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Background: To develop and validate a radiomics model using computed tomography (CT) images 
acquired from the first diagnosis to estimate the status of occult brain metastases (BM) in patients with stage 
IV lung adenocarcinoma (LADC).
Methods: One hundred and ninety-three patients who were first diagnosed with stage IV LADC were 
enrolled and divided into a training cohort (n=135) and a validation cohort (n=58). Then, 725 radiomic 
features were extracted from contoured primary tumor volumes of LADCs. Intra- and interobserver 
reliabilities were calculated, and the least absolute shrinkage and selection operator (LASSO) was applied 
for feature selection. Subsequently, a radiomics signature (Rad-Score) was built. To improve performance, a 
nomogram incorporating a radiomics signature and an independent clinical predictor was developed. Finally, 
the established signature and nomogram were assessed using receiver operating characteristic (ROC) curves 
and precision-recall curves (PRC). Both empirical and α-binomial model-based ROCs and PRCs were 
plotted, and the area under the curve (AUC) and average precision (AP) of ROCs and PRCs were calculated 
and compared.
Results: A radiomics signature and Rad-Score were constructed using eight radiomic features, and these 
had significant correlations with occult BM status. A nomogram was developed by incorporating a Rad-Score 
and the primary tumor location. The nomogram yielded an optimal AUC of 0.911 [95% confidence interval 
(CI): 0.903–0.919] and an AP of 0.885 (95% CI: 0.876–0.894) in the training cohort, and an AUC of 0.873 
(95% CI: 0.866–0.80) and an AP of 0.827 (95% CI: 0.820–0.834) in the validation cohort using α-binomial 
model-based method. The calibration curve demonstrated that the nomogram showed high agreement 
between the actual occult BM probability and predicted by the nomogram (P=0.427).
Conclusions: The nomogram incorporating a radiomics signature and a clinical risk factor achieved 
optimal performance after holistic assessment using unbiased indexes for diagnosing occult BM of patients 
who were first diagnosed with stage IV LADC.
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Introduction

Lung cancer is the most common cause of cancer-related 
deaths worldwide, of which 80–85% are non-small cell lung 
cancer (NSCLC) (1,2). Brain metastases (BMs) remain an 
important cause of morbidity and mortality in patients with 
lung cancer, especially NSCLC (3).

Lung adenocarcinoma (LADC) is the most common 
histologic subtype of NSCLC and is the dominant epidemic 
factor of BM, and it usually leads to death (4). Therefore, 
the prevention of BM is of great significance for patients 
with LADC. However, approximately 10% of NSCLC 
patients already have BM at first diagnosis (5). Notably, the 
rate of BM in advanced-stage patients with NSCLC who 
also have bone metastases, liver metastases, or/and adrenal 
metastases is higher than that in patients at earlier stages (6). 
Moreover, LADCs with distant bone metastases and/or liver 
metastases who were diagnosed with stage IV disease are 
more likely to develop BM than those diagnosed at earlier 
stages (7). In this study, “occult” refers to cases where BMs 
are not found using computed tomography (CT) but are 
found when using magnetic resonance imaging (MRI). 
Treatment strategies are distinctly different depending on 
whether occult BM is present, and hence early detection 
of occult BM and delivery of tailored therapies, including 
radiotherapy (8), surgery (9), or/and tyrosine kinase 
inhibitors (TKIs) (10,11), can significantly improve the 
prognosis of stage IV LADC.

Occult BM usually measuring less than 1 cm may be 
ignored during scanning CT. Guidelines for NSCLC by 
the National Comprehensive Cancer Network (NCCN) 
recommend MRI to detect single or multiple intracranial 
BM (12). However, although cranial MRI is considered the 
gold standard for diagnosing occult BM, it is not suitable 
for patients with heart pacemakers, claustrophobia, metal 
implants, or low Karnofsky Performance Status (KPS) (13-15).  
Advances in computational image analysis, such as 
radiomics, involve the use of large amounts of quantitative 
imaging features derived from medical images to decode 
tumor pathology or heterogeneity (16-18). Recently, many 
studies aimed to construct CT radiomic models to assess the 
relationship between lung cancer and BM (19,20). Zhang 
et al. extracted radiomics features from contrast-enhanced 
brain CT to differentiate the pathological subtypes of 
primary lung cancer (21).

On the other hand, Chen et al. built a hybrid model 
incorporating clinical risk factors and unenhanced CT 
radiomics features to predict BM in patients with T1 

LADCs (22). In contrast, a radiomics model was developed 
by Sun et al., which can accurately assess the BM-free 
survival of patients with locally advanced LADC following 
thoracic surgery (9). However, to the best of our knowledge, 
no previous radiomic studies have been conducted to 
address the diagnosis of occult BM in stage IV LADC, even 
though it has potential clinical applications that can improve 
prognosis. Therefore, a reasonable hypothesis is that CT 
radiomics can be utilized to predict occult BM in LADCs 
as a feasible alternative to MRI scanning, thus lessening the 
burden on patients and the health care system.

In the present study, we aimed to develop and validate a 
radiomics model using CT images acquired at first diagnosis 
to estimate the status of occult BM in patients with stage 
IV LADCs. We present the following article in accordance 
with the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) 
reporting checklist (available at https://dx.doi.org/10.21037/
tcr-21-702).

Methods

Study design

The overall workflow of this study is illustrated in Figure 1. 
The workflow consists of five steps: (I) patients and images, 
(II) tumor segmentation, (III) feature extraction, (IV) 
radiomics signature and nomogram construction, and (V) 
model evaluation.

Patient sample

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Institutional Review Board of Shandong 
University (KYLL-2014(LW)03), and the need for informed 
consent was waived because the study was an observational, 
retrospective study. In this study, patients who were first 
diagnosed with stage IV LADC between January 1, 2014, 
and July 31, 2020, and who had distant metastases (brain, 
lung, bone, liver, adrenal gland, or other organs) were 
included in the study. The inclusion criteria were as follows: 
(I) clinical diagnosis with stage IV lung cancer, (II) no BM 
observed in pretreatment baseline cranial CT images, and 
(III) had cranial MRI and baseline chest CT. The exclusion 
criteria were as follows: (I) no pretreatment baseline chest 
CT images, (II) insufficient image quality, (III) no cranial 
MRI scans, and (IV) a history of other malignancy. The 
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occult BM status of enrolled patients was determined 
using CT and MRI, which were cross-reviewed by two 
experienced radiologists. Finally, enrolled patients were 
divided into two cohorts using a cutoff date of July 1, 2018, 
i.e., the training cohort to develop the prediction model 
and the validation cohort to evaluate the performance of the 
established model.

Clinical factors and laboratory indexes, including age, 
sex, smoking status, tumor diameter, CT-reported lymph 
node (LN), primary tumor location, pleural effusion, and 
carcinoma embryonic antigen (CEA), were recorded.

CT images acquisition

CT images were scanned and collected for all enrolled 
patients. All patients underwent standard chest unenhanced 
CT scanning using a GE scanner (Light Speed VCT, 
GE Healthcare Systems, Chicago, IL, USA) or a GE CT 
scanner (Discovery 750 HD, GE Healthcare Systems, 
Chicago, IL, USA). The scanning protocol was as follows: 
X-ray tube peak voltage 120 kV, tube current ranged from 
230 to 327 mA, slice thickness 5.0 mm, in-plane resolution 
0.7734×0.7734 mm/pixel, and helical scanning mode.

Tumor segmentation

Tumor segmentation was implemented using 3D Slicer 
software (version 4.10.2, www.slicer.org), an open-

source platform for medical image processing, including 
segmentation, registration, visualization, etc. Primary gross 
tumor volumes (GTV) of LADCs were manually delineated 
by an independent radiologist with over five years of 
professional experience, and then another experienced 
oncologist crosschecked contoured GTVs. Finally, given 
that contoured GTVs may not be accurate, a 3×3 Gaussian 
filter with a variance of σ2=0.2 was used to thicken and 
smoothen the contours to facilitate all delineations more 
robustly and reduce the risk of interobserver variance.

Radiomic feature extraction

Radiomic features were extracted using the SlicerRadiomics 
extension module in 3D slicer (version 4.10.2, www.
slicer.org), which is an embedded graphical user interface 
(GUI) of pyRadiomics packages used for specific feature 
calculations (23) for each contoured GTV. In all ,  
725 features were calculated, and they fell into the 
following six categories: (I) 14 shape features, (II) 18 first-
order intensity histogram (IH)-based features, and 61 
statistical matrix (SM)-based features divided into (III) 24 
gray-level co-occurrence matrix (GLCM)-based features, 
(IV) 16 gray-level run-length matrix (GLRLM)-based 
features, (V) 16 gray-level size zone matrix (GLSZM)-
based features, and (VI) 5 neighboring gray-tone difference 
matrixes (NGTDM). Moreover, 632 wavelet-based features 
(including IH and SM features) were extracted from eight 

Patients and Images               Segmentation              Feature Extraction                    Modeling                            Evaluate

Rad-Score =

F_1*coef_1+

F_2*coef_2+

F_3*coef_3+

... ... * ... ... +

F_n*coef_n

Figure 1 Workflow of study.
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wavelet decompositions.

Radiomics signature and nomogram construction

A two-step feature selection was implemented before 
building the radiomics signature. First, intra- and 
interobserver reliabilities were tested with 30 randomly 
selected patients using an intraclass correlation coefficient 
(ICC), where an ICC ≥0.75 was considered as indicating 
good reliability. The detailed workflow for feature selection 
and modeling can be found in Figure S1. Then, the least 
absolute shrinkage and selection operator (LASSO) (with 
a binary regression model, a five-fold cross-validation 
method, an “auc” loss measurement, and using normalized 
data) was performed to determine the most predictive 
features for diagnosing occult BM and to make subsequent 
models or signatures more robust and effective. Moreover, 
predictive clinical risk factors were selected from potential 
candidates using univariate analyses. Univariate analyses 
were performed using the training cohort.

After feature selection, the Rad-Score, also known as the 
radiomics signature or score, was constructed from a linear 
combination of features and corresponding weights derived 
from LASSO. Furthermore, a nomogram was established 
by incorporating the Rad-Score and predictive clinical risk 
factors to test whether the predictive performance would 
benefit from clinical information.

Validation of radiomics signature and nomogram

The Rad-Score and nomogram were developed based 
on the training cohort and validated in both the training 
and validation cohorts. In this study, discrimination and 
calibration were calculated to assess the developed models. 
First, the Rad-Score and nomogram discrimination 
were evaluated using an empirical receiver operating 
characteristic curve (ROC) and the area under the 
curve (AUC). Due to the limited cohort size, empirical 
ROC curves have the disadvantage of having an uneven 
appearance and introducing non-ignorable uncertainty, 
especially when the dataset is small. ROC curves may 
perform poorly for evaluation despite a superior AUC when 
the positive and negative data used for building a prediction 
model are imbalanced. In these cases, the precision-recall 
curve (PRC) plots the positive prediction value (PPV) 
against the true positive rate (TPR) across all thresholds 
and represents a more accurate method to assess established 
models and the area under PRC defined as average precision 

(AP). Hence, the α-binomial model-based ROC curve and 
PRC proposed by Brodersen et al. to plot smooth curves 
were used to address the above issues (24). Second, the 
nomogram calibration was assessed regarding its predictive 
accuracy and the agreement between the actual occult BM 
probability and that predicted by the nomogram; using a 
Hosmer-Lemeshow test, a P value ≥0.05 was considered as 
indicating good agreement.

Statistical analysis

Statistical analyses were performed in R version 3.3.1 (The 
R Foundation for Statistical Computing). Comparisons and 
univariate analyses were implemented in R with the stats 
package. Mann-Whitney U-tests or two-sample t-tests were 
employed where appropriate. The LASSO was performed 
in R with the glmnet package. Nomogram and calibration 
curves were performed in R with the rms package. The 
α-binomial model-based ROC curves and PRCs were 
plotted in MATLAB (version 2018a, The MathWorks Inc., 
Natick, MA, USA) using an open-source code derived from 
MathWorks Central File Exchange (25). All of the reported 
statistical significance levels were two-sided. The statistical 
significance level was set to P<0.05.

Results

Patients’ characteristics

In total, 193 consecutive patients were enrolled. The 
training cohort and the validation cohort consisted of 
135 and 58 patients, respectively. Patients’ characteristics, 
including clinical factors and laboratory indexes, are 
summarized in Table 1. The demographic characteristics 
of the two cohorts were similar. No significant differences 
were observed for any factors with P values ranging from 
0.094 to 0.836. Two examples of occult BM are depicted in 
Figure 2.

Radiomics signature construction and validation results

After the first step of feature selection, 549 out of 725 
extracted features had ICC ≥0.75, indicating high intra- and 
interobserver reliabilities for the multiple segmentation test, 
and the results of reproducible features listed in Table S1.  
Subsequently, eight features with nonzero coefficients were 
selected from the reliable features using a LASSO binary 
regression model while tuning with the parameter λ. The 

https://cdn.amegroups.cn/static/public/TCR-21-702-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-21-702-supplementary.pdf
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Table 1 Characteristics of patients in the training and validation cohorts

Characteristic Training Cohort Validation Cohort P value

Age (years) 0.162

Mean 62.39 62.17

Range 28–82 39–83

Sex 0.347

Male 70 [52] 38 [66]

Female 65 [48] 20 [34]

Smoke 0.531

Yes 56 [41] 25 [43]

No 79 [59] 33 [57]

Tumor diameter 0.094

≤4 cm 70 [52] 36 [62]

4–8 cm 59 [44] 19 [33]

≥8 cm 6 [4] 3 [5]

Primary tumor location 0.836

RL-Upper 41 [30] 17 [29]

RL-Middle 9 [7] 5 [9]

RL-Lower 34 [25] 7 [12]

LL-Upper 23 [17] 15 [26]

LL-Lower 21 [16] 12 [21]

Right hilar 2 [1] 2 [3]

Left hilar 5 [4] 0 [0]

Pleural effusion 0.117

Yes 69 [51] 27 [47]

No 66 [49] 31 [53]

CT-reported LN 0.461

Yes 99 [73] 45 [78]

No 36 [27] 13 [22]

CEA 0.253

Normal 49 [36] 22 [38]

Abnormal 86 [64] 36 [62]

Occult BM 0.511

Yes 60 [44] 23 [40]

No 75 [56] 35 [60]

All the data except Age in above table are numbers of patients, with percentages in parentheses. No difference was found between 
training cohort and validation cohort (P=0.094–0.836). RL, right lung; LL, left lung; CT, computed tomography; LN, lymph node; CEA, 
carcinoembryonic antigen; BM, brain metastasis.
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process of the tuning phase of LASSO and the feature 
dimension reduction is illustrated in Figure 3.

Then the Rad-Scores were established using the 
following formulas:

Rad-Score =−0.0728× Original-Shape-Flatness
−0.0033× W-HLL-GLCM-Correlation
+0.1020× W-HLH-GLSZM-SALGLE
−0.1318× W-HHH-Firstorder-Skewness     [1]
+0.0487× W-HHH-Firstorder-Mean
+0.0065× W-HHH-NGTDM-Busyness
+0.0568× W-HHL-GLCM-MCC
−0.0295× W-LLL-Firstorder-Variance

The Rad-Score values calculated from the training and 
validation cohort are shown in Figure 4. The empirical and 
α-binormal-based ROC curves and PRCs of the developed 

Rad-Scores are presented in Figure 5. 

Nomogram construction and validation

In univariate analyses, only primary tumor location was 
an independent clinical risk factor in the nomogram. The 
results of univariate analyses can be found in Table S2. A 
nomogram was constructed by combining the independent 
clinical risk factor and the Rad-Score; it is depicted in Figure 6.  
The empirical and α-binormal-based ROC curves and PRCs 
of developed Rad-Scores are presented in Figure 7. The 
calibration curve of the nomogram is plotted in Figure 8. 
The Hosmer-Lemeshow test (P value was 0.427) showed 
that there was no significant difference between predicted 
metastases and the observed metastases in the validation 

A B C D

Figure 2 Two examples of occult brain metastases (BM). (A) and (B) are the same slice in computed tomography (CT) and magnetic 
resonance imaging (MRI) of Example 1, respectively. (C) and (D) are the same slice in CT and MRI of Example 2, respectively. Red arrows 
indicated that occult brain metastases.
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Figure 3 Feature selection using the least absolute shrinkage and selection operator (LASSO) with a binary classification model. (A) The 
LASSO coefficient profile graph is shown using coefficients against the log(λ) sequence. Vertical lines are shown corresponding to 1 standard 
error (1-se) and maximum criteria. (B) Tuning parameter λ-based 1-se and maximum criteria. The area under the curve (AUC) relating to λ 
is shown. The 1-se of maximum criteria (left vertical line) is shown using the right vertical line. In this study, λ with corresponding optimal 
AUC was chosen (λ=−2.781). As a result, eight radiomic features with nonzero coefficients were selected.
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Figure 4 Bar plot of the Rad-Score value for each patient in the training cohort (A) and the validation cohort (B). Patients with Rad-Score 
values ≥0 were considered as being at high risk for metastases, while patients with values <0 were deemed as being at low risk for metastases. 
Patients with and without BM are marked with different colors.

Figure 5 The performance of the Rad-Score developed in this study. (A) The receiver operating characteristic (ROC) curves. (B) The 
precision-recall curve (PRC). Subscripts emp and αbin are empirical and α-binormal-based, respectively, ROC or PRC. 

Figure 6 Nomogram developed by incorporating clinical risk factors and Rad-Score of the training cohort.
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cohort.

Comparisons of developed Rad-Score and nomogram

The developed Rad-Score and nomogram performances 
were calculated and compared in the training cohort and 
the validation cohort, as shown in Table 2. The nomogram 
yielded an optimal AUC of 0.911 [95% confidence interval 
(CI), 0.903–0.919] and an AP of 0.885 (95% CI: 0.876–
0.894) in the training cohort, and an AUC of 0.873 (95% 
CI: 0.866–0.880) and an AP of 0.827 (95% CI: 0.820–0.834) 
in the validation cohort using an α-binomial-based method. 
Notably, all of the performances of the nomogram were 
significantly higher than those of the Rad-Score (all  
P value <0.001). Additionally, no significant differences 

were observed between the empirical and α-binormal-
based methods (all P value >0.05), indicating that prediction 
results of occult BM are reasonable and robust.

Discussion

Patients who already have bone metastases and/or liver 
metastases when they are first diagnosed are defined as 
having stage IV LADC (26). Although they may not yet 
have BM, these patients are at higher risk for BM than 
those at earlier stages. Notably, some stage IV LADCs may 
have developed occult BM, which cannot be captured using 
CT imaging, with the result that occult BM continues to 
progress and lead to a poor prognosis. Patients harboring 
occult BM can be detected using an MR scanner; however, 
several contraindications limit its availability. With the 
emergence of quantitative imaging analysis in precision 
medicine, CT radiomics has been widely used for diagnosis. 
In this study, although Rad-Score displayed a significant 
correlation with occult BM, we assumed that it would 
achieve a better performance if combined with other clinical 
predictors. Indeed our results verified this hypothesis. The 
proposed CT radiomics-based nomogram for the diagnosis 
occult BM showed remarkable AUC and AP in both the 
training and the validation cohort compared to radiomics 
alone. The results demonstrated that CT is useful for 
detecting occult BM of stage IV LADC in the absence of 
MR imaging.

To make the model developed more predictive and robust, 
feature selection is a crucial step of a radiomics study (27).  
The Rad-Score consisted of eight features, and nearly all of 
the selected predictive features were wavelet, similar to the 
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Table 2 Comparison of performances of Rad-Score and nomogram

Groups
Training Cohort Validation Cohort

AUC
αbin

AUC
emp

AP
αbin

AP
emp

AUC
αbin

AUC
emp

AP
αbin

AP
emp

Rad-Score 0.854  
(0.849–0.859)

0.852  
(0.848–0.856)

0.822  
(0.820–0.824)

0.808  
(0.801–0.815)

0.792  
(0.790–0.794)

0.809  
(0.803–0.812)

0.730  
(0.718–0.742)

0.689  
(0.681–0.697)

Nomogram 0.911  
(0.903–0.919)

0.909  
(0.906–0.912)

0.885  
(0.876–0.894)

0.869  
(0.865–0.873)

0.873  
(0.866–0.880)

0.866  
(0.861–0.871)

0.827  
(0.820–0.834)

0.807  
(0.796–0.818)

P value 0.001ζ 0.001ε 0.001η 0.001θ 0.001ψ 0.001σ 0.001ρ 0.001μ

Note: All the data in parentheses are 95% confidence interval (CI). Subscript emp and αbin were empirical-based and α-binormal-based, 
respectively, AUC or AP. ζ, ψ The comparison of AUCαbin, 

ε, σ The comparison of AUCemp, 
η, ρ The comparison of APαbin, and θ, μ The comparison 

of APemp between Rad-Score and nomogram in both training and validation cohort.

results of several published studies (28-30). A reasonable 
hypothesis is that the multifrequency decomposition of the 
original CT image captured underlies information about 
tumor heterogeneity between BM and BM-free LADCs, 
which clinicians cannot assess with unassisted vision. In 
addition, a bar plot showed that a Rad-Score value of zero 
is a potential diagnostic threshold and achieved satisfactory 
performance. Therefore, the established Rad-Score can 
efficiently stratify patients of unknown BM status into high- 
and low-risk subgroups concerning BM.

Previous studies have suggested that the radiomics 
signature combined with clinical risk factors can significantly 
improve the performance of various clinical tasks related 
to lung cancer (31-34). For instance, a combined model 
incorporating CT-based radiomics and clinical features 
outperforms CT-based radiomics alone for predicting 
distant metastases of NSCLC (35), estimating BM-free 
survival of curatively resected locally advanced NSCLC (9),  
and predicting survival after whole brain radiotherapy of 
NSCLC patients with BM (8). In this study, the results 
of univariate analyses of clinical risk factors showed that 
the primary tumor location had significant correlations 
with occult BM status and that the upper lobe, including 
the upper right and left lobe, were the most frequently 
occurring primary metastatic sites for BM, occurring at 
a rate of 47%. A recent study using multivariate logistic 
regressions demonstrated that most BM relating to stage IV 
NSCLCs were derived from the upper lobes (36). Another 
study reported that primary tumors in the upper lobe of 
LADCs were more prone to lymphovascular invasion with 
the highest incidence of 35.73% and mediastinal lymph 
node metastases (37). Our results are consistent with the 
studies mentioned above. Hence, the nomogram developed 
incorporated the primary tumor location and Rad-Score are  

achieved optimal performance.
On the other hand, to evaluate the developed models using 

a robust and unbiased approach, α-binomial model-based 
ROC curves and PRCs were employed and compared to 
empirical curves. Our results demonstrated that no significant 
differences were observed between α-binomial model-
based and empirical ROC curves and PRCs. Performance 
measures based on PRCs are helpful to supplement and 
validate ROC curves. Furthermore, based on a distributional 
assumption about the underlying decisional values and an 
explicit estimation of the class-mixture parameter α-binomial 
model-based curves, the practical limitations raised by 
empirical approaches to estimate curves can be addressed  
effectively (24). Therefore, the nomogram is robust and 
accurate for predicting occult BM.

Our study has several limitations. First, contrast-
enhanced CT images were unavailable for many enrolled 
patients due to the retrospective design of this study. We 
believe that the results will benefit greatly from contrast 
information. Second, survival analysis of patients after 
target treatment was not conducted in this study due to 
the limited cohort size and follow-up, including BM-free 
survival, progress-free survival, and overall survival. We will 
be conducting a future study, which will focus on predicting 
lung cancer outcomes, including BM occurrence.

Conclusions

We developed and validated a radiomics-based nomogram 
model that incorporates a radiomics signature derived from 
unenhanced CT imaging and clinical risk factors to diagnose 
occult BM in patients who received a diagnosis of stage IV 
LADC as their first diagnosis. The nomogram may serve as 
a powerful and robust tool for diagnosing occult BM.
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