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Purpose: To characterize various properties of a physiologically-relevant artificial tear solution (ATS) containing a range
of tear film components within a complex salt solution, and to measure contact lens parameters and lipid deposition of a
variety of contact lens materials after incubation in this ATS.
Methods: A complex ATS was developed that contains a range of salts, proteins, lipids, mucin, and other tear film
constituents in tear-film relevant concentrations. This ATS was tested to confirm that its pH, osmolality, surface tension,
and homogeneity are similar to human tears and remain so throughout the material incubation process, for up to 4 weeks.
To confirm that silicone hydrogel and conventional hydrogel contact lens materials do not alter in physical characteristics
beyond what is allowed by the International Organization for Standardization (ISO) 18369–2. The diameter, center
thickness, and calculated base curve were measured for five different lens materials directly out of the blister pack, after
a rinse in saline and then following a two week incubation in the modified ATS. To test the ATS and the effect of its
composition on lipid deposition, two lens materials were incubated in the ATS and a modified version for several time
points. Both ATS solutions contained trace amounts of carbon-14 cholesterol and phosphatidylcholine, such that
deposition of these specific lipids could be quantified using standard methods.
Results: This ATS is a complex mixture that remains stable at physiologically relevant pH (7.3–7.6), osmolality (304–
306 mmol/kg), surface tension (40–46 dynes/cm) and homogeneity over an incubation period of three weeks or more.
The physical parameters of the lenses tested showed no changes beyond that allowed by the ISO guidelines. Incubations
with the ATS found that balafilcon A lenses deposit significantly more cholesterol and phosphatidylcholine than omafilcon
A lenses (p<0.05) and that removing lactoferrin and immunoglobulin G from the ATS can significantly decrease the mass
of lipid deposited.
Conclusions: This paper describes a novel complex artificial tear solution specially designed for in-vial incubation of
contact lens materials. This solution was stable and did not adversely affect the physical parameters of the soft contact
lenses incubated within it and showed that lipid deposition was responsive to changes in ATS composition.

In vitro biomaterial models have been used extensively
to analyze surface interactions that occur with an implanted
medical device and their surroundings [1-5]. Contact lenses
are similar to an implant in that they are a biomaterial that is
exposed to a very complex biologic environment, in some
cases more complex than permanently implanted
biomaterials, such as a hip or knee replacement. Unlike these
biomaterials, contact lenses are exposed to a continuously
changing tear film composition and structure, induced by
continuous blinking and drying of the lens surface, changes
in environmental surroundings, systemic diseases,
medications, alcohol consumption and diet [6-9].

The composition of the human tear film is complex and
contains several layers, including a glycocalyx-like mucin
layer covering the corneal epithelium, an aqueous layer rich
in proteins, salts and electrolytes, and a lipid layer divided into
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both a polar and non-polar lipid component [10-12]. Although
this layered tear film model is still favored, it is now believed
that this structure is not as compartmentalized as previously
thought and that the components from each layer can be found
throughout the entire tear film [13-17]. Soft contact lens
materials, once inserted into the eye, lie in the middle of this
tear film structure and are known to readily adsorb many
different tear film components, including lipids, proteins, and
mucins [18-27].

Building an in vitro model to examine deposition of tear
film components onto contact lens materials would allow for
systematic and structured analysis of tear film interactions.
These models could then be used to analyze various lens
materials and their affinity for different tear film components,
the conformation of proteins on contact lens materials, the
exploration of tear film component interactions and
competition, and the effectiveness of contact lens cleaning
solutions to remove such deposits. These types of experiments
would be difficult, if not impossible, to conduct in a controlled
manner using in vivo or ex vivo studies. Therefore, in vitro
models examining these interactions and processes can
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provide pertinent information to further our understanding of
the ever growing field of contact lens material science.

In vitro models have many benefits over in-eye clinical
studies. They allow for analysis of specific variables without
the use of human or animal testing, the variables are easily
and tightly controlled in laboratory settings, many different
analysis techniques can be used that otherwise would not be
available using in vivo or ex vivo based studies, allow for the
examination of both simple and complex models, and lastly
in vitro studies tend to require less financial support and time
to conduct, since participant remuneration and ethics approval
are not required.

Although in vitro models can never fully mimic the
complex nature of human contact lens wear, they can be
designed to be physiologically relevant and help understand
the basic tear film interactions that occur. Many early in vitro
contact lens deposition models involved incubating contact
lens materials in a simple saline solution with one tear film
component, such as a single protein or lipid [18,24,28-31].
This model is very simplistic and is not indicative of what is
found in the human tear film. It is clear that there is a relative
dearth of information on contact lens in vitro models,
especially for lipid deposition.

More recently, researchers have started to increase the
complexity of the artificial tear solutions used to mimic the
tear film. Mirejovsky et al. [32] was the first to report on the
use of a complex artificial tear film that contained a range of
salts, proteins, and lipids. Artificial tear solutions used in in
vitro studies must contain physiologically relevant
components, maintain physiologically relevant solution
properties and must not change the contact lens parameters
during incubation, as alterations in these parameters can cause
changes in the contact lens dimensions themselves. The
contact lenses may swell/shrink, thicken/thin, or experience a
change in their base curve if an inappropriate solution is used.
These lens parameter changes could alter the deposition
pattern and lens interactions with tear film components. If in
vitro contact lens deposition models are to mimic human
contact lens wear, then the artificial tear solutions used must
be more complex than a single component system. Recent
work from our laboratory has shown that an in vitro incubation
solution consisting of a mixture of lipids, proteins, mucins and
buffers is significantly different to that obtained in an in vitro
model which uses single lipids alone [33]. In this study, we
wanted to explore how sensitive the lipid deposition was to
smaller changes in solution, such as adding or removing
individual components.

Our laboratory has characterized a complex
physiologically relevant artificial tear solution (ATS)
designed for in vitro vial-enclosed incubation experiments.
This solution has been tested to determine if the solution and
contact lens parameters remain stable throughout contact lens
incubation. Although this solution does not contain all of the

individual human tear film components, it does contain a
broad representation of the most abundant lipids, proteins,
mucin, salts, and inorganics that are present.

METHODS
The ATS composition: ATS preparation required four main
steps. These included preparation of the complex salt solution,
lipid stock solution, adding lipids to the salt solution, and
addition of the proteins and mucin to complete the solution.

The complex salt solution—The first step in making an
ATS was the preparation of a complex salt solution (CSS).
The composition of the CSS, which is used as the base of the
ATS, is shown in Table 1. These specific salts and their
relative concentrations are based on literature values [32,
34-36]. All CSS components were ACS grade and purchased
from Sigma (Oakville, ON). The individual components were
measured on an analytical balance and sequentially added to
the desired volume of MilliQ water in the order that they are
listed in table. Once all of the components had been added,
ProClin 300 (Sigma, Oakville, ON), a preservative and
antimicrobial agent, was added to the system. The use of
ProClin 300 allows for incubation at 37 °C for prolonged
periods of time with no fear of microbial contamination. After
all the ingredients were added, the pH was approximately 7.15
and the osmolality was 305 mmol/kg. When the CSS was left
at room temperature for three or more days it equilibrated
naturally to the desired pH of 7.4, which is the typical pH of
the human tear film [37]. However, if the solution was to be
used immediately then purging with nitrogen gas equilibrated
the solution to the desired pH much faster.

Concentrated lipid stock solution—The next step in the
ATS preparation was to make a concentrated lipid stock. Here,
a 2,000× concentrated lipid stock solution (LSS) was made to
help facilitate dissolving the pure lipids into the CSS. Lipids,
especially non-polar lipids, do not naturally dissolve into
aqueous solutions, so dissolving them first into a solution of
1 hexane: 1 ether and then adding an aliquot of the hexane/
ether LSS to the CSS helps facilitate the incorporation of
lipids. To make a LSS, pure lipids were warmed up to room
temperature and weighed out using an analytical balance
(solid lipids) or pipetted using a positive displacement pipette
(liquid lipids). The concentrated LSS was placed in an amber
vial, sealed with Parafilm® (VWR, Mississauga, ON),
wrapped in foil and stored at −20 °C until required. Table 2
shows the lipids used in the ATS, their characteristics, the lipid
stock concentration and final ATS concentration used for each
lipid. All pure lipids were purchased through Sigma (Oakville,
ON). The lipids used in this ATS were chosen specifically so
that a broad range of human tear film lipids were represented
and their concentrations were chosen based on human tear
film concentrations, artificial tear solution literature values,
and lipid solubility in aqueous solutions [28,32,38-40].

Lipid artificial tear solution—The next step in making
an ATS was to make the lipid artificial tear solution (LTS).
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This was accomplished by removing the LSS from the freezer
and allowing it to warm up to room temperature in a dry dark
place. The desired volume of room temperature CSS was
placed into a glass septum jar and the required volume of LSS
was added to the CSS. The cap was screwed onto the septum
jar and the whole jar was placed into an ultra-sonic bath that
was warmed to 37 °C. Two syringes were pierced through the
septum, one large blunt syringe was placed into the solution
and one smaller syringe was left sitting in the air space of the
septum jar. The large syringe was connected to a nitrogen tank
and the small syringe remained open to air to act as a vent.
The LTS was sonicated at 90 W and purged with nitrogen gas
at a pressure of 3 psi until the LSS was fully incorporated into
the CSS and the odour of hexane:ether had dissipated. The
LTS was now complete.

Incorporation of proteins and mucin to complete
preparation of the ATS—The last step in preparing the ATS

was the addition of proteins and mucin. The specific proteins
and mucin used and their concentrations in the final ATS are
outlined in Table 3 and are based on literature values of the
human tear film, literature ATS concentrations, and based on
the cost of the component, as in the case of lactoferrin and IgG
[32,41-48]. All proteins and mucin were purchased from
Sigma. Bovine and hen-egg proteins were chosen for use in
this ATS due to their cost and their similarities to human
proteins in molecular weight, pI, amino acid chain length, and
number of charged residues. The proteins and mucin were
weighed out on an analytical balance and added to the LTS
while stirring. When all components were incorporated fully,
the complete ATS was sonicated at 37 °C for a maximum of
5 min, to prevent destruction of the proteins [49].
Solution properties:

pH and osmolality—To test the consistency of the
ATS’s pH and osmolality during in vitro incubations, a 28 day

TABLE 1. ARTIFICIAL TEAR SOLUTION COMPLEX SALT SOLUTION COMPONENTS [35-38].

Salt component Molecular formula mM
Sodium chloride NaCl 90.0
Potassium chloride KCl 16.0
Sodium citrate Na3C6H5O7 1.5
Glucose C6H12O6 0.2
Urea (NH2)2CO 1.2
Calcium chloride CaCl2 0.5
Sodium carbonate Na2CO3 12.0
Potassium hydrogen carbonate KHCO3 3.0
Sodium phosphate dibasic Na2HPO4 24.0
Hydrochloric acid (10 molar) HCl 26.0
ProClin 300 (Supelco 48912-U)  0.2 µl/ 1l
MilliQ Water   

TABLE 2. MOLECULAR AND EXPERIMENTAL DETAILS OF THE SPECIFIC LIPIDS USED FOR ALL LIPID INCUBATION SOLUTIONS [28,35,40-42].

Pqarameters Triolein Cholesterol Oleic acid Oleic acid
methyl ester

Cholesteryl
oleate

Phosphatidyl
choline

Lipid type Triglyceride Sterol Fatty acid Fatty ester Cholesteryl ester Phospholipid
Formula C57H104O6 C27H46O C18H34O2 C19H36O2 C45H78O2 C42H82NO8P
Molecular Weight (g/mol) 885.5 386.7 282.5 296.5 651 760.1
Lipid Stock Concentration (mg/ml) 32.0 3.6 3.6 24.0 48.0 1.0
Final ATS Concentration (mg/ml) 0.016 0.0018 0.0018 0.012 0.024 0.0005

TABLE 3. PROTEIN AND MUCIN CONCENTRATIONS AND DETAILS IN ATS [35,43-50].

Proteins Molecular weight
(kDa)

Concentration 
(mg/ml)

Sigma product number

Bovine albumin 66.4 0.20 A7888
Hen egg lysozyme 14.3 1.90 L6876
Bovine submaxillary mucin 3×105 to 4×107 0.15 M3895
Bovine colostrum lactoferrin 83.1 1.80 L4765
Bovine immunoglobulin G 161 0.02 I5506
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study was performed. Clear borosilicate glass 6 mL vials were
half filled with freshly made ATS with a starting pH of 7.35
and an osmolality of 305 mmol/kg. Vials were closed with
PTFE-sealed screw caps, further sealed with Parafilm® and
incubated at 37 °C for six different time points including: 1,
3, 7, 14, 21, and 28 days in triplicate. On the specific days, the
vials were opened and the pH was measured using the
SympHony SB20 pH meter (VWR, Mississauga, ON) and the
osmolality was measured using the Wescor “Vapro” Vapor
Pressure Osmometer 5520 (Discovery Diagnostics,
Claremont, ON).

Surface tension and homogeneity of ATS—To test the
surface tension and liposome homogeneity of the solution a
3.5 week study was conducted. Fresh ATS was made and
tested for its surface tension and homogeneity and then the
ATS was incubated for 3.5 weeks at 37 °C and tested again
for the two parameters. Surface tension was measured using
the Wilhelmy balance (CAHN Instruments, Madison, WI)
using a platinum ring and the homogeneity of the solution was
tested by staining liposomes in the ATS with Nile Red. To
stain with Nile Red, the Nile Red was dissolved in acetone at
1 mg/ml, then 1 µl of the Nile Red solution was added to 100 µl
of the test solution in a micro-centrifuge tube and shaken so
the two components were well mixed [32]. Then 20 µl of the
Nile Red test solution was then pipetted onto a slide
(prewashed with methanol), and a coverslip was placed on top.
The sample was then examined and photographed on the
microscope at 10× and 40× magnifications using a green light
filter. Samples of the complex salt solution and artificial tear
solution were analyzed at several points in the preparation
process and compared with the solution after 3.5 weeks of
incubation. The distribution and diameter of the liposomes
was analyzed for each sample.
Lens parameters: Five contact lens materials were tested in
triplicate: Acuvue® 2 (etafilcon A; Vistakon, Jacksonville,
FL), Proclear® (omafilcon A; CooperVision, Pleasanton, CA),
Acuvue® OASYS™ (senofilcon A; Vistakon), Biofinity®

(comfilcon A; CooperVision), PureVision™ (balafilcon A;
Bausch & Lomb, Rochester, NY). The material characteristics
of all contact lens materials can be found in Table 4 and Table
5. All lens materials tested had a spherical power of −3.00
diopters (D) and had an approximate base curve of
8.6±0.2 mm. The individual lenses were measured on three
separate occasions: out of the blister pack, after 40 h of
soaking in CSS, and after a 2 weeks incubation at 37 °C in the
ATS previously described. The center thickness was
measured using a Rehder Development Co. E.T.-1 (Castro
Valley, CA) and the diameter and sagittal height (Sag) of each
lens was measured using the Optimec Soft Contact Lens
Analyzer (Malvern, UK). The base curve was then calculated
from the diameter and sagittal height. The data were analyzed
using Statistica 9 using paired t-tests. The contact lens
parameter measurements were taken so that comparisons
could be made between the three parameters tested and was
not meant to assess the contact lens parameter variability from
their specified package dimensions.
Lipid deposition: As the last step of the ATS characterization
process, the ATS was examined for its lipid deposition using
a simple radioactive experiment previously developed by our
laboratory. In this experiment, omafilcon A and balafilcon A
lens materials were incubated in two different ATS solutions
for three different time periods, as outlined in Figure 1. The
first ATS solution composition was identical to the ATS
described above (+LF/IgG) and the second ATS solution was
a slightly simpler version with lactoferrin (LF) and
immunoglobulin G (IgG) removed (- LF/IgG). To facilitate
sensitive quantification of lipid deposition, both ATS
solutions were prepared by adding a small aliquot of one of
two radiolabelled lipids (Table 6); 14C-cholesterol or 14C-
phosphatidylcholine. Lenses (n=3) were then incubated in
each solution for 3, 7, and 20 days.

At the end of the incubation period, each lens was rinsed
twice in saline and blotted on lens paper. The lenses were then
placed in 20 ml glass scintillation vials with 2 ml of 2:1

TABLE 4. CONVENTIONAL HYDROGEL CONTACT LENS MATERIAL CHARACTERISTICS.

Material type Conventional hydrogel
USAN Etafilcon A Omafilcon A

Proprietary name Acuvue®2 Proclear®
Manufacturer Johnson & Johnson CooperVision

Power (D) −3.00 −3.00
Base Curve (mm) 8.7 8.6
Diameter (mm) 14.0 14.2

Monomers HEMA, MA HEMA, PhC
Surface Modification None None

Oxygen Transmissibility (×10−9) 31.0 52.3
Water Content 58% 62%

FDA class Group IV Group II

        USAN: United States adopted name; HEMA (poly-2-hydroxyethyl methacrylate); MA (methacrylic acid); PhC
        (phosphorylcholine).
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chloroform:methanol extraction solution and were incubated
for three hours each at 37 °C while shaking on an orbital
shaker. Each lens was extracted in this way on two separate
occasions and both extracts were pooled together in the same
vial.

The extract vials were dried completely using nitrogen
evaporation at 37 °C. All samples were re-suspended in 1 ml
of chloroform, sonicated for one min, and 10 ml of Ultima
Gold F scintillation cocktail (Perkin-Elmer, Woodbridge,
ON) was added. The vials were submitted for liquid
scintillation beta counting. Standard lipid samples were
prepared and all data were analyzed and quantified using
standard calibration curves.

RESULTS
pH and osmolality: When examining the stability of pH and
osmolality of the ATS it was found that pH ranged from 7.35
to 7.49 and osmolality ranged from 305.0 to 303.7 mmol/kg,
over the 28 days of incubation.
Surface tension and homogeneity of ATS: After the complex
salt solution and ATS preparation was complete, several
aliquots of each solution were stained with Nile Red examined
microscopically at 200×-400× and photographed. Following
a three week in-vial incubation, ATS aliquots were once again
stained and photographed. Following staining with Nile Red,
the CSS samples had no visible liposomes present in its
solution, as expected. However, both ATS samples, freshly
made and post incubation solutions, showed similar

distribution and sizes of liposomes stained by the Nile Red.
The liposomes present in both ATS solutions ranged in size
from 6 to 20 µm, with average sizes around 12 µm. Therefore,
no discernible differences were found in fresh versus
incubated ATS solutions in terms of its homogeneity.

The surface tension of the freshly prepared ATS was
51.5±0.38 dynes/cm and following the 25 days of incubation
the surface tension fell to 45.05±1.25 dynes/cm. This is an
average change of −6.46±1.30 dynes/cm.

Lens parameters: The center thickness of each lens material
measured out of blister pack, following a saline soak, and after
ATS incubation at 37 °C for two weeks can be graphically
seen in Figure 2. One statistically significant difference was
seen when analyzing the difference between the blister pack
and post-incubation conditions. Omafilcon A lenses
experienced a 1.0% average increase in center thickness
following two week incubation in ATS. These changes in
center thickness would not correlate to any significant
clinically relevant changes in vivo.

The average contact lens diameter results measured out
of blister pack, following a CSS soak, and following a two
week incubation in ATS can been seen in Figure 3. Only
etafilcon A had a statistically significant change in diameter
following incubation in ATS, where the average diameter
decreased by 0.81%. These changes in diameter are not
considered to correlate to any clinically significant changes in
vivo.

TABLE 5. SILICONE HYDROGEL CONTACT LENS MATERIAL CHARACTERISTICS.

Material Type Silicone Hydrogel

USAN Senofilcon A Comfilcon A Balafilcon A
Proprietary name Acuvue® OASYS™ Biofinity® PureVision™

Manufacturer Johnson & Johnson CooperVision Bausch & Lomb
Power (D) −3.00 −3.00 −3.00

Base curve (mm) 8.4 8.6 8.6
Diameter (mm) 14.0 14.0 14.0

Centre thickness (mm) −3.00D 0.07 0.08 0.09
Monomers mPDMS, DMA, HEMA, siloxane

macromer, EGDMA, PVP
M3U, FM0411M, HOB, IBM,

NVP, TAIC, VMA
NVP, TPVC, NVA, PBVC

Surface modification PVP as an internal wetting agent None Plasma oxidation
Oxygen transmissibility (×10−9) 147 160 110

Modulus (MPa) 0.7 0.75 1.1
Water content 38% 48% 36%

FDA class Group I Group I Group III

        USAN: United States adopted name; DMA (N,N-dimethylacrylamide); EGDMA (ethyleneglycol dimethacrylate); FM0411M
        (2-ethyl [2-[(2-methylprop-2-enoyl)oxy]ethyl]carbamate); HEMA (poly-2-hydroxyethyl methacrylate); HOB ((2RS)-2-
        hydroxybutyl 2-methylprop-2-enoate); IBM (Isobornyl methacrylate); M3U (α-[[3-(2-[[2-(methacryloyloxy)ethyl]
        carbamoyloxy]ethoxy)propyl]dimethylsilyl]-ω-[3-(2-[[2-(methacryloyloxy)ethyl]
        carbamoyloxy]ethoxy)propyl]poly([oxy[(methyl) [3-[ω-methylpoly(oxyethylene)oxy]propyl]silylene] /[oxy[(methyl)(3,3,3-
        trifluoropropyl)]silylene]/oxy (dimethylsilylene)])); mPDMS (monofunctional polydimethylsiloxane); NVA N-vinyl
        aminobutyric acid; NVP (N-vinyl pyrrolidone); PBVC (poly[dimethysiloxy] di [silylbutanol] bis[vinyl carbamate]); PVP
        (poly(vinylpyrrolidone)); TAIC (1,3,5-triprop-2-enyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione); TPVC (tris-
        (trimethylsiloxysilyl) propylvinyl carbamate); VMA (N-Vinyl-N-methylacetamide).
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Average base curve results for each contact lens material
after each lens treatment are displayed in Figure 4. No
statistically significant differences were seen when comparing
the blister pack measurements to the post-incubation in ATS
measurements for any lens material.
Contact lens lipid deposition: The results of the radioactive
cholesterol (C) and phosphatidylcholine (PC) kinetic uptake
with and without the presence of lactoferrin and IgG can be
seen in Figure 5 and Figure 6. As seen in the figures below,
the silicone hydrogel lens material deposited more than the
conventional hydrogel lens and that more cholesterol was
deposited than phosphatidylcholine. The lipid uptake for all
lens materials, especially the silicone hydrogels, was
continuous throughout the 20 day period, with no plateau. The
presence of lactoferrin and IgG in the ATS correlated with a
statistically significant increase in cholesterol and PC
deposition for balafilcon A at every time point (p≤0.001).
Cholesterol deposition on omafilcon A in the presence of LF/
IgG was greater than without, however the trend was not
statistically significant for any time point (p>0.05). However,

PC deposition on omafilcon A did show statistically
significant increases in the presence of LF/IgG for every time
point (p≤0.008). Overall, there were statistically significant
differences in the entire repeated measures ANOVA model,
including all the variables and variable interactions for each
lipid tested, as seen in Table 7 and Table 8.

DISCUSSION
In the creation of an in vitro model designed to analyze the
dynamics of tear film interactions on a contact lens surface,
the development of an appropriate artificial tear solution that
is both physiologically relevant and stable is imperative. A
handful of papers has been published using in vitro
experimental models to examine contact lenses, their
deposition and their tear film interactions. Many of these
papers have used very simple in vitro solution models with
single components for investigation, such as a single lipid or
protein. These individual component model systems have
been regularly used for the past 25 years and are continually
being used. In the mid-1980s, Castillo et al. [50] used

Figure 1. Lipid deposition study outline
using the artificial tear solution (ATS)
and two radiolabeled lipids.

TABLE 6. RADIOACTIVE LIPID CHARACTERISTICS.

Lipid Radiolabel Molecular
weight (g/mol)

Supplier

Cholesterol [C] 4-14C 386.6 Perkin-Elmer
L-α-DiPalmitoyl-Phosphatidylcholine [PC] DiPalmitoyl-1-14C 734.0 Perkin-Elmer

Molecular Vision 2011; 17:3392-3405 <http://www.molvis.org/molvis/v17/a366> © 2011 Molecular Vision

3397

http://www.molvis.org/molvis/v17/a366


lysozyme incubation solutions dissolved in a phosphate
buffered saline (PBS) to examine conformational changes that
occur on PHEMA materials fabricated using different
methods via ATR-FTIR. Garrett et al. [24] and several studies
from Jones et al. [18,29,30] used lysozyme or lactoferrin-only
solutions in PBS for radiochemical studies examining
lysozyme or lactoferrin adsorption and conformation onto
various contact lens materials. Similar to proteins, there are
several papers using single lipid in vitro systems, including
Carney and colleagues work in 2008, where they examined
kinetic uptake of lipid onto various contact lens materials
using fluorescently labeled cholesterol and
phosphatidylethanolamine solutions independently [28].
Most recently, Pucker et al. [31] published a similar paper
examining the uptake of cholesterol oleate and
phosphatidylcholine separately in an undisclosed buffer

solution. In most of these publications, a PBS solution with a
single lipid or protein is used; however in many of the papers
there is no information about the specific composition or
concentrations of the PBS itself. Since there is no standardized
composition of PBS, many of these papers are lacking
important information regarding the ATS used.

There are several experimental papers where moderately
complex in vitro artificial tear solutions were used. These
solutions are mixtures of proteins or lipids dissolved into a
saline base. Castillo et al. [51] and Bohnert et al. [52] both
used an ATS which contained a mixture of several proteins
dissolved into a saline solution to examine protein adsorption
and conformation onto contact lens materials. Ho and Hlady
examined lipid deposition using a mixture of several lipids
dissolved into a more complex mixture of salts [53]. In each
of these three examples, lipids and protein components were

Figure 2. Average center thickness of all
studied lens materials as measured
directly from the blister pack, after a
saline soak, and following 14 days
incubation in ATS.

Figure 3. Average contact lens diameter
of all studied materials as measured
directly from the blister pack, after a
saline soak, and following 14 days
incubation in ATS.
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not mixed together within the ATS and there was no
incorporation of mucin.

Recent work from our laboratory [33] and past work from
Bontempo and Rapp [23,54] have found a dramatic difference
in the amount of lipids and proteins deposited onto
conventional and silicone hydrogel contact lens materials
from an ATS of different complexities. Single component

systems, moderately complex systems (no mixing of lipids
and proteins together) and complex multiple lipid and protein
systems have different deposition behaviors. Although
simpler systems can be useful for particular experimental
models, they are unsuitable to mimic human contact lens wear
deposition and tear film interactions, due to their lack of
complexity.

Figure 4. Average contact lens base
curve of all studied materials as
measured directly from the blister pack,
after a saline soak, and following 14
days incubation in ATS.

Figure 5. Cholesterol deposition with
and without lactoferrin and
immunoglobulin G for omafilcon A and
balafilcon A. -LF/IgG=no lactoferrin
and immunoglobulin G in the ATS.
+LF/IgG=lactoferrin and
immunoglobulin G were present in the
ATS.
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Papers have been published introducing more complex in
vitro artificial tear solutions. The first of these papers was by
Mirejovsky et al. [32] in 1991, where lipids, proteins, mucin,
and a variety of salts were all incorporated to form a complex
tear solution. Mirejovsky’s ATS contains a range of different
proteins, lipids from different classification groups, and a non-
physiologic biochemical buffer. It was more complex than
many of the past solutions and the first to more accurately
mimic human tear fluid with individualized concentrations for
each component. Since the introduction of Mirejovsky’s ATS,
several other research groups have begun using a more
complex ATS, including Prager and Quintana [25,44],
Bontempo and Rapp [54,55], and Iwata et al. [56]. Prager and
Quintana’s [25,44] solution had the same protein portion as
the Mirejovsky ATS and the lipid portion was similar, but
instead of using a specialized blend of salts, Prager and
Quintana used a Hank’s Balanced Salt solution as their saline

base. The Bontempo and Rapp [54,55] ATS incorporated five
tear film lipids, all incorporated in the same concentration,
three tear film proteins, all incorporated in the same
concentration, and a 0.9% saline base. The most recent
solution of note is the one used by Iwata et al. [56] This
solution used a mixture of four lipids, three proteins and a
simplistic saline base [56].

It is common in in vitro ATS deposition models that the
ATS is a homogenous composition with the proteins, lipids,
and mucin mixed together throughout the solution. In other
words, the solution is not in the layered biophysical structure
as it is in the natural tear film. This is for several reasons; first,
in-vial static aqueous incubations are not conducive to a
lamellar structure, as the contact lens would not be exposed
to all of the tear film components as they are in human contact
lens wear. The blinking action, tear film mixing, tear film
thinning and the eventual tear film breaking that occurs in

Figure 6. Phosphatidylcholine
deposition with and without lactoferrin
and immunoglobulin G for omafilcon A
and balafilcon A. -LF/IgG=no
lactoferrin and immunoglobulin G in the
ATS. +LF/IgG=lactoferrin and
immunoglobulin G were present in the
ATS.

TABLE 7. CHOLESTEROL REPEATED MEASURES ANOVA RESULTS.

Variables SS DF MSq F p
Time 5255742 2 2627871 2774 <0.0001

±LF/IgG 851579 1 851579 1739 0.0006
Lens 21480765 1 21480765 24367 <0.0001

Time * ±LF/IgG 266177 2 133089 196 0.0001
Time * Lens 4865540 2 2432770 1506 <0.0001

±LF/IgG * Lens 634230 1 634230 794 0.0013
Time * ±LF/IgG * Lens 254090 2 127045 334 <0.0001

Error 1523 4 381   

               SS=sum of squares, DF=degrees of freedom, MSq=mean square, F=F statistic, p=probability.
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human contact lens wear exposes the lens to all layers and
components of the tear film. The second reason for using a
homogenous non-layered incubation solution is because this
model is simpler to execute and has similar deposited masses
of tear film components as ex vivo examined lenses [57,58].
Therefore, the biophysical arrangement of the ATS does not
impact deposition to the same extent as the interactions that
occur between the contact lens and tear film components.
Therefore, even though the ATS structure is not necessarily
identical to human tear film structure, it is still known to be a
good model for deposition and tear film interaction research.
Future models will incorporate a layered tear film analog and
incorporate air exposure, mimicking the inter-blink period.

With the modified ATS solution introduced in this paper,
we have tried to combine all of the necessary complexity by
incorporating a variety of lipids, proteins, mucin, salts and
also other prevalent tear film components such as physiologic
buffers, glucose and urea, all within a stable system specially
designed for in-vial incubations. All of these previously
published variations on an ATS are indeed a great
improvement over the more simplistic solutions based,
primarily, on saline with a few added components. However,
none of the papers described has shown the stability of the
reported solutions, especially in terms of their pH and
osmolality during the various contact lens incubations. Work
in our laboratory during the development of this ATS clearly
demonstrated the importance of reduced carbonates and
increased phosphates in the complex saline solution, which
was used as the base solution, to maintain pH and osmolality
over time.

It is known that the pH and osmolality of a stable human
tear film is 6.6–7.8 [37] and 305 mmol/kg [59], respectively,
and that the surface tension of tears is 40–46 dynes/cm [60].
Therefore, we contend that the model ATS with the specific
complex salt solution introduced in this paper is a suitable
physical and chemical representation of the human tear film.
The complex salt solution introduced in this paper was
specially designed and extensively tested to confirm its
stability. Many different combinations and concentrations of

salts and physiologic buffers were tested, however many of
the test solutions did not remain stable in pH or osmolality
over time. This was especially true for solutions with higher
concentrations of carbonates, as carbonates tend to react with
carbon dioxide in the air and therefore easily lead to a change
in pH, especially if vials are not tightly sealed. This process
was exacerbated when the ATS was incubated in plastic vials,
instead of glass. All plastic vials tested, including low-density
polyethylene, high-density polyethylene, super polyethylene,
and Teflon-coated plastic vials all have intrinsic gas
permeability and therefore the pH and osmolality of the ATS
was constantly changing. Therefore, the final stable
physiologically relevant complex salt solution modified by
our laboratory contained only biologic buffers and a slightly
reduced concentration of carbonates. This solution was
specifically designed for closed in-vial incubations within
borosilicate glass vials with screw caps with PTFE liners that
are sealed with Parafilm®, so that ATS pH and osmolality
remained stable throughout the incubation periods.

In all of these papers on in vitro model systems, only one
of them has mentioned the lens parameter changes that occur
upon incubation. Pucker et al. [31] admit that due to the
incorporation of chloroform in their incubation solution, the
lens materials do indeed swell. Most of the other systems do
not have this chloroform addition and the extra solvents such
as hexane that may be present from the use of a lipid stock are
evaporated before lens incubation. None of the other papers
has reported measuring the diameter, center thickness or base
curve before incubation and following incubation in their ATS
to know if the composition of the ATS is causing lens
parameter changes beyond that which is considered allowable
by the FDA. Contact lenses and their cleaning solutions are
tightly regulated so that contact lens parameter changes do not
occur. According to the ISO tolerance guidelines [61], contact
lens materials are only allowed to change by ±0.20 mm in
diameter and base curve, and by approximately ±18 µm in
center thickness, depending on the specific lens material,
during cleaning or contact lens wear. Swelling, stretching,
shrinking and curvature changes could all induce power

TABLE 8. PHOSPHATIDYLCHOLINE REPEATED MEASURES ANOVA RESULTS.

Variables SS DF MSq F p
Time 476975 2 238488 737.92 <0.0001

±LF/IgG 889902 1 889902 1468.12 0.0007
Lens 3127668 1 3127668 2588.36 0.0004

Time * ±LF/IgG 30717 2 15358 21.80 0.0071
Time * Lens 221962 2 110981 424.64 <0.0001

±LF/IgG * Lens 212945 1 212945 440.59 0.0023
Time * ±LF/IgG * Lens 5516 2 2758 12.91 0.0180

Error 855 4 214   

               SS=sum of squares, DF=degrees of freedom, MSq=mean square, F=F statistic, p=probability.

Molecular Vision 2011; 17:3392-3405 <http://www.molvis.org/molvis/v17/a366> © 2011 Molecular Vision

3401

http://www.molvis.org/molvis/v17/a366


changes, fitting changes, and comfort issues for the contact
lens wearer. In an in vitro experiment, these changes can affect
contact lens deposition and interactions with tear film
components so that the contact lenses no longer react naturally
to their surroundings.

In this experiment, the diameter, center thickness, and
base curve of all contact lens materials were measured directly
after removing them from the blister pack, following a soak
in CSS, and after two weeks of incubation in the artificial tear
solution described. The diameter, base curve and center
thickness measurements all showed no clinically significant
changes following incubation in the ATS and no parameter
changes were found beyond what is allowed by 2006 ISO
18369–2 tolerance guidelines [61]. In a few instances,
statistically significant changes in lens parameters were found
between the blister pack measurements and following
incubation in the ATS, however these changes were still well
within ISO tolerances.

As the final step in the development of this ATS, the ATS
was tested for its ability to deposit lipid onto both a
conventional and silicone hydrogel contact lens material.
Omafilcon A and balafilcon A lenses were chosen for the
experiment, as previous research has shown that conventional
hydrogels tend to deposit low amounts of lipid, whereas
silicone hydrogel lenses, especially balafilcon A, are known
to be more lipophilic and more likely to deposit lipid [28,56,
62]. Cholesterol and phosphatidylcholine were chosen for
examination using a radiochemical experiment.
Radiochemical experiments have been widely used in
biomaterials research [63-68] including contact lens research,
especially protein deposition research [18,24,25,29,30,69]. It
has been shown to be a very sensitive, repeatable and reliable
method of analysis and thus was chosen for this experiment.
Cholesterol was selected as a representative non-polar lipid as
it has been widely cited to be one of the most prevalent
deposited lipids [57,62,70-72] and phosphatidylcholine was
chosen as a polar lipid species, due to its presence in the tear
film [11,73,74].

The results of the deposition experiment clearly showed
that lipid deposition, especially on balafilcon A lenses, tend
to continually deposit without a plateau effect throughout the
20 day incubation period, that the specific composition of the
ATS will have a large impact on the deposition pattern for
lipids, and that cholesterol tends to deposit more than
phosphatidylcholine. Bontempo and Rapp [54] previously
examined the impact that ATS composition has on lipid and
protein deposition for conventional hydrogel lenses, but to
date nothing has been published on silicone hydrogel lens
materials.

This research supports the notion that the specific
composition of an artificial tear solution will greatly impact
the mass of tear film components that deposit. By simply
removing two proteins from the ATS (lactoferrin and

immunoglobulin G), lipid deposition significantly decreased.
Data has established that the incubation volume (not shown)
and lipid component concentrations [75] also affect the
amount of lipid deposited. It is known that meibum, tear film,
and deposited lipid concentrations and compositions can vary
widely between individuals and that diet, medications,
systematic diseases, and work environment can influence this
deposition [6-9,76,77]. Therefore, it is very difficult to build
an in vitro model to fully mimic all of the relationships and
interactions that occur in human contact lens wear, so the first
step is to begin unraveling the factors that may influence
deposition.

When the deposited mass of lipids quantified in this
experiment is compared with other in vitro and ex vivo data,
it can be seen that differences do exist. In this experiment,
after 7 and 20 days of incubation in the ATS solution (+ LF/
IgG), balafilcon A lenses deposited 1.80±0.06 and
3.22±0.04 µg of cholesterol and 0.93±0.02 and 1.22±0.07µg
of phosphatidylcholine per lens, respectively. Omafilcon A
lenses deposited 0.17±0.005 and 0.21±0.02 µg/lens of
cholesterol after 7 and 20 days of incubation and similar
masses of phosphatidylcholine at the same time points. Much
of the other in vitro lipid work completed recently has
quantified higher masses of cholesterol and phospholipids
(either phosphatidylcholine or phosphatidylethanolamine)
depositing on balafilcon A and on conventional hydrogel lens
materials such as etafilcon A. In vitro work from Carney et al.
[28], Iwata et al. [56], and Pucker et al. [31], all cited higher
deposition values than the work presented here. However,
these other in vitro studies had one or more of these main
differences in their experimental design, which may account
for increased deposition of lipids: the use of single lipid
incubation solutions, higher concentrations of lipids in the
ATS, altered incubation volumes, and replenishment of the
ATS with fresh solution during incubation [28,31,56]. All of
these factors may explain the higher deposition of cholesterol
and phosphatidylcholine.

When the cholesterol deposition results found in this in
vitro experiment are compared with recent ex vivo data it is
found that results from the balafilcon A material are quite
similar. Zhao et al. [57] quantified 4.1–8.2 µg/lens after 30
days of wear (depending on the cleaning solution used) and
Saville et al. [78] found 3.9 µg/lens after 30 nights of wear.
Saville [78] also examined phosphatidylcholine deposition
and quantified 0.019 µg/lens following 30 nights of wear,
which is lower than our quantified mass of 1.2 µg/lens on
balafilcon A. Many of the recent in vitro and ex vivo studies
were not completed with the same silicone hydrogel lens
materials, did not include conventional hydrogel lens
materials such as omafilcon A, and some of them examined
different lipids than those quantified in this experiment.

It is clear that in vitro models do not always directly
mimic what happens in vivo. Many times the masses
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deposited are lower or higher than what is reported in human
worn contact lenses. This may be due to the simplicity of the
models being used, different ATS compositions and
concentrations or an incomplete understanding of all of the
interactions and influences that are present. The only way that
in vitro models can be improved in their usefulness is to take
a more in-depth look at the relationships that are occurring
during human contact lens wear and then test and incorporate
them into the in vitro models. It may transpire that the success
of an in vitro model should not be measured according to the
absolute mass deposited during human contact wear, as these
values have large variations based on the populations tested,
but should be examined to see if the hierarchy of deposition
is consistent when comparing different lens materials and if
the trends of wear are predictive of human wear. In the end,
in vitro models must become more physiologically relevant
so that their use can be validated and provide a basis for
research and development of new and existing products.

As a first step in developing an in vitro model, the ATS
developed in our laboratory has been shown to remain stable
throughout incubation periods up to four weeks, the lens
parameters show no significant changes following a two week
incubation, and deposited lipids are in line with recent ex vivo
data. The ATS solution introduced in this paper has the
flexibility to be tailored to the individual needs of the specific
in vitro experiment and can be used to mimic human worn
lens interactions and depositions.

Conclusion—This paper has introduced a novel complex
artificial tear solution specially designed for in-vial
incubations. This solution maintains its own solution
parameters and the parameters of the incubating contact lenses
constant. This solution characterization is the first step in
developing a new in vitro model for contact lens deposition
and tear film interactions.
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