor

correlation of exposure with risk [3].

Influenza associated encephalopathy (IAE). Acute

encephalitis is a rare but well recognized complication of influenza

infection, that occurs mostly in children aged under 5 years and is

reported more commonly in East Asia than elsewhere [54]. There is

little data to assess if there is genetic susceptibility to IAE other than a

report of a mother and daughter with H1N1/09 IAE, two siblings with

H5N1 IAE, and an analysis of three IAE cases which reported a

missense mutation in the TLR3 gene in one case [55-57]. Acute

Necrotizing Encephalopathy (ANE) is a distinct clinical syndrome that

is characterised by multiple necrotic brain lesions and is associated with

influenza infection but also with other viral infections [58]. A subset of

patients with recurrent or familial ANE (ANE1) have a missense

mutation in the ran-binding protein 2 (RANBP2) gene on

chromosome 2 (q12.3) [58-60]. The mechanism by which this

mutation confers susceptibility to ANE is not yet established. ANE is

a very distinct clinical syndrome that, whilst having a genetic basis, is

unlikely to have any relation to more general susceptibility to influenza.

Summary of familial aggregation or heritability. Although

the data are limited and historic, the two genealogy studies clearly

demonstrate familial aggregation of the risk of influenza-associated

death. The Utah study presents moderate evidence of a heritable

component to the risk of influenza-associated death. Whilst familial

aggregation of H5N1 cases is generally accepted, there has been no

formal estimation of the excess risk in relatives of cases compared to

the general population. Such studies (e.g. familial relative risk studies)

are theoretically feasible but challenging given the widespread

distribution of H5N1 cases in time and space [61]. Estimating

heritability of H5N1 is likely to be impossible since it is probably not

feasible to disentangle genetic and non-genetic effects with such small

numbers of cases.

Blood group
The 1960’s and 70’s saw a period of interest in the relationship

between the ABO blood group and susceptibility to influenza

infection. Studies involved observations of natural influenza

infection [62-64], experimental infection [65], and serological

studies [64,66-73]. The data are inconsistent, with authors

reporting an increased risk of influenza in subjects with blood

group O [62,65,66], groups O and B [63,68], B alone [67,74], A

[73], A and B [64], AB [64,71], or no difference by blood group

[69,70,72]. One group examined the ability to excrete soluble

ABO blood group antigens in body fluids (secretor) and the risk of

respiratory viral infections, and found a positive association

between being a ‘secretor’ and influenza A infection [75].

Human leucocyte antigen (HLA)
Work in the 1970’s by McMichael et al and extended by

Doherty, Shaw and Biddison demonstrated that cell-mediated lysis

of influenza infected cells is dependent on HLA specificities [76-

81]. It is now well recognised that the HLA molecules plays a

central role in antigen presentation to T-cells and indeed HLA is

the classic example of genetic susceptibility to infectious diseases

and of the influence of infectious diseases on human genomes [82].

Subsequent studies in mice and humans demonstrate that the

HLA phenotype (H-2 in mice) influences the magnitude and

specificity of the cytotoxic T lymphocyte (CTL) response to

influenza infection [83-85]. Considerable work has also been

undertaken to identify particular epitope-HLA molecule combi-

nations that are associated with protective CTL responses in order

to inform the design of vaccines targeting cell-mediated immunity

[86,87]. However no genetic studies have been conducted to

identify polymorphisms in HLA loci associated with susceptibility

to influenza infection. Given the inherent diversity of HLA loci,

the complex interaction of HLA in determining responses to

infection, and the linkage of HLA to other genes involved in innate

immunity, such studies will be challenging [82,85].

Human genetic studies
Only one published human genetic study of susceptibility to

influenza was identified. This study was a case control study that

included 91 severe H1N1/09 cases and 98 exposed but asymptom-

atic, unrelated household controls [88]. The authors took a

discovery rather than a candidate gene approach, using a

commercial chip that incorporates around 50,000 SNPs in regions

associated with cardiovascular, metabolic and inflammatory

syndromes (HumanCVD Genotyping Beadchip). 28,368 SNPs

were analyzed and four SNPs on three different chromosomes had

p-value of ,0.0001. These SNPs remained associated after

controlling for the potential confounding factors of obesity, diabetes,

arterial hypertension, age, gender, and smoking. Three of the SNPs

were in genes: an immunoglobulin Fc receptor (FCGR2A); a

complement binding protein (C1QBP); and a protein that mediates

the entry of replication protein A into the nucleus (RPAIN). Given

the small size of the study, there is a reasonable probability that

these are false positive findings, with the false discovery rate (the

expected proportion of statistically significant findings that are false

positives) for the four SNPs ranging from 22% to 56%.
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Reviews
Five review articles were identified. The review by Trammel and

Toth summarized animal and human data on genetic influences on

influenza infection, with a particular focus on studies of differential

gene expression [89]. This review highlighted the earlier work of

Toth et al that identified 75 immune related genes (including 13

interferon related genes and 10 chemokine related genes) that were

differentially expressed in C57BL/6J compared to BALB/cByJ mice

in response to influenza H3N2 HK-X31 infection [35]. The review

also identified increased expression of seven common genes in both

H1N1/1918 and H3N2 HK-X31 infection of BALB/c mice, and 17

genes that showed increased expression in both human bronchial

epithelial cell lines and mice infected with H3N2 (A/Udon/307/72

human bronchial epithelial cell, HK-X31 mice) [35,90-92]. The

review by Zhang et al proposed a list of around 100 candidate genes

that may be related to susceptibility to influenza infection based on

existing knowledge of the proteins involved in virus replication and

the innate immune response [9]. An Editorial Commentary by

Mubareka and Palese on the Utah genealogical study also discussed

some potential candidate genes for host susceptibility to influenza,

such as mannose-binding lectin, toll-like receptors, retinoic inducible

gene I, 2959-oligoadenylate synthetase 1, and MxA [93]. Horisberger

reviewed the data on the relationship between the Mx1 gene and

influenza as it stood in 1995 (see section on Mx1) [94]. Horby et al

reviewed the epidemiological evidence for genetic susceptibility to

H5N1 and concluded that the data are suggestive of a host genetic

influence on susceptibility to H5N1 disease [3].

Discussion

In mouse models the severity of influenza infection is clearly

associated with both the pathogen and host genome. The

observation that similar patterns of susceptibility or resistance of

specific mouse strains are observed for a wide range of influenza

viruses suggests that some of the host genetic determinants of

susceptibility may be common across influenza subtypes. Suscep-

tibility in mice is polygenic, and a number of candidate genes,

including MxA, have been proposed. To date none of these

candidate genes have been tested in studies of humans. Animal

experiments will continue to be important for refining under-

standing of host-pathogen genetic interactions and for testing

hypotheses about the pathogenesis of severe influenza.

In humans the best available evidence, relying on a single study

of 4855 deaths, suggests a heritable component of susceptibility to

death from seasonal and pandemic influenza. Given the numerous

confounding factors, replication of this finding will require a

similarly large study. Although heritability has not been quantified

for H5N1, the marked familial aggregation and other epidemio-

logical features suggest a stronger heritable predisposition. To date

only one study of human host genetics and susceptibility to severe

influenza has been published and no human genetic polymor-

phisms associated with susceptibility to seasonal, pandemic or

avian influenza have been convincingly demonstrated.

Susceptibility to severe seasonal or pandemic influenza in

humans is likely to be polygenic and is also likely to be co-

determined by pathogen characteristics, prior infection history, co-

morbidities, and environmental factors. In addition, the lack of

evidence implicating any specific genes in humans suggests a

hypothesis-free genome-wide approach should be taken. As such,

very large studies will be required to identify genetic effects on

susceptibility to severe influenza.

Pandemic H1N1 offers a rare opportunity to study genetic

susceptibility to severe influenza in a context that, compared to

seasonal influenza, is less confounded by infection history and

pathogen diversity. However, large sample sizes will still be

required to detect polygenic traits and case selection will need to

consider confounding by cross-protective immunity and co-

morbidity. Several groups have compiled series of severe H1N1/

09 cases but it seems very unlikely that any single group will have

sufficient cases to conduct an adequately powered genome-wide

association study [95]. To have a realistic prospect of identifying

susceptibility loci for H1N1/09, groups will need to form a

consortium, as has been successful for other diseases [96]. The

chances of identifying susceptibility loci in H1N1/09 can be

enhanced by adopting an ‘extreme-trait’ study design e.g. where

cases are previously healthy young adults who develop very severe

disease with high viral loads and no evidence of bacterial co-

infection. Influenza encephalitis is another ‘extreme-trait’ where

case cohorts should be assembled for comparison with other

influenza disease cohorts. There may still be possibilities to study

susceptibility to 1918 pandemic influenza through linkage studies

within large genealogical cohorts, where pedigree and cause of

death data stretch back to the early 1900’s [41].

Susceptibility to H5N1 may be less complex than ‘human

influenza’, since the phenotype appears to be more dichotomous

than continuous, immunity probably plays a lesser role, co-

morbidity seems less important, and familial aggregation is more

marked. The importance of understanding the pathogenesis of

highly pathogenic influenza and the possibility that a rare genetic

variant with a moderate to large effect underlies H5N1

susceptibility makes efforts to assemble DNA from H5N1 cases

worthwhile. Given the small number of H5N1 cases and the

possibility of a rare variant with a moderate to large effect,

genome-wide association studies may not be the optimal design

and alternative approaches to identifying causal loci may be

needed, such as sequencing candidate genes, the whole exome, or

the even whole genome [97,98]. Purely epidemiological studies

may contribute to understanding the genetic component of

familial aggregation of H5N1 by quantifying heritability.

High viral replication efficiency, or from a host perspective a failure

to control virus replication, is emerging as a key factor in severe

influenza disease and is determined by both host and virus factors

[27,39]. Thus studies of the determinants of influenza severity may

benefit from a combined host-pathogen genetics approach, where the

analysis of host genetic associations is conditioned upon the pathogen

genotype in order to identify genotype-genotype interactions.

Conclusion
The fundamental question ‘Is susceptibility to severe influenza

in humans heritable?’remains unanswered. It is unanswered not

because of a lack of genotyping or analytic tools, nor because of

insufficient severe influenza cases, but because of the absence of a

coordinated effort to define and assemble cohorts of cases. The

recent pandemic and the ongoing epizootic of H5N1 both

represent rapidly closing windows of opportunity to increase

understanding of the pathogenesis of severe influenza through

multi-national host genetic studies.
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