Supplementary information for Revealing arginine–cysteine and glycine–cysteine NOS linkages by a systematic re-evaluation of protein structures

Sophia Bazzi*1 and Sharareh Sayyad^{2,3}

¹Institute of Physical Chemistry, Georg-August University Göttingen,
Tammannstraße 6, Göttingen, D-37077, Germany*

²Department of Mathematics and Statistics, Washington State University, Pullman, Washington 99164-3113, USA

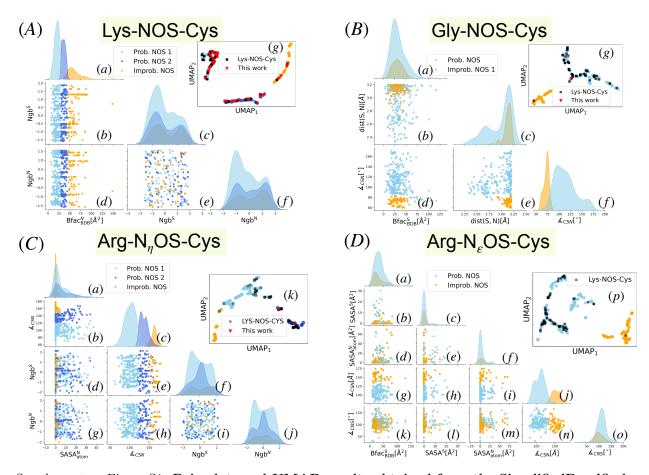
³Mathematical Institute, Georg-August University Göttingen,
Bunsenstraße 3-5, Göttingen, 37073, Germany

Contents

Supplementary Figures	1
Pair plots and UMAP results obtained from the SimplifiedBondfinder algorithm	1
Pair plot for Lys-NOS-Cys linkages	4
Pair plot for Gly–NOS–Cys linkages	5
Density distribution of reference Cys-NOS-Lys linkages	6
Supplementary Tables	7
Frequency of N-S contacts by amino acid pairs in PDB-REDO	7
Bonding environments within the Cys-Gly pairs	9
Structural parameters of NOS-linked lysine and arginine complexes	10
Newly found NOS linkages between cysteine sulfur and lysine nitrogen in 65 pdb structures	10
Structural parameters and RMSD for Gly-Cys and Arg-Cys complexes without an NOS linkage	11
Gibbs free energy change (ΔG) for NOS-linked arginine and glycine complexes	11
X-ray crystallographic structural parameters of novel NOS linkages	12
Refinement and Validation of NOS Linkages	13
References	15

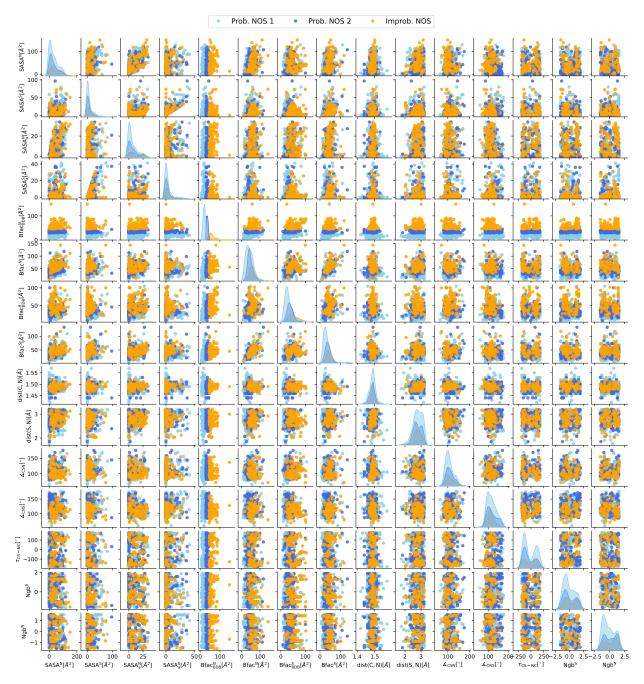
Supplementary Figures

Pair plots and UMAP results obtained from the SimplifiedBondfinder algorithm

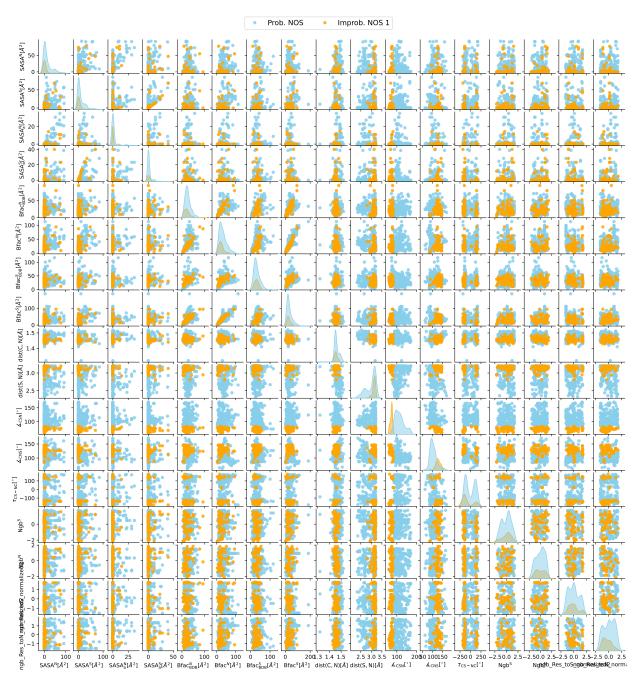

Figure S1 (A)(a)-(f) illustrates the pair plot for Lys-NOS-Cys linkages. The neighboring residues are collected as sets of amino acid residues (see Extended data). In our algorithm, we numerize these sets by performing hashing on each set, ensuring that the permutation of elements in the set results in the same final hashed number. Clearly, the exact value of these hashed numbers is not of significance. The x-axes in Figs. S1 (A)(c) and (A)(f) represent the sets of neighboring residues as the map from the sets to hashed numbers is one-to-one. We do not observe a distinct pattern in neighboring residues that can discriminate between the probable and improbable samples. This does not necessarily imply that neighboring residues do not play a role in facilitating NOS formation. Rather, based on the criteria selected, no discriminating difference between the neighboring residues in probable and improbable samples was identified. Additionally, when examining the Ngb^S and Ngb^N among the reference points (see Figure S1 in Supplementary information), no common pattern emerged that suggests specific neighboring residues are associated with the experimentally verified samples.

Unlike the Lys-NOS-Cys samples, the majority of samples of the probable and improbable clusters in Figure S1 (B)(a) possess similar values of Bfac $_{\text{BDB}}^{\text{S}}$. Similar to Bfac $_{\text{BDB}}^{\text{S}}$, for dist(S, N) in Figure S1 (B)(c), the modes of distributions for probable and improbable clusters are very close. Additionally, we hardly can

deduce details from the correlation between these $\operatorname{Bfac}^{S}_{\operatorname{BDB}}$ and $\operatorname{dist}(S,N)$ in (B)(b), except the dominance of probable samples at $\operatorname{dist}(S,N) < 2.75\mathring{A}$. This brings us to the conclusion that these two parameters are individually insufficient to distinguish probable from improbable clusters.


The pair plot of the four-dimensional (descriptor) space in the case of ARG-N $_{\eta}$ OS-CYS is presented in Supplementary Figure S1 (C)(a)-(j). Panel (C)(a) shows the density plot for the values of SASA $_{\text{atom}}^{\text{N}}$. The mode of distribution for all three clusters centers at around 0.0 \mathring{A}^2 to 1.25 \mathring{A}^2 . It is clear that the mode of the improbable cluster is similar to the mode of the probable clusters, resulting in the fact that values of SASA $_{\text{atom}}^{\text{N}}$ alone cannot sufficiently discriminate cases with a high probability of hosting Arg-N $_{\eta}$ OS-Cys linkages.

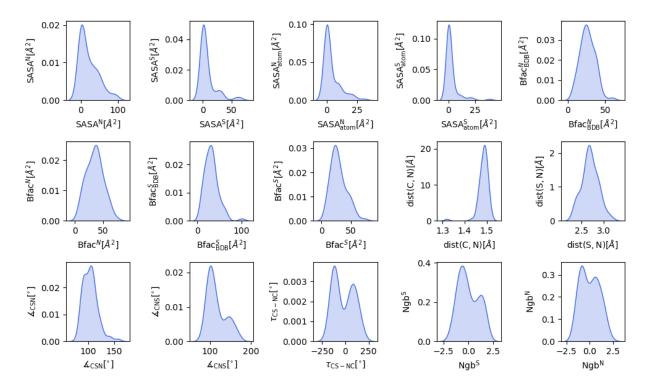
In the case of $Arg-N_{\epsilon}OS-Cys$, the algorithm selects a set of five descriptors. When angles \angle_{CSN} (D)(g)-(D)(j) and \angle_{CNS} (D)(k)-(D)(o) are taken into account, we witness a clear mode separation in the distributions of clusters. However, despite the difference in modes of the two clusters, the complete overlap in the overall distributions of \angle_{CNS} (D)(k)-(D)(o) indicates that this angle alone cannot predict the likelihood of forming $Arg-N_{\epsilon}OS$ -Cys linkages. The calculated values of \angle_{CNS} from Table IV are 126.81°, 123.21°, and 122.62°. The correlations between angles, and particularly \angle_{CSN} , with (Bfac $_{BDB}^{S}$, SASA $_{atom}^{N}$) in panels (g)-(n) provide the possibility of separating clusters of probable and improbable candidates from each other.


Supplementary Figure S1: Pair plots and UMAP results obtained from the SimplifiedBondfinder algorithm. Pair plots and UMAP plots for covalent linkages of Lys-NOS-Cys (A), Gly-NOS-Cys (B), Arg-N_pOS-Cys (C), and Arg-N_eOS-Cys (D). Probable NOS-bond candidates are depicted in sky blue and royal blue, while improbable candidates are shown in orange. The black square points denote the reference dataset presented in Ref. [1]. The red inverted triangles depict our newly found sets of proteins exhibiting NOS linkages. For the Lys-NOS-Cys dataset, each cluster in (A)(g) consists of n = 271 (sky blue), n = 155 (royal blue), and n = 101 (orange) samples. The Silhouette score in (A)(g) is 0.61. The mode of $Bfac_{BDR}^{N}$ for probable samples in 22.21 (sky blue) and 36.24 (royal blue) and 52.84 (orange) in panel (A)(a). The most frequent set of neighbors to the sulfur atom for hashed values in (A)(c) and for each cluster is {GLY, THR} (sky blue and royal blue) and {ALA, GLU, ASP} (orange). Most common sets of nitrogen atom neighbors after unnumerizing values in (A)(f) read {ARG, SER} (sky blue and royal blue) and $\{GLY, ILE, VAL\}$ (orange). For Gly-NOS-Cys in (B), the cluster sizes are n = 271 (sky blue), and n = 81 (orange). The Silhouette score is 0.58. Dominant modes of density distributions for $\{Bfac_{BDB}^{S}, dist(S, N), \angle_{CSN}\}\$ for (sky blue, orange) samples are $\{(24.56, 29.91), (3.16, 3.17), (96.63, 74.68)\}$ in panels (B)(a), (B)(c) and (B)(f), respectively. For Arg-N_{η}OS-Cys in (C), the sizes of generated clusters are n = 266 (sky blue), n = 147 (royal blue), and n = 54 (orange). The associate Silhouette score is 0.55. The dominant modes of density distributions for SASA^N_{atom} (C)(a) and \angle_{CSN} (C)(c) for (sky blue, royal blue, orange) samples are (0.46, 1.24, 0.00) and (106.79, 128.61, 162.92), respectively. The most frequent set of neighbors to the sulfur atom for each cluster, after unnumerizing the values, in (C)(f) for each cluster reads {ILE, LEU} (sky blue), {GLN, HIS, TRP} (royal blue) and {THR, GLN, LEU} (orange). The most common set of neighbors to the nitrogen atom, after unhashing values, for each cluster in (C)(j) are {ARG} (sky blue), {GLY, ARG, VAL, LEU, TRP} (royal blue) and {ARG, GLY, PRO, SER} (orange). For $Arg-N_{\varepsilon}OS$ -Cys dataset in (D), the size of clusters read n=235 (sky blue) and n=83 (orange). The associate Silhouette score is 0.56. The dominant modes of density distributions in Bfac^S_{BDB} (D)(a), SASA^S (D)(c), SASA_{atom} (D)(f), \angle_{CSN} (D)(j) and \angle_{CNS} (D)(o) for (probable, improbable) samples are (0.08, 0.12), (0.56, 2.40), (32.47, 20.53), (113.38,148.07), and (111.81, 96.63), respectively.

Pair plot for Lys-NOS-Cys linkages

Supplementary Figure S2: Pair plot for Lys-NOS-Cys linkages. Probable NOS-bond candidates appear in sky blue and royal blue, while improbable candidates are in orange. The 15 descriptors arise from the minimal descriptor set of the SimplifiedBondfinder algorithm, including the nitrogen atom's B-factor (Bfac_{BDB}^{N}) and the neighboring residues within a 4 Å radius of the C_{α} atoms of lysine (Ngb^N) and cysteine (Ngb^S).

Pair plot for Gly-NOS-Cys linkages



Supplementary Figure S3: Pair plot for Gly–NOS–Cys linkages. Probable NOS-bond candidates appear in sky blue, while improbable candidates are shown in orange. The descriptor set includes the B-factor for the sulfur-bearing residue (Bfac $_{\text{BDB}}^{\text{S}}$), the sulfur-nitrogen distance dist(S, N), and the angle \angle_{CSN} .

Density distribution of reference Cys-NOS-Lys linkages

In our approach, we took advantage of the previously identified Lys-NOS-Cys linkages as reference points. To better understand the distribution of these reference samples for different descriptors, we present the Supplementary Figure S4. The distributions exhibit peaks at 3.56 (SASA^N[Ų]), 1.08 (SASA^S[Ų]), 0.39 (SASA^N_{atom}[Ų]), 0.41 (SASA^S_{atom}[Ų]), 24.30 (Bfac^N_{BDB}), 36.88 (Bfac^N_{BDB}), 30.32 (Bfac^S_{BDB}), 23.48 (Bfac^S_{BDB}), 1.49 (dist(C, N)[Å]), 2.67 (dist(S, N)[Å]), 105.22 (\angle_{CSN} [°]), 101.32 (\angle [°]), -119.48 (τ_{CS-NC}).

We also note that the neighboring residues set of {TRP, GLY, SER} for the sulfur atom appears four times for different samples in the reference dataset. For the nitrogen atom, four sets of neighboring residues, with four times occurrence of each set, are {TYR, GLU, ASN, VAL}, {ALA, PRO}, {ILE, LEU, VAL}, {ILE, GLY, VAL}.

Supplementary Figure S4: **Density distributions of structural parameters in experimentally reported NOS linkages.** The reference NOS linkages reflect data from Ref. [1], with modes at 3.56 (SASA^N[Ų]), 1.08 (SASA^S[Ų]), 0.39 (SASA^N_{atom}[Ų]), 0.41 (SASA^S_{atom}[Ų]), 24.30 (Bfac^N_{BDB}), 36.88 (Bfac^N), 30.32 (Bfac^S_{BDB}), 23.48 (Bfac^S), 1.49 (dist(C, N)[Å]), 2.67 (dist(S, N)[Å]), 105.22 (C_{SN} [°]), 101.32 (C[°]), -119.48 (C_{SN}). The most frequent neighboring residues for sulfur are {CYS, TRP, GLY, SER} while nitrogen exhibits four common sets: {LYS, TYR, GLU, ASN, VAL}, {LYS, ALA, PRO}, {ILE, LYS, LEU, VAL}, {ILE, LYS, GLY, VAL}.

Supplementary Tables

This section compiles the comprehensive results underpinning the main text, organized across the supplementary tables. These tables include:

- (i) Frequency distributions of S-Amide N and S-Side-chain N contacts in the PDB-REDO dataset (Supplementary Tables I-II).
- (ii) Bonding environments within the "improbable" cluster (Supplementary Table III).
- (iii) Quantum mechanically optimized structural parameters for NOS-linked complexes (Supplementary Table IV).
- (iv) PDB filenames for 65 identified Lys-NOS-Cys linkages (Supplementary Table V).
- (v) Structural parameters and root-mean-square deviations (RMSDs) for non-NOS complexes (Supplementary Table VI).
- (vi) Gibbs free energy changes for NOS formation (Supplementary Table VII).
- (vii) Four additional tables summarizing refinement improvements in selected cases (Supplementary Tables IX-XII).
- (viii) X-ray crystallographic parameters for proposed NOS linkages (Supplementary Table VIII).

Frequency of N-S contacts by amino acid pairs in PDB-REDO

Supplementary Tables I and II provide a comprehensive analysis of 23,129 sulfur-nitrogen (S-N) contacts identified in the PDB-REDO dataset. These contacts are systematically categorized by the sulfur-containing residue (cysteine or methionine) and its partner residue, distinguishing between interactions with backbone nitrogen (Amide N) and side-chain nitrogen (Side-chain N). For this study, only residue pairs with available B-factor data in the Biomolecular Database (BDB) were selected for further analysis, ensuring consistent B-factor values across all residue types. Our investigation focuses primarily on the sulfur atom of cysteine, given its critical role in potential NOS linkage formation.

S-Amide N contacts:

In the case of cysteine sulfur and Amide N interactions, CYS-CYS contacts are the most frequent (2,598 cases). However, considering that their proximity could be due to disulfide bridges, we have excluded them from further investigation in the current study. It is worth noting that some of these interactions may indicate potential non-traditional NOS bonding, which will be explored in future investigations. For the present study, we focus on the next most frequent S-Amide N contact: CYS-GLY (1,138 cases).

S-Side-chain N contacts:

For interactions between the sulfur atom of cysteine and side chain nitrogen atoms, cysteine-arginine pairs are the most common (1,608 cases), followed by cysteine-histidine (1,416 cases) and cysteine-lysine pairs (1,214 cases). We have chosen to exclude cysteine-histidine contacts from further investigations in this study because histidine is frequently involved in metal coordination [2, 3]. The cysteine-arginine and cysteine-lysine contacts will be the primary focus of our current analysis, while the remaining contacts will be investigated in future studies. Methionine interactions, though not the focus of this study, show distinct patterns from cysteine and may offer additional insights in future investigations.

Considering these focused selections enables us to prioritize our investigation on the most promising candidates for novel NOS linkages while acknowledging the potential for more comprehensive research frameworks in succeeding studies.

Supplementary Table I: Distribution of S-Amide N contacts

	Cysteine			Methionine		
S-residue	Partner	Frequency	S-residue	Partner	Frequency	
GLY GLN	CYS	2598		TYR	474	
	GLY	1138		GLY	468	
	GLN	861		ALA	305	
	HIS	857		LEU	230	
	ALA	643		$_{\mathrm{PHE}}$	150	
	SER	550		VAL	142	
AS: GL	THR	433	Methionine	ILE	137	
	ASP	432		LYS	123	
	GLU	415		SER	115	
	LYS	367		THR	101	
Cysteme	ARG	366		GLU	95	
	TRP	364		ASP	94	
	VAL	344		ARG	85	
	MET	321		PRO	78	
	LEU	316		ASN	70	
	ASN	274		GLN	62	
	PHE	272		HIS	50	
	TYR	248		MET	49	
	ILE	174		TRP	38	
	PRO	97		CYS	20	

Supplementary Table II: **Distribution of S-Side-chain N contacts.** For Cysteine–ARG contacts (1608 total), 996 involve N^{η} (NH1 or NH2) and 612 involve N^{ε} (NE). For Methionine–ARG contacts (1498 total), 1098 involve N^{η} and 400 involve N^{ε} .

S-residue	Partner	Frequency	S-residue	Partner	Frequency
		1608			1498
Cysteine	ARG	996 (N_{η})	Methionine	ARG	$1098 (N_{\eta})$
		$612 \ (N_{\varepsilon})$			$400 \ (N_{\varepsilon})$
	HIS	1416		HIS	668
	LYS	1214		GLN	517
	TRP	1174		TRP	332
	GLN	490		LYS	256

Bonding environments within the Cys-Gly pairs

Supplementary Table III: Bonding environments within the Cys-Gly pairs. The sulfur atom of cysteine in this cluster frequently engages in diverse interactions, including metal coordination, disulfide bonds, and five-membered ring structures. These covalent environments likely contribute to the intermediate values of $Bfac_{BDB}^{S}$.

Cys-Gly Pair	Type of Interaction
4a2c_A_CYS_SG_38_A_GLY_N_39.pdb	metal
4a2c_B_CYS_SG_38_B_GLY_N_39.pdb	metal
7aas_A_CYS_SG_178_A_GLY_N_179.pdb	metal
7aas_B_CYS_SG_178_B_GLY_N_179.pdb	metal
7aas_D_CYS_SG_178_D_GLY_N_179.pdb	metal
7aas_E_CYS_SG_178_E_GLY_N_179.pdb	metal
5ac3_A_CYS_SG_200_A_GLY_N_201.pdb	disulfide
3atq_A_CYS_SG_47_A_GLY_N_48.pdb	5-membered ring-structure
4 ay $7_A_CYS_SG_319_A_GLY_N_320.pdb$	metal
4 ay $7_B_CYS_SG_319_B_GLY_N_320.pdb$	metal
7b28_C_CYS_SG_144_C_GLY_N_145.pdb	disulfide
2bkr_A_CYS_SG_163_A_GLY_N_164.pdb	C-S bond
6c49_A_CYS_SG_153_A_GLY_N_154.pdb	metal
$4d5g_A_CYS_SG_428_A_GLY_N_429.pdb$	5-membered ring-structure
$4d5g_B_CYS_SG_428_B_GLY_N_429.pdb$	5-membered ring-structure
$3efy_B_CYS_SG_109_B_GLY_N_110.pdb$	5-membered ring-structure
$6eib_A_CYS_SG_72_A_GLY_N_73.pdb$	di-sulfide
$6eib_B_CYS_SG_72_B_GLY_N_73.pdb$	di-sulfide
$6eib_C_CYS_SG_72_C_GLY_N_73.pdb$	di-sulfide
$6eib_D_CYS_SG_72_D_GLY_N_73.pdb$	di-sulfide
6 esk_A_CYS_SG_ 106 _A_GLY_N_ 107 .pdb	5-membered ring-structure
6 esv_A_CYS_SG_ 106 _A_GLY_N_ 107 .pdb	5-membered ring-structure
7f27_B_CYS_SG_339_B_GLY_N_340.pdb	5-membered ring-structure
3 gqj_A_CYS_SG_123_A_GLY_N_124.pdb	5-membered ring-structure
$6h0c_A_CYS_SG_367_A_GLY_N_368.pdb$	5-membered ring-structure
6h0d_A_CYS_SG_367_A_GLY_N_368.pdb	5-membered ring-structure
6h98_A_CYS_SG_370_A_GLY_N_371.pdb	5-membered ring-structure
6h99_A_CYS_SG_370_A_GLY_N_371.pdb	5-membered ring-structure
4ium_A_CYS_SG_270_A_GLY_N_271.pdb	C-S bond
4jbl_B_CYS_SG_309_B_GLY_N_310.pdb	5-membered ring-structure
4jji_A_CYS_SG_177_A_GLY_N_178.pdb	metal
6jow_A_CYS_SG_95_A_GLY_N_96.pdb	5-membered ring-structure
6jow_B_CYS_SG_95_B_GLY_N_96.pdb	5-membered ring-structure
6jow_C_CYS_SG_95_C_GLY_N_96.pdb	5-membered ring-structure
6jow_D_CYS_SG_95_D_GLY_N_96.pdb	5-membered ring-structure
5k6k_B_CYS_SG_291_B_GLY_N_292.pdb	di-sulfide, 5-membered ring
6ktw_A_CYS_SG_370_A_GLY_N_371.pdb	5-membered ring-structure
6ktw_A_CYS_SG_412_A_GLY_N_413.pdb	5-membered ring-structure
6ktz_A_CYS_SG_370_A_GLY_N_371.pdb	5-membered ring-structure
6kvy_A_CYS_SG_370_A_GLY_N_371.pdb	5-membered ring-structure
416h_A_CYS_SG_739_A_GLY_N_740.pdb	metal
4l6o_A_CYS_SG_739_A_GLY_N_740.pdb	metal

Structural parameters of NOS-linked lysine and arginine complexes

Supplementary Table IV: Structural parameters of NOS-linked lysine and arginine complexes. Selected structural parameters for the optimized complexes containing NOS linkage involving N_{ε} of arginine residue and nitrogen atom of lysine side chain.

Complex	dist(S,N) [Å]	∠ _{CSN} [°]	∠ _{CNS} [°]	∠ _{NOS} [°]
Lys-NOS-Cys	2.62	96.33	122.40	113.45
$Arg-N_{\varepsilon}OS-Cys^{+1}$ $(N_{\eta}H_2, N_{\eta}H_2)$	2.60	95.96	126.81	113.76
$ARG-N_{\varepsilon}OS-Cys(N_{\eta}H_2, N_{\eta}H)$	2.60	99.72	123.21	113.09
$ARG-N_{\varepsilon}OS-Cys^{+1}$ $(N_{\eta}H_3, N_{\eta}H)$	2.60	99.47	122.62	113.03

Newly found NOS linkages between cysteine sulfur and lysine nitrogen in 65 pdb structures

Supplementary Table V: Newly found NOS linkages between cysteine sulfur and lysine nitrogen in 65 PDB structures. Each entry specifies PDB ID, chain, residue type, atom name, residue number, and interaction partner details for cysteine sulfur (SG) and lysine nitrogen (NZ) contacts.

5ant_A_CYS_SG_87_A_LYS_NZ_130.pdb 5ant_B_CYS_SG_87_B_LYS_NZ_130.pdb 5ant_B_CYS_SG_104_C_LYS_NZ_114.pdb 8czw_B_CYS_SG_22_B_LYS_NZ_61.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb 7ds0_A_CYS_SG_21_B_LYS_NZ_61.pdb 7ds0_A_CYS_SG_21_B_LYS_NZ_61.pdb 7ds0_A_CYS_SG_21_B_LYS_NZ_61.pdb 7dek_A_CYS_SG_147_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_147_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_147_A_LYS_NZ_61.pdb 7dek_A_CYS_SG_22_A_LYS_NZ_61.pdb 7dek_A_CYS_SG_22_A_LYS_NZ_61.pdb 7dek_A_CYS_SG_22_A_LYS_NZ_61.pdb 7dek_A_CYS_SG_29_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_29_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_29_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_31_B_LYS_NZ_27.pdb 7dek_A_CYS_SG_31_B_LYS_NZ_27.pdb 7dek_A_CYS_SG_29_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_31_B_LYS_NZ_27.pdb 7dek_A_CYS_SG_31_B_LYS_NZ_27.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_27.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_114.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_31_B_LYS_NZ_114.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_69_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_147_A_LYS_NZ_135.pdb 7dek_A_CYS_SG_147_A_LYS	Entry	Entry	Entry
7e2q.A.CYS.SG.408.A.LYS.NZ.151.pdb 8e5z.B.CYS.SG.22.B.LYS.NZ.61.pdb 7e6k.A.CYS.SG.22.A.LYS.NZ.61.pdb 8e63.B.CYS.SG.22.B.LYS.NZ.61.pdb 8e68.B.CYS.SG.22.B.LYS.NZ.61.pdb 3etc.B.CYS.SG.298.B.LYS.NZ.256.pdb 3etc.B.CYS.SG.298.B.LYS.NZ.256.pdb 3etc.B.CYS.SG.298.B.LYS.NZ.256.pdb 3etc.B.CYS.SG.298.B.LYS.NZ.256.pdb 3etc.A.CYS.SG.298.B.LYS.NZ.256.pdb 3etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb 7etc.A.CYS.SG.298.A.LYS.NZ.256.pdb </td <td>5ant_A_CYS_SG_87_A_LYS_NZ_130.pdb</td> <td>5ant_B_CYS_SG_87_B_LYS_NZ_130.pdb</td> <td>5ant_B_CYS_SG_104_C_LYS_NZ_114.pdb</td>	5ant_A_CYS_SG_87_A_LYS_NZ_130.pdb	5ant_B_CYS_SG_87_B_LYS_NZ_130.pdb	5ant_B_CYS_SG_104_C_LYS_NZ_114.pdb
8e63_B_CYS_SG_22_B_LYS_NZ_61.pdb 3etc_B_CYS_SG_22_B_LYS_NZ_65.pdb 4fvr_A_CYS_SG_298_B_LYS_NZ_650.pdb 5iwg_B_CYS_SG_327_B_LYS_NZ_650.pdb 5iwg_B_CYS_SG_327_B_LYS_NZ_650.pdb 7l25_B_CYS_SG_327_B_LYS_NZ_65.pdb 7l25_B_CYS_SG_69_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_69_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_69_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_B_CYS_SG_68_A_LYS_NZ_61.pdb 7l25_B_CYS_SG_68_A_LYS_NZ_61.pdb 7l25_B_CYS_SG_68_A_LYS_NZ_61.pdb 7l25_B_CYS_SG_68_A_LYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_LYS_NZ_61.pdb 7l26_A_CYS_SG_68_A_LYS_NZ_61.pdb 7l27_A_CYS_SG_68_A_LYS_NZ_61.pdb 7l28_CYS_SG_68_A_LYS_NZ_61.pdb 7l29_A_CYS_SG_68_A_LYS_NZ_61.pdb 7l29_A_CYS_SG_68_A_LYS_NZ_61	8czw_B_CYS_SG_22_B_LYS_NZ_61.pdb	7ds0_A_CYS_SG_147_A_LYS_NZ_135.pdb	7ds1_A_CYS_SG_147_A_LYS_NZ_135.pdb
3etc_B_CYS_SG_298_B_IYS_NZ_256.pdb 6fcd_A_CYS_SG_149_A_IYS_NZ_307.pdb 3fd6_B_CYS_SG_31_B_IYS_NZ_27.pdb 4fvr_A_CYS_SG_747_A_IYS_NZ_650.pdb 3ho2_A_CYS_SG_375_A_IYS_NZ_319.pdb 5i9u_A_CYS_SG_612_A_IYS_NZ_633.pdb 7l25_B_CYS_SG_327_B_IYS_NZ_55.pdb 7k0h_B_CYS_SG_22_B_IYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_63.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_63.pdb 7l25_B_CYS_SG_22_B_IYS_NZ_61.pdb 7k0h_B_CYS_SG_22_B_IYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_61.pdb 7m03_B_CYS_SG_22_B_IYS_NZ_61.pdb 7m01_B_CYS_SG_22_B_IYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_IYS_NZ_61.pdb 7m03_B_CYS_SG_22_B_IYS_NZ_61.pdb 7m01_B_CYS_SG_22_B_IYS_NZ_61.pdb 7m02_B_CYS_SG_69_A_IYS_NZ_61.pdb 7m02_B_CYS_SG_62_B_IYS_NZ_61.pdb 7vc1_A_CYS_SG_62_A_IYS_NZ_61.pdb 2dpp_A_CYS_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_61.pdb 7c6x_A_CYS_SG_30_A_IYS_NZ_270.pdb 7v1_A_CYS_SG_22_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_61.pdb 7c6x_A_CYS_SG_62.pdb 7v2_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_69_B_IYS_NZ_61.pdb 7c6x_A_CYS_SG_62_2B_IYS_NZ_61.pdb 7v2_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_68_A_IYS_NZ_61.pdb 7c6x_A_CYS_SG_68_A_IYS_NZ_61.pdb	$7e2q_A_CYS_SG_408_A_LYS_NZ_151.pdb$	$8e5z_B_CYS_SG_22_B_LYS_NZ_61.pdb$	7e6k_A_CYS_SG_22_A_LYS_NZ_61.pdb
4fvr.A.CYS.SG.747.A.LYS.NZ.650.pdb 3ho2_A.CYS.SG.375.A.LYS.NZ.319.pdb 5i9u_A.CYS.SG.612_A.LYS.NZ.63.pdb 7l25_B.CYS.SG.327.B.LYS.NZ.55.pdb 7k0h.B.CYS.SG.22.B.LYS.NZ.61.pdb 7l25_A.CYS.SG.69.A.LYS.NZ.133.pdb 7l25_B.CYS.SG.69_B.LYS.NZ.133.pdb 7lkr.B.CYS.SG.22.B.LYS.NZ.61.pdb 7lkr.B.CYS.SG.22.B.LYS.NZ.61.pdb 7lzu.B.CYS.SG.69.A.LYS.NZ.61.pdb 7m03_B.CYS.SG.22_B.LYS.NZ.61.pdb 7m01_B.CYS.SG.22_B.LYS.NZ.61.pdb 7m01_B.CYS.SG.22_B.LYS.NZ.61.pdb 7m02_B.CYS.SG.22_B.LYS.NZ.61.pdb 3ov8_A.CYS.SG.62_A.LYS.NZ.69.pdb 2od5_A.CYS.SG.79_A.LYS.NZ.62.pdb 7opg_A.CYS.SG.24_B.LYS.NZ.41.pdb 7v11_A.CYS.SG.22_A.LYS.NZ.61.pdb 7s6x_A.CYS.SG.68_A.LYS.NZ.270.pdb 7s6x_A.CYS.SG.330_A.LYS.NZ.270.pdb 7v1_A.CYS.SG.108_B.LYS.NZ.61.pdb 7t43_B.CYS.SG.22_B.LYS.NZ.61.pdb 7t44_B.CYS.SG.29_B.LYS.NZ.61.pdb 7v2_B.CYS.SG.22_A.LYS.NZ.61.pdb 7t44_B.CYS.SG.29_A.LYS.NZ.61.pdb 7t44_B.CYS.SG.29_A.LYS.NZ.56.pdb 8vb5_A.CYS.SG.68_A.LYS.NZ.74.pdb 5v38_A.CYS.SG.68_A.LYS.NZ.74.pdb 5v38_B.CYS.SG.68_A.LYS.NZ.74.pdb 6wod_A.CYS.SG.68_A.LYS.NZ.74.pdb 6wob_A.CYS.SG.68_A.LYS.NZ.74.pdb 5v4g_B.CYS.SG.223_B.LYS.NZ.275.pdb 5v4g_B.CYS.SG.223_B.LYS.NZ.275.pdb 5v7c.A.CYS.SG.68_A.LYS.NZ.275.pdb 5v84_B.CYS.SG.223_B.LYS.NZ.275.pdb 5v84_B.CYS.SG.223_B.LYS.NZ.275.pdb 5v84_B.CYS.SG.223_B.LYS.NZ.275.pd	$8e63_B_CYS_SG_22_B_LYS_NZ_61.pdb$	8e68_B_CYS_SG_22_B_LYS_NZ_61.pdb	3 etc_A_CYS_SG_298_A_LYS_NZ_256.pdb
5iwg_B_CYS_SG_327_B_LYS_NZ_55.pdb 7k0h_B_CYS_SG_22_B_LYS_NZ_61.pdb 7l25_A_CYS_SG_69_A_LYS_NZ_133.pdb 7l25_B_CYS_SG_69_A_LYS_NZ_61.pdb 7l22_B_LYS_NZ_61.pdb 7l22_B_CYS_SG_69_A_LYS_NZ_61.pdb 7l22_B_LYS_NZ_61.pdb 7l22_B_LYS_NZ_61.pdb <td>3etc_B_CYS_SG_298_B_LYS_NZ_256.pdb</td> <td>6fcd_A_CYS_SG_149_A_LYS_NZ_307.pdb</td> <td>3fd6_B_CYS_SG_31_B_LYS_NZ_27.pdb</td>	3 etc_B_CYS_SG_298_B_LYS_NZ_256.pdb	6fcd_A_CYS_SG_149_A_LYS_NZ_307.pdb	3fd6_B_CYS_SG_31_B_LYS_NZ_27.pdb
7125_B_CYS_SG_69_B_LYS_NZ_133.pdb 71kr_B_CYS_SG_22_B_LYS_NZ_61.pdb 71zu_B_CYS_SG_22_B_LYS_NZ_61.pdb 71zu_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m03_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m01_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m02_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m02_B_CYS_SG_22B_LYS_NZ_62.pdb 7m02	4fvr_A_CYS_SG_747_A_LYS_NZ_650.pdb	3ho2_A_CYS_SG_375_A_LYS_NZ_319.pdb	5i9u_A_CYS_SG_612_A_LYS_NZ_633.pdb
7lzx_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m01_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m02_B_CYS_SG_22_B_LYS_NZ_61.pdb 7m02_B_CYS_SG_22_B_LYS_NZ_61.pdb 4ndb_A_CYS_SG_22_B_LYS_NZ_61.pdb 4ndb_A_CYS_SG_22_B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_22_B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_21B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_21B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_21B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_21B_LYS_NZ_41.pdb 4ndb_B_CYS_SG_122_B_LYS_NZ_	5iwg_B_CYS_SG_327_B_LYS_NZ_55.pdb	7k0h_B_CYS_SG_22_B_LYS_NZ_61.pdb	7l25_A_CYS_SG_69_A_LYS_NZ_133.pdb
7m03.B.CYS.SG.22.B.LYS.NZ.61.pdb 4ndb.A.CYS.SG.24.A.LYS.NZ.41.pdb 4ndb.B.CYS.SG.24.B.LYS.NZ.41.pdb 1nvq.A.CYS.SG.168.A.LYS.NZ.166.pdb 2od5.A.CYS.SG.79.A.LYS.NZ.62.pdb 7opg.A.CYS.SG.151.A.LYS.NZ.174.pdb 3vo8.A.CYS.SG.22.A.LYS.NZ.61.pdb 7sc1.A.CYS.SG.22.A.LYS.NZ.61.pdb 7s6x.A.CYS.SG.22.A.LYS.NZ.61.pdb 7s6x.A.CYS.SG.22.A.LYS.NZ.61.pdb 7s6x.A.CYS.SG.22.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.22.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.B.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.A.LYS.NZ.61.pdb 7s6x.A.CYS.SG.29.A.LYS.NZ.61.pd	7l25_B_CYS_SG_69_B_LYS_NZ_133.pdb	$7 kr_B_CYS_SG_22_B_LYS_NZ_61.pdb$	7lzu_B_CYS_SG_22_B_LYS_NZ_61.pdb
Invq_A_CYS_SG_168_A_LYS_NZ_166.pdb 2od5_A_CYS_SG_79_A_LYS_NZ_62.pdb 7opg_A_CYS_SG_151_A_LYS_NZ_174.pdb 3ov8_A_CYS_SG_62_A_LYS_NZ_69.pdb 2q9p_A_CYS_SG_68_A_LYS_NZ_74.pdb 3q98_A_CYS_SG_330_A_LYS_NZ_270.pdb 7rc1_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_104.pdb 7s6x_A_CYS_SG_104.pdb 7ubk_A_CYS_SG_2108_B_LYS_NZ_61.pdb 7ubk_B_CYS_SG_11.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 2uz8_B_CYS_SG_147_B_LYS_NZ_166.pdb 5v38_A_CYS_SG_1272_A_LYS_NZ_1228.pdb 5v38_B_CYS_SG_1272_B_LYS_NZ_56.pdb 3vb5_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6voc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6voc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6voc_A_CYS_SG_68_A_LYS_NZ_74.pdb 5v7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v7c_A_CYS_SG_223_B_LYS_NZ_275.pdb 5v7c_A_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_2	$7lzx_B_CYS_SG_22_B_LYS_NZ_61.pdb$	$7m01_B_CYS_SG_22_B_LYS_NZ_61.pdb$	$7m02_B_CYS_SG_22_B_LYS_NZ_61.pdb$
3ov8_A_CYS_SG_62_A_LYS_NZ_69.pdb 2q9p_A_CYS_SG_68_A_LYS_NZ_74.pdb 3q98_A_CYS_SG_330_A_LYS_NZ_270.pdb 7rc1_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_62_A_LYS_NZ_61.pdb 7ubk_A_CYS_SG_108_B_LYS_NZ_63.pdb 7t43_B_CYS_SG_108_A_LYS_NZ_63.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 2uz8_B_CYS_SG_1147_B_LYS_NZ_166.pdb 5v38_A_CYS_SG_11272_A_LYS_NZ_1228.pdb 5v38_B_CYS_SG_22_B_LYS_NZ_61.pdb 3wb5_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 5v38_B_CYS_SG_22_B_LYS_NZ_61.pdb 7vu6_B_CYS_SG_22_B_LYS_NZ_61.pdb 6wod_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 5v7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v7c_A_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5v84_B_CYS_SG_223_B_LYS_NZ_275.pdb	$7m03_B_CYS_SG_22_B_LYS_NZ_61.pdb$	4ndb_A_CYS_SG_24_A_LYS_NZ_41.pdb	4ndb_B_CYS_SG_24_B_LYS_NZ_41.pdb
7rc1_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_22_A_LYS_NZ_61.pdb 7s6x_A_CYS_SG_44_A_LYS_NZ_61.pdb 7rs1_A_CYS_SG_22_A_LYS_NZ_61.pdb 7t43_B_CYS_SG_22_B_LYS_NZ_61.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 1t44_B_CYS_SG_22_B_LYS_NZ_61.pdb 1t44	1nvq_A_CYS_SG_168_A_LYS_NZ_166.pdb	2od5_A_CYS_SG_79_A_LYS_NZ_62.pdb	7opg_A_CYS_SG_151_A_LYS_NZ_174.pdb
7871.A.CYS.SG.22.A.LYS.NZ.61.pdb 7t43.B.CYS.SG.22.B.LYS.NZ.61.pdb 7t44.B.CYS.SG.22.B.LYS.NZ.61.pdb 7ubk.A.CYS.SG.108.B.LYS.NZ.63.pdb 7ubk.B.CYS.SG.108.A.LYS.NZ.63.pdb 1uku.A.CYS.SG.29.A.LYS.NZ.56.pdb 2uz8.B.CYS.SG.22.A.LYS.NZ.166.pdb 5v38.A.CYS.SG.1272.A.LYS.NZ.1228.pdb 5v38.B.CYS.SG.2172.B.LYS.NZ.1228.pdb 3vb5.A.CYS.SG.22.A.LYS.NZ.74.pdb 6wob.A.CYS.SG.68.A.LYS.NZ.74.pdb 6wob.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woc.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woc.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woc.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woc.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woc.A.CYS.SG.68.A.LYS.NZ.74.pdb 5v4g.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v9c.A.CYS.SG.223.B.LYS.NZ.275.pdb	$3ov8_A_CYS_SG_62_A_LYS_NZ_69.pdb$	2q9p_A_CYS_SG_68_A_LYS_NZ_74.pdb	3q98_A_CYS_SG_330_A_LYS_NZ_270.pdb
7ubk.A.CYS.SG.108.B.LYS.NZ.63.pdb 7ubk.B.CYS.SG.108.A.LYS.NZ.63.pdb 1uku.A.CYS.SG.29.A.LYS.NZ.56.pdb 2uz8.B.CYS.SG.147.B.LYS.NZ.166.pdb 5v38.A.CYS.SG.1272.A.LYS.NZ.1228.pdb 5v38.B.CYS.SG.1272.B.LYS.NZ.1228.pdb 3vb5.A.CYS.SG.22.A.LYS.NZ.74.pdb 5w09.A.CYS.SG.68.A.LYS.NZ.74.pdb 6wob.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woe.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woe.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woe.A.CYS.SG.68.A.LYS.NZ.74.pdb 6woe.A.CYS.SG.68.A.LYS.NZ.74.pdb 5v4g.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v4g.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v7c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v7c.A.CYS.SG.223.B.LYS.NZ.275.pdb 5v84.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v84.B.CYS.SG.223.B.LYS.NZ.275.pdb 5v84.B.CYS.SG.223.B.LYS.NZ.275.pdb	7rc1_A_CYS_SG_22_A_LYS_NZ_61.pdb	$7s6x_A_CYS_SG_22_A_LYS_NZ_61.pdb$	7s6x_A_CYS_SG_44_A_LYS_NZ_61.pdb
2uz8_B_CYS_SG_147_B_LYS_NZ_166.pdb 5v38_A_CYS_SG_1272_A_LYS_NZ_1228.pdb 5v38_B_CYS_SG_1272_B_LYS_NZ_1228.pdb 3vb5_A_CYS_SG_22_A_LYS_NZ_61.pdb 3vb5_B_CYS_SG_22_B_LYS_NZ_61.pdb 7vu6_B_CYS_SG_22_B_LYS_NZ_61.pdb 6wo9_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woe_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woe_A_CYS_SG_68_A_LYS_NZ_74.pdb 5y4g_A_CYS_SG_223_B_LYS_NZ_275.pdb 5y4g_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_A_CYS_SG_223_B_LYS_NZ_275.pdb 5y7c_A_CYS_SG_223_B_LYS_NZ_275.pdb	$7s71_A_CYS_SG_22_A_LYS_NZ_61.pdb$	7t43_B_CYS_SG_22_B_LYS_NZ_61.pdb	7t44_B_CYS_SG_22_B_LYS_NZ_61.pdb
3vb5_A.CYS_SG_22_A.LYS_NZ_61.pdb 3vb5_B.CYS_SG_22_B.LYS_NZ_61.pdb 7vu6_B.CYS_SG_22_B.LYS_NZ_61.pdb 6wo9_A.CYS_SG_68_A.LYS_NZ_74.pdb 6wob_A.CYS_SG_68_A.LYS_NZ_74.pdb 6woc_A.CYS_SG_68_A.LYS_NZ_74.pdb 6woc_A.CYS_SG_68_A.LYS_NZ_74.pdb 6woc_A.CYS_SG_68_A.LYS_NZ_74.pdb 6woc_A.CYS_SG_68_A.LYS_NZ_74.pdb 5vy4g_B.CYS_SG_223_B.LYS_NZ_275.pdb 5vy4g_B.CYS_SG_223_B.LYS_NZ_275.pdb 5vy6g_B.CYS_SG_223_B.LYS_NZ_275.pdb 5vy84_B.CYS_SG_223_B.LYS_NZ_275.pdb 5vy84_B.CYS_SG_223_B.LYS_NZ_275.pdb 5vy84_B.CYS_SG_223_B.LYS_NZ_275.pdb	7ubk_A_CYS_SG_108_B_LYS_NZ_63.pdb	7ubk_B_CYS_SG_108_A_LYS_NZ_63.pdb	1uku_A_CYS_SG_29_A_LYS_NZ_56.pdb
6wo9_A_CYS_SG_68_A_LYS_NZ_74.pdb 6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb 5y4g_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y4g_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y7c_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb	2uz8_B_CYS_SG_147_B_LYS_NZ_166.pdb	5v38_A_CYS_SG_1272_A_LYS_NZ_1228.pdb	5v38_B_CYS_SG_1272_B_LYS_NZ_1228.pdb
6wod_A_CYS_SG_68_A_LYS_NZ_74.pdb 6woe_A_CYS_SG_68_A_LYS_NZ_74.pdb 5y4g_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_A_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_A_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb	$3vb5_A_CYS_SG_22_A_LYS_NZ_61.pdb$	3vb5_B_CYS_SG_22_B_LYS_NZ_61.pdb	7vu6_B_CYS_SG_22_B_LYS_NZ_61.pdb
5y4g_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y4g_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb	6wo9_A_CYS_SG_68_A_LYS_NZ_74.pdb	6wob_A_CYS_SG_68_A_LYS_NZ_74.pdb	6woc_A_CYS_SG_68_A_LYS_NZ_74.pdb
5y7c_B_CYS_SG_223_B_LYS_NZ_275.pdb 5y84_A_CYS_SG_223_A_LYS_NZ_275.pdb 5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb	6wod_A_CYS_SG_68_A_LYS_NZ_74.pdb	6woe_A_CYS_SG_68_A_LYS_NZ_74.pdb	6woh_A_CYS_SG_68_A_LYS_NZ_74.pdb
	$5y4g_A_CYS_SG_223_A_LYS_NZ_275.pdb$	$5y4g_B_CYS_SG_223_B_LYS_NZ_275.pdb$	$5y7c_A_CYS_SG_223_A_LYS_NZ_275.pdb$
A LA CAMO COLLUM A TAMO AND ALCO ALL CAMO COLLO A TAMO AND ALCO ALL	$5y7c_B_CYS_SG_223_B_LYS_NZ_275.pdb$	5y84_A_CYS_SG_223_A_LYS_NZ_275.pdb	5y84_B_CYS_SG_223_B_LYS_NZ_275.pdb
4yhv_A_CY\$_\$G_445_A_LY\$_NZ_443.pdb 3oy1_A_CY\$_\$G_283_A_LY\$_NZ_346.pdb	4yhv_A_CYS_SG_445_A_LYS_NZ_443.pdb	3oy1_A_CYS_SG_283_A_LYS_NZ_346.pdb	

Structural parameters and RMSD for Gly-Cys and Arg-Cys complexes without an NOS linkage

Supplementary Table VI: Structural parameters and RMSD for Gly-Cys and Arg-Cys complexes without an NOS linkage. Selected structural parameters and root-mean-square deviations (RMSDs) for optimized Gly-Cys and Arg-Cys complexes without an NOS linkage. RMSD values were calculated between the optimized geometries and their corresponding PDB-REDO structures.

Complex	PDB ID	dist(S,N) [Å]	∠ _{CSN} [°]	∠ _{CNS} [°]	RMSD [Å]
Gly-Cys (NH ₂ , SH)	6PGD	4.26	110.17	75.79	0.5903
Gly-Cys (11112, 511)	6T3X	3.71	74.75	110.98	0.4640
Gly-Cys ⁺¹ (NH ₃ , SH)	6PGD	3.36	107.00	96.46	0.3135
Gly-Cys (N113, 511)	6T3X	3.40	78.47	111.84	0.3710
ARG-Cys ($N_{\eta}H$, $N_{\eta}H_2$, SH)	3MWB	3.64	151.98	99.35	0.9103
Ang-Cys ($N_{\eta}\Pi$, $N_{\eta}\Pi_2$, $S\Pi$)	3G2K	3.65	99.26	122.88	0.3167
ARG-Cys $(N_{\eta}H_2, N_{\eta}H, SH)$	3MWB	-	-	-	-
Ang-cys $(N_{\eta}\Pi_2, N_{\eta}\Pi, \Pi)$	3G2K	3.65	98.41	122.66	0.2726
$ARG-Cys^{+1} (N_{\eta}H_2, N_{\eta}H_2, SH)$	3MWB	3.68	143.05	93.42	0.8531
	3G2K	3.56	94.40	125.82	0.2858

In our optimization protocol, backbone atoms were fixed to their coordinates in the corresponding PDB-REDO structure except for glycine backbone nitrogen. This approach ensures that observed differences primarily reflect local side-chain rearrangements in RMSD calculations.

Gibbs free energy change (ΔG) for NOS-linked arginine and glycine complexes

Supplementary Table VII: Gibbs free energy change (ΔG) for NOS-linked arginine and glycine complexes. Values are reported for each PDB structure, with triplet O_2 calculations in parentheses.

Complex	PDB ID	$\Delta G [\text{kcal/mol}]$
Gly-NOS-Cys (NH)	6PGD	-45.19 (-22.69)
Gly-NOS-Cys (NII)	6T3X	-41.67 (-19.17)
$Gly-NOS-Cys^{+1}$ (NH_2)	6PGD	-34.23 (-11.73)
	6T3X	-27.75 (-05.25)
ARG-N _{η} OS-Cys (N _{η2} H ₂ , N _{η1})	3MWB	-48.84 (-26.34)
Arto-in η Ob-Cys (in η 2112, in η 1)	3G2K	-50.98 (-28.48)
ARG- N_{η} OS- Cys^{+1} ($N_{\eta 2}H_2, N_{\eta 1}H_1$)	3MWB	-33.29 (-10.79)
And- N_{η} OS-Cys (N_{η} 2112, N_{η} 1111)	3G2K	-36.34 (-13.84)
ARG- N_{η} OS-Cys $(N_{\eta 2}H, N_{\eta 1}H)$	3MWB	-43.38 (-20.88)
And-in η Ob-Cys (Π_{η} 211, Π_{η} 111)	3G2K	-43.40 (-20.90)

 ΔG_{NOS} represents the Gibbs free energy change for the reactions $\text{Arg} + \text{Cys} + \text{O}_2 \rightarrow \text{Arg}(\text{NOS})\text{Cys} + \text{H}_2\text{O}$ and $\text{Gly} + \text{Cys} + \text{O}_2 \rightarrow \text{Gly}(\text{NOS})\text{Cys} + \text{H}_2\text{O}$. In NOS-linked products, an oxygen atom replaces a hydrogen on the amino group (glycine) or the $N_{\eta 1}$ site of the guanidinium group (arginine), forming the NOS linkage (see Fig. 1 in the main text).

X-ray crystallographic structural parameters of novel NOS linkages

Supplementary Table VIII presents X-ray crystallographic structural parameters, including bond lengths and angles, for the NOS linkages between glycine and cysteine and arginine and cysteine. These linkages were among those suggested by our algorithm as novel NOS linkages and were initially verified through manual inspection of their corresponding electron densities, as illustrated in Fig. 4 in the main paper. The structural parameters were obtained from the PDB-REDO [4] database and analyzed using the Coot software package [5]. Notably, these experimentally derived parameters agree with our quantum mechanical calculations of corresponding NOS linkages, as presented in Table 1 in the main text. This concordance between experimental and theoretical data further supports the validity of the proposed NOS linkages. A perfect agreement between these experimental values and our quantum-mechanical calculations is not expected, as NOS linkages have only recently been discovered.

Supplementary Table VIII: Structural parameters for new NOS linkages from PDB-REDO structures.

PDB code	Residue pair	dist(S,N) [Å]	∠CSN [°]	∠CNS [°]
6pgb	Cys334-Gly30, A	2.69	99.85	134.31
6T3X	Cys35- Gly -5, A	2.70	90.47	95.79
3MWB	Cys34-Arg43, B	2.89	101.33	109.83
3G2K	Cys783-Arg786, A	2.63	104.91	142.25

Refinement and Validation of NOS Linkages

To validate the presence of NOS covalent linkages predicted by our clustering approach, we re-refined four representative protein structures using phenix.refine (version 1.20.1-4487-000). For each structure, an initial pre-refinement phase (10 cycles until convergence of R_{work} and R_{free} over three successive rounds) was followed by 5 cycles of standard refinement incorporating XYZ coordinate refinement, TLS parameterization, occupancy refinement, and individual B-factor optimization. Tailored geometric restraints for the NOS bond were generated from quantum mechanical calculations, and partial occupancies were refined where applicable.

In all cases, the explicit modeling of the NOS linkage led to a marked improvement in the overall model fit, as evidenced by decreases in both $R_{\rm work}$ and $R_{\rm free}$ and reductions in the clashscore. In addition, inspection of the $2mF_o-DF_c$ electron density maps revealed that spurious positive difference density—previously observed in regions corresponding to the putative NOS bond—was largely eliminated after NOS modeling, leading to continuous electron density between the key residues.

Structure validation was performed using phenix.molprobity to assess geometric quality, clash scores, and steric interactions, ensuring consistency with high-resolution crystallographic data. Additionally, phenix.table1 was used to generate a complete validation report, summarizing refinement statistics, model quality metrics, and stereochemical deviations. Below, we provide a summary of the refinement and validation statistics for each protein, listed in the following order: 6PGD, 6T3X, 3MWB, and 3G2K. Detailed protocols and raw data are available at Protein Refinement Data.

6PGD: Refinement of Gly30-Cys334 NOS Linkage

For the 6PGD structure, pre-refinement revealed residual positive difference density between Gly30 and Cys334. Upon modeling the NOS bond, the unexplained density was removed and continuous electron density was observed connecting these residues. Table IX summarizes the key validation metrics.

Supplementary Table IX: Refinement and validation statistics for 6PGD before and after NOS modeling. Data represent the original model (PDB-REDO), before NOS (initial pre-refinement), and after NOS (final model).

Parameter	Original Model	Before NOS	After NOS	Change
Resolution range (Å)	33.67-1.50	33.67-1.50	33.67-1.50	No change
$R_{ m work}$	0.1516	0.1313	0.1312	Improved
$R_{ m free}$	0.1714	0.1534	0.1528	Improved
RMS(bonds) (Å)	0.017	0.005	0.005	Improved
RMS(angles) (°)	1.58	0.86	0.85	Improved
Ramachandran favored	95.38	96.04	95.71	Slight
(%)				decrease
Ramachandran outliers	0.00	0.00	0.00	No change
(%)				
Rotamer outliers (%)	0.00	0.00	0.00	No change
Clashscore	2.82	2.21	1.61	Improved
Average B-factor (\mathring{A}^2)	12.40	12.58	12.85	Slight
				increase

6T3X: Refinement of Gly-5-Cys35 NOS Linkage

For the 6T3X structure, a prominent positive difference density was observed between the sulfur atom of Cys35 and the backbone nitrogen of Gly-5 in the pre-refinement state. Following NOS modeling, this residual density was eliminated, and the electron density map showed continuous connectivity between Gly-5 and Cys35. Table X details the improved refinement statistics.

Supplementary Table X: Refinement and validation statistics for 6T3X before and after NOS modeling. Data represent the original model (PDB-REDO), before NOS (initial pre-refinement), and after NOS (final model).

Parameter	Original Model	Before NOS	After NOS	Change
Resolution range (Å)	41.28-1.479	41.28-1.479	41.28-1.479	No change
$R_{ m work}$	0.1881	0.2218	0.2078	Improved
$R_{ m free}$	0.2254	0.2586	0.2516	Improved
RMS(bonds) (Å)	0.011	0.006	0.007	Improved
RMS(angles) (°)	1.28	0.79	0.92	Improved
Ramachandran favored	99.23	98.97	98.97	Slight
(%)				decrease
Ramachandran outliers	0.00	0.00	0.00	No change
(%)				
Rotamer outliers (%)	1.34	1.34	2.14	Increased
Clashscore	6.11	3.82	2.75	Improved
Average B-factor (\mathring{A}^2)	38.86	37.94	38.49	Slight
, ,				increase

3MWB: Refinement of Cys34-Arg43 NOS Linkage

In the 3MWB structure, a small but distinct positive difference density was observed between Cys34 and Arg43 prior to NOS modeling. After the introduction of the NOS bond, this residual density was eliminated, and the connectivity in the $2mF_o - DF_c$ map was markedly improved. Table XI summarizes the validation statistics for 3MWB.

Supplementary Table XI: Refinement and validation statistics for 3MWB before and after NOS modeling. Data represent the original model (PDB-REDO), before NOS (initial pre-refinement), and after NOS (final model).

Parameter	Original Model	Before NOS	After NOS	Change
Resolution range (Å)	42.28-1.999	42.28-1.999	42.28-1.999	No change
$R_{ m work}$	0.2020	0.1929	0.1852	Improved
$R_{ m free}$	0.2256	0.2337	0.2323	Improved
RMS(bonds) (Å)	0.010	0.007	0.008	Slight
RMS(angles) (°)	0.80	0.80	0.85	increase Slight increase
Ramachandran favored (%)	98.84	98.34	98.34	Minimal change
Rotamer outliers (%)	1.24	2.28	2.90	Increased
Clashscore	3.26	4.24	3.37	Improved
Average B-factor (\mathring{A}^2)	35.12	32.68	32.82	Slight increase

3G2K: Refinement of Cys783-Arg786 NOS Linkage

In the 3G2K structure, the NOS bond between Cys783 and Arg786 was modeled following pre-refinement. Prior to NOS modeling, residual positive difference density was observed near the Arg786 side chain and between the interacting nitrogen and sulfur atoms. After introducing the NOS linkage, the electron density became continuous between Cys783 and Arg786 and the residual density was largely eliminated. The final model shows substantial improvements: R_{work} decreased from 0.1923 to 0.1436, R_{free} from 0.2122 to 0.1816, and the clashscore from 0.61 to 0.38. These improvements are summarized in Table XII.

Supplementary Table XII: Refinement and validation statistics for 3G2K before and after NOS modeling. Data represent the original model (PDB-REDO), before NOS (initial pre-refinement), and after NOS (final model).

Parameter	Original Model	Before NOS	After NOS	Change
Resolution range (Å)	25.75-2.001	25.25-2.001	25.75-2.001	Slight change
$R_{ m work}$	0.1923	0.1607	0.1436	Improved
$R_{ m free}$	0.2122	0.1930	0.1816	Improved
RMS(bonds) (Å)	0.011	0.007	0.008	Slight
RMS(angles) (°)	1.15	0.80	0.85	increase Slight
Ramachandran favored (%)	97.63	97.63	97.38	$rac{ ext{increase}}{ ext{Slight}}$
Rotamer outliers (%)	1.00	1.14	0.86	Improved
Clashscore	0.61	0.83	0.38	Improved
Average B-factor (\mathring{A}^2)	30.13	40.17	41.58	Increased

 $^{^{\}ast}$ *sophia.bazzi@uni-goettingen.de

^[1] Fabian Rabe von Pappenheim, Marie Wensien, Jin Ye, Jon Uranga, Iker Irisarri, Jan de Vries, Lisa-Marie Funk, Ricardo A Mata, and Kai Tittmann, "Widespread occurrence of covalent lysine-cysteine redox switches in proteins," Nature Chemical Biology 18, 368–375 (2022).

^[2] K Ishara Silva, Brian C Michael, Steven J Geib, and Sunil Saxena, "ESEEM analysis of multi-histidine cu (ii)-coordination in model complexes, peptides, and amyloid-β," The Journal of Physical Chemistry B 118, 8935–8944 (2014).

^[3] Stefan Zechel, Martin D Hager, Tobias Priemel, and Matthew J Harrington, "Healing through histidine: Bioinspired pathways to self-healing polymers via imidazole—metal coordination," Biomimetics 4, 20 (2019).

^[4] Robbie P Joosten, Krista Joosten, Garib N Murshudov, and Anastassis Perrakis, "PDB_REDO: constructive validation, more than just looking for errors," Acta Crystallographica Section D: Biological Crystallography 68, 484–496 (2012).

^[5] Paul Emsley, Bernhard Lohkamp, William G Scott, and Kevin Cowtan, "Features and development of coot," Acta Crystallographica Section D: Biological Crystallography 66, 486–501 (2010).