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Amajor challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex

organismal traits through networks of intermediate molecular phenotypes. This question is best addressed in a genetic map-

ping population in which all molecular polymorphisms are known and for which molecular endophenotypes and complex

traits are assessed on the same genotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference
Panel inbred lines with complete genome sequences and for which phenotypes of many quantitative traits have been eval-

uated. We mapped expression quantitative trait loci for annotated genes, novel transcribed regions, transposable elements,

andmicrobial species. We identified host variants that affect expression of transposable elements, independent of their copy

number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory net-

works. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic

regions of reduced recombination, as well as genes regulating transposable element expression. This study provides new

insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses

for future functional analyses.

[Supplemental material is available for this article.]

Understanding how naturally occurring genetic variation affects
variation in organismal quantitative traits by modifying underly-
ing molecular networks is a key challenge in modern biology.
Most traits are highly polygenic (Mackay et al. 2009; Visscher
et al. 2012; Mackay and Huang, 2018), and associated molecular
variants have small additive effects on trait variation (Manolio
et al. 2009). Most of these variants are in intergenic regions, up-
stream of or downstream from coding regions, or in introns
and presumably play a regulatory role in modulating gene
expression.

Systems genetics analysis seeks to determine how naturally
occurring molecular variation gives rise to genetic variation in or-
ganismal phenotypes by examining genetic variation in gene ex-
pression (expression quantitative trait loci [eQTLs]) and other
intermediate molecular phenotypes (Sieberts and Schadt 2007;
Chen et al. 2008; Emilsson et al. 2008; Rockman 2008; Cookson
et al. 2009; Mackay et al. 2009; Civelek and Lusis 2014; Albert

and Kruglyak 2015; Gibson et al. 2015; Ogura and Busch 2016;
Schughart and Williams 2017). Polymorphic variants associated
with variation in gene expression are classified as cis- or trans-
eQTLs depending on whether they are proximal or distal to the
gene encoding the transcript, respectively. Genetic variation in
gene expression is pervasive; cis-eQTLs can have large effects on
gene expression that are detectable in small samples; and variants
associated with human diseases and quantitative traits tend to be
enriched for cis-eQTLs (Sieberts and Schadt 2007; Chen et al.
2008; Emilsson et al. 2008; Rockman 2008; Cookson et al. 2009;
Mackay et al. 2009; Nicolae et al. 2010; Civelek and Lusis 2014;
Albert and Kruglyak 2015; Gibson et al. 2015; Ogura and Busch
2016; Boyle et al. 2017; Schughart and Williams 2017). eQTLs
with both cis- and trans- effects can be assembled into directed
transcriptional networks of regulator and target genes (Liu et al.
2008; Bryois et al. 2014; Fagny et al. 2017). Elucidating such regu-
latory transcriptional networks will facilitate understanding how
the effects of individual variants propagate through the network
and how multiple variants together regulate gene expression and
affect complex traits (Liu et al. 2008; Nicolae et al. 2010; Bryois
et al. 2014; Fagny et al. 2017) andwill improve genomic prediction
(Zhou et al. 2020).

Here, we performed deep RNA sequencing of the Drosophila
melanogaster Genetic Reference Panel (DGRP) of inbred lines
with complete DNA sequences (Mackay et al. 2012; Huang et al.
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2014). We mapped eQTLs for annotated genes, novel transcribed
region (NTRs), transposable elements (TEs), andmicrobiome com-
position; constructed de novo cis-trans-eQTL gene expression net-
works; and evaluated associations of eQTLs and expression traits
with organismal phenotypes.

Results

We collected and sequenced ribo(−) RNA from replicate pools of
young flies from each of 200 DGRP lines, separately for males
and females. In total, we sequenced 1.94 terabases of RNA, of
which on average 13.4 million reads per sample uniquely aligned
to the Drosophila melanogaster genome (Supplemental Table S1).
The sequences were processed through a pipeline (Supplemental
Fig. S1) that (1) removes adapter and rRNA sequences, (2) aligns
and quantifies expressed TE sequences and microbial transcripts,
(3) verifies the origin of each sample, and (4) quantifies known
and novel D. melanogaster transcripts
and corrects for potential alignment
bias owing to line-specific sequence vari-
ation. We then analyzed normalized ex-
pression values for endogenous genes,
TEs, and microbial species.

Genetic variation in gene expression

We quantified expression levels of all
RNA sequences that aligned to the refer-
ence genome in each DGRP line. After
elimination of sequences with low
expression, we found that 12,806 of
17,097 known D. melanogaster genes
(75%) were expressed consistently in
young adult males and/or females (Sup-
plemental Table S2A). In addition, we
identified 4282 NTRs (Supplemental Ta-
ble S2B) that showed no overlap with ex-
ons on the same strand. A total of 3846 of
the NTRs were located in introns; 290
were antisense to known genes, and
146 were intergenic. Most (95.6%) of
the NTRs are ≥200 bp; the majority
(4149 or 96.9%) lack protein coding po-
tential (Supplemental Table S2C; Kang
et al. 2017). TheseNTRs in total represent
5.61 Mb new transcribed mature RNA se-
quences that eluded prior annotation ef-
forts. This increase is likely owing to the
multiple genetic backgrounds profiled
in this study. Although RNA-seq align-
ment and assembly alone are not suffi-
cient to prove genuine transcriptional
activities, our stringent expression-based
filter was able to narrow down the NTRs
to a subset that were similar to known
genes in terms of mapping ambiguity
(Supplemental Fig. S2) and expression
in at least one Drosophila cell line (Sup-
plemental Fig. S3).

Variation in gene expression among
the DGRP lines may be confounded by
variation in alignment rate to the refer-

ence strain owing to variation in DNA sequences between the
DGRP lines and the reference. Indeed, 2735 genes (2117 known
genes and 618 NTRs) were affected by alignment bias
(Supplemental Table S2D). We corrected for alignment bias and
partitioned variation in gene expression between males and
females, DGRP lines, the sex by line interaction, and residual (en-
vironmental) terms (Supplemental Table S2D), using a false-dis-
covery rate (FDR) of ≤0.05. Similar to previous studies (Ayroles
et al. 2009; Massouras et al. 2012; Huang et al. 2015), we found
that gene expression is sexually dimorphic: 98% (96%) of ex-
pressed known genes (NTRs) have a significant sex effect (Fig.
1A; Supplemental Table S2D). There is genetic variation in
themagnitude of sex dimorphism: 69% (10%) of expressed known
genes (NTRs) have a significant sex by line interaction
(Supplemental Table S2D). Therefore, we assessed genetic varia-
tion in gene expression separately for males and females
(Supplemental Table S2D,E) and found that 12,151 genes
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Figure 1. Genetic variation of gene expression in the DGRP. (A) Sexual dimorphism of gene expression.
Red indicates significant up-regulation in females; blue, in males. (B) Distribution of H2 estimates for an-
notated genes and NTRs in females. (C) Distribution of H2 estimates for annotated genes and NTRs in
males. (D) WGCNA modules for annotated genes and NTRs in females. (E) WGCNA modules for anno-
tated genes andNTRs inmales. Heatmaps show the pairwise correlation of all genes in eachmodule, sort-
ed by average connectivity, with the most tightly connected module at the top left.
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(10,354 known genes and 1797 NTRs) were genetically variable in
females (Fig. 1B) and 13,819 genes (11,393 known genes and 2426
NTRs) were genetically variable in males (Fig. 1C). These numbers
of genes with significant genetic variation are much higher than
previously reported studies, which used microarrays (4308 in fe-
males and 5814 in males) rather than RNA-seq (Huang et al.
2015). Relative to tiling arrays, RNA-seq has a higher dynamic
range and greater precision in quantifying gene expression, al-
though the results from both analyses are positively correlated
(Supplemental Fig. S4).

Broad sense heritabilities (proportion of phenotypic variance
owing to genotype differences) ranged from H2 = 0.148–0.986 in
females and H2 = 0.145–0.986 in males (Fig. 1B,C). A total of 472
(514) of the genetically variable genes in females (number for
males in parenthesis) were located in molecularly defined hetero-
chromatin (2LHet, 2RHet, 3LHet, 3RHet, XHet, and YHet) and
Chromosome 4. Although there are 6.92× (5.52×) as many anno-
tated genes relative to NTRs in euchromatic regions in females
(males), there are 2.21× (3.18×) as many NTRs in heterochromatin
and Chromosome 4 in females (males) (Supplemental Table S2F).
Thus, NTRs are highly enriched in heterochromatic regions.

We used weighted gene coexpression network analysis
(WGCNA) (Langfelder and Horvath 2008) to assess the extent
to which gene expression levels are genetically correlated in
each sex (Fig. 1D,E; Supplemental Table S3). We found 13 (15)
coexpression modules in females (males). We assessed the extent
to which each module was significantly (FDR≤0.05) enriched for
Gene Ontology (GO) terms and pathway and protein domain an-
notations (Supplemental Table S3; Lyne et al. 2007). For example,
female module 2 (149 genes) is enriched for GO terms involved
in ovary function, and male module 6 (365 genes) is enriched
for biological process GO terms involved in male reproduction.
Female module 12 (88 genes) and male modules 13 (35 genes)
and 14 (165 genes) are enriched for GO terms affecting small-
molecule metabolism. Female modules 3 (26 genes), 6 (27 genes),
and 7 (21 genes) and male modules 9 (42 genes) and 12 (44
genes) are enriched for GO terms affecting innate immunity,
and female module 13 (560 genes) is enriched for GO terms af-
fecting chemosensation.

Gene eQTLs

We performed genome-wide association (GWA) eQTL analyses
for each of the genetically variable genes in each sex. We used ap-
proximately 1,932,427 common (minor allele frequency>0.05)
polymorphisms and accounted for effects of Wolbachia infection,
polymorphic inversions, and polygenic relatedness on gene ex-
pression (Huang et al. 2014, 2015). We mapped 90,634 eQTLs
in females and 147,412 eQTLs in males (FDR≤0.05). A total of
2053 genes in females (1818 known genes and 235 NTRs) and
3178 genes in males (2790 known genes and 388 NTRs) were as-
sociated with at least one significant eQTL. We defined potential-
ly cis- and trans-regulatory eQTLs as ≤1 kb and >1 kb of their
respective gene bodies. We mapped putative cis-eQTLs to 1284
(2154) genes in females (males) and trans-eQTLs to 1653 (2521)
genes in females (males), of which 902 (1305) were trans-eQTLs
located on different chromosomal arms (Supplemental Table
S4AB).

Because of correlation between genotypes at putative eQTL
positions, some genes contained a large number of eQTLs that
were not independent from each other. To develop a more parsi-
monious model, we used forward stepwise model selection to

select putative eQTLs from the significant candidates, conserva-
tively requiring that the last eQTL entering themodel had a condi-
tional P-value <1×10−5. The models contained between one and
seven eQTLs, with >60% of genes containing only one eQTL
(Supplemental Table S4A,B). After model selection, we visualized
the significant eQTLs by plotting the polymorphism positions
on the x-axis and the gene positions on the y-axis such that the di-
agonal corresponds to cis-eQTLs and the off-diagonal to trans-
eQTLs (Fig. 2). We found the majority of eQTLs retained by model
selection to be in cis with the genes they controlled, although
trans-eQTLs were not uncommon (Fig. 2).

eQTL regulatory networks

The existence of eQTLs that are cis-eQTL for gene X and also trans-
eQTL for gene Y (Supplemental Table S5A,B) enables us to con-
struct gene regulatory networks based on multifactorial variation
in a natural population. Although significant putative eQTLs
may not remain in the selected models, we still considered them
when constructing regulatory networks because we could not ge-
netically distinguish themand their associationswith gene expres-
sion when all P-values were highly significant. We identified 408
(794) such regulatory interactions supported by at least one cis-
trans-eQTL connecting 257 (471) regulatory genes (cis-end) to
251 (447) target genes (trans-end) in females (males) (Supplemen-
tal Table S5C,D). There are two or three large regulatory networks
in each sex, as well as many smaller networks (Supplemental Figs.
S5–S7). The regulatory genes are largely distinct between the two
sexes, although many target genes are in common between males
and females (Fig. 3; Supplemental Fig. S5; Supplemental Table
S5E). Genes from the sex-specific regulatory networks or from
the common networks are not enriched for any GO terms. It is
not clear from their anatomical gene expression patterns how
the sex specificity could arise, because the majority of these genes
are expressed in multiple tissues, including the reproductive tis-
sues of both sexes (Gramates et al. 2017).
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Figure 2. Genomic location of eQTLs for gene expression and genes
they regulate. eQTL chromosome positions (bp) are given on the x-axis,
and the genes with which they are associated on the y-axis. Red points
denote female-specific eQTLs, blue indicates male-specific eQTLs, and
black shows eQTLs shared by males and females.
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Examination of cis- and trans-eQTLs (Supplemental Table S5)
showed that there aremoreNTRs than expected among geneswith
cis-trans-eQTLs based on the total number of NTRs with eQTLs
among the target genes (x21 =29.74, P= 4.95×10−8 in females;
x21 =60.54, P=7.20×10−15 in males) but not the regulatory genes
(x21 =1.54, P=0.21 in females; x21 =1.49, P=0.22 in males). The
regulatory genes tend to be located in pericentromeric regions of
reduced recombination (x21 =17.28, P=3.23×10−5 in females;
x21 =120.28, P<2.2 ×10−16 in males) (Fiston-Lavier et al. 2010),
and target gene locations are enriched for heterochromatin
and pericentromeric regions of reduced recombination (x21 =
28.53, P=9.21×10−8 in females; x21 =147.78, P<2.2×10−16 in
males). Regulatory genes with many target genes thus tend to
havemultiple cis-eQTLs in linkage disequilibrium (LD) near the cen-
tromere and regulate other NTRs both in heterochromatic regions
across the genome and euchromatic regions on other chromosomes
(Fig. 3; Supplemental Figs. S5–S7). The smaller networks with fewer
regulators and targets tend to consist of genes in euchromatin in
regions of normal recombination (Fig. 3; Supplemental Figs. S5–
S7; Supplemental Table S5C,D). Regulatory genes often have
many cis-eQTLs; a single cis-eQTL can regulate multiple target
genes; and multiple cis-eQTLs (which may or may not be in LD)
within a gene can regulate different target genes. It is possible
that multiple cis-eQTLs in LD can be classified as a trans-eQTL
for different target genes owing to differences in thresholding
and ranking of eQTLs among the target genes. Each gene with at
least one cis-eQTL may itself be regulated in trans by cis-eQTLs in
one or more upstream genes, and the genes regulated by a focal
cis-eQTL may themselves have cis-eQTLs regulating other genes.

Genetic variation in TE expression

A total of 9%of theD.melanogaster genome contains TEs spanning
multiple families (Spradling and Rubin 1981). Active retrotranspo-
son sequences are present in our RNA-seq libraries. We aligned
reads to the Repbase database of known repetitive elements
(Jurka et al. 2005), and quantified TE RNA levels based on normal-
ized read counts. Overall, 1.3% of the RNA-seq reads align to
Repbase. The most abundant families of TE sequences were gypsy,
copia,BEL, jockey, andMariner/Tc1 elements, but all TE families rep-
resented in Repbase were detected (Fig. 4A; Supplemental Table
S6A).

Line-specific differences in TE RNA levels can be driven by
both differences in underlying copy number (Lee and Langley
2010) and differences in the rate of transcription per genomic
copy. We quantified DNA copy variation for each TE sequence
(Supplemental Table S6B) and used linear models to estimate the
percentage of variation in TE expression that arises from differenc-
es in copy number (Supplemental Table S6C).We then partitioned
the remaining copy number–independent variation in TE expres-
sion between sexes, DGRP lines, the line by sex interaction, and re-
sidual terms (Supplemental Table S6C), using FDR≤0.05 as the
significance threshold for each term in the analysis. Because the
majority (153, 79%) of TEs had a significant sex by line interaction
effect, we assessed genetic variation in TE expression for each
transposon sequence separately for each sex (Supplemental Table
S6D,E). We observed significant genetic variation in expression
for 187 (97%) TE sequences in females (Fig. 4B) and 186 (96%)
TE sequences inmales (Fig. 4C). Broad sense heritabilities of TE ex-
pression ranged fromH2 = 0.15–0.99 in females andH2 = 0.15–0.98
in males (Fig. 4B,C). Thus, there is host genetic control of expres-
sion for most D. melanogaster TEs.

We assessed whether different TE sequences had similar pat-
terns of expression across the DGRP lines (Langfelder and
Horvath 2008), separately for males and females (Fig. 4D,E;
Supplemental Table S6F,G). We found minimal correlation struc-
ture in the activity scores of different TEs (Supplemental Table
S6H), with the strongest correlations between pairs of TE se-
quences from the same family. This suggests that host genetic
factors independently affect variation in expression of each TE
family.

TE eQTLs

Wemapped eQTLs for each of the TEs with genetically variable ex-
pression in females and males (Supplemental Table S7). We found
54 TEswith significant eQTLs (FDR≤0.05): 36 in females and 39 in
males. A total of 20 TE sequences were expressed in bothmales and
females; 16 (18) TE sequences were expressed only in females
(males). The number of eQTLs per TE sequence ranged from one
to 1020 with, on average, more eQTL associations for TEs in males
than females (Supplemental Table S7A–C). However, forward
model selection retained between one and four eQTLs associated
with TE activity, suggesting substantial LD among the eQTLs. In-
deed, the large numbers of eQTLs associated with some TEs were
located in LD blocks in pericentromeric regions and on the fourth
chromosome (Supplemental Fig. S8; Supplemental Table S7D,E).
Many eQTLs for TEs expressed in both males and females over-
lapped between the sexes, but typically additional eQTLs were pre-
sent in males. Although there was little clustering of expression
patterns of different TE sequences, 202 (1032) eQTLs were associ-
atedwith two ormore sequences in females (males) (Supplemental
Table S7F,G).

Figure 3. Large cis-trans-eQTL genetic network in females and males.
Node interior colors indicate genomic location of genes: yellow, euchro-
matic regions with normal recombination; gray, euchromatic regions
with reduced recombination; and blue, heterochomatin. Node border col-
ors denote annotated gene (gray) or NTR (red). Node shape indicates
whether a gene is a regulator and/or target: triangles, regulator only;
squares, target only; and circles, both regulator and target. The node
size indicates the number of node connections. Arrows on the edges point
to the target. Edges are color-coded to show female-specific regulation
(red),male-specific regulation (blue), and regulation common to both sex-
es (black).
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Many eQTLs associated with TE expression were within 1 kb
of annotated genes and NTRs. Indeed, 19.8% (17.7%) of
TE eQTLs were within 1 kb of NTRs in females (males). Known
genes near TE eQTLs were enriched (FDR<0.05) for GO catego-
ries related to regulation of gene expression and protein binding
(Supplemental Table S7H). We next asked to what extent eQTLs
associated with gene expression were also associated with ex-
pression of TE sequences. We found 1206 eQTLs associated
with 85 genes (37 known genes and 48 NTRs) and 23 TEs in
females and found 3656 eQTLs associated with 166 genes
(79 known genes and 87 NTRs) and 30 TEs in males
(Supplemental Fig. S9; Supplemental Table S8). We could thus in-
corporate variation in TE expression into the cis-trans gene regu-
latory network via shared eQTLs (Fig. 5). These eQTLs are

predominantly located in pericentro-
meric regions, and the genes they regu-
late are in pericentromeric regions as
well as heterochromatin.

Genetic variation in microbiome

composition

RNA samples extracted from pools of
whole flies contain RNA from gut micro-
bial communities, as well as from
microbes on their exoskeleton. We as-
sessed the contribution of microbial se-
quences to the RNA-seq libraries by
aligning reads to a database of candidate
microbial genomes (Supplemental Table
S9). Wolbachia pipientis, a bacterial en-
dosymbiont that infects ∼50% of the
DGRP lines (Mackay et al. 2012), is the
most abundant source of expressed se-
quence, followed by multiple Acetobacter
species and genome assemblies (Fig. 6A;
Supplemental Table S9). We estimated
the total gene expression from each mi-
crobial species in all samples (Supple-
mental Table S10A) and partitioned
variation in microbial gene expression
between sexes, DGRP lines, the sex by
line interaction, and residual terms, us-
ing FDR≤0.05 as the significance
threshold (Supplemental Table S10B).
The H2 of W. pipientis abundance is ex-
tremely high (H2 = 0.972), as expected.
We next assessed whether the sum of
all non-Wolbachia microbial species is
genetically variable after accounting for
any Wolbachia effects, and estimated
H2 = 0.595 (Fig. 6B; Supplemental Table
S10B). The sex by line interaction for to-
tal microbial gene expression was not
significant, indicating that total micro-
bial RNA is highly correlated between
males and females. We estimated the
heritability of gene expression for the
122 non-Wolbachia microbial species
and found that 84 microbial species
had significant genetic variation in
RNA abundance, with broad sense heri-

tabilities ranging from H2 = 0.07–0.90 (Fig. 6C; Supplemental Ta-
ble S10B). Microbial species that are likely to colonize the
Drosophila gut (Acetobacter and Lactobacillus species) were among
those with the highest H2.

We used WGCNA (Langfelder and Horvath 2008) to group
species with similar abundance patterns based on the average
of male and female line means (Fig. 6D; Supplemental Table
S10C,D). We found three groups of strongly correlated species,
consisting primarily of the gut-related microbes (Acetobacter and
Lactobacillus species), and two additional clusters of microbes pri-
marily consisting of viral and fungal species that are strongly
anticorrelated with the abundances of species in the first three
clusters. Thus, there is line-specific variation in the microbial
communities living in and on DGRP flies. Species that most
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Figure 4. Genetic variation of TE expression in the DGRP. (A) Total signal for each TE family, summed
over all individual transposon sequences and averaged across all DGRP lines, sex, and replicates. (B)
Distribution of copy number independent H2 estimates for TE sequences in females. (C) Distribution
of copy number independent H2 estimates for TE sequences in males. (D) WGCNA modules of TEs for
females. (E) WGCNA modules of TEs for males. Heatmaps are depicted as in Figure 1. TE sequences
not assigned to any module are included at the bottom right.
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plausibly colonize the Drosophila gut are largely correlated across
lines, with some fluctuation in the relative abundance of
Acetobacter versus Lactobacillus species.

eQTLs for microbiome composition

There was little genetic variation in sex-
ual dimorphism for microbial gene ex-
pression; therefore, we performed eQTL
mapping using the average expression
of males and females for each microbial
species. Four microbial species and total
microbial sequence expression were as-
sociated with significant eQTLs (FDR≤
0.05) (Supplemental Table S11A).
The sum of all microbial species is asso-
ciated with one eQTL that maps to an
NTR; the expression of Borrelia coriaceae,
Acidovorax temperans, and Podospora an-
serine map, respectively, to single eQTLs
in CG2616 and CG46301 and to cic and
an NTR, and Leuconostoc pseudomesenter-
oides expression maps to 39 variants in
or near GC and nSyb (Supplemental
Table S11A).

We lowered the significance thresh-
old to P<10−5 to explore the extent to
which common eQTLs may control the
expression of multiple microbial species
that cluster together based on the
WGCNA analysis (Fig. 6D). At this
threshold, 1455 eQTLs are associated

with 88 microbial species and the sum of all species
(Supplemental Table S11B); 268 variants were associated with ex-
pression of more than one microbial species, and five eQTLs
were associated with expression of 10 or more microbial species
(Supplemental Table S11C). These data suggest that there is genet-
ic variation in host control of microbial gene expression and that
some variants have pleiotropic effects on multiple microbial
species.

We assessedwhether the genes towhich the eQTLs associated
with variation in microbial gene expression were enriched for GO
categories (FDR≤0.05). The most highly enriched biological pro-
cess GO terms were related to development and morphogenesis,
including development and function of the nervous system
(Supplemental Table S11D).

Gene expression and complex traits

To examine the relationship between variation in gene expression
and variation in organismal quantitative trait phenotypes, we
chose 11 quantitative traits with published phenotypic data (chill
coma recovery time and startle response (Mackay et al. 2012); star-
vation resistance (Huang et al. 2014); day and night sleep bout
number, day andnight total sleep duration, and totalwaking activ-
ity (Harbison et al. 2013); food consumption (Garlapow et al.
2015); male aggression (Shorter et al. 2015); phototaxis (Carbone
et al. 2016)); and additionallymeasured fivemetabolic traits (levels
of free glucose, glycogen, free glycerol, triglyceride, and protein)
and threemetrics of body size (body weight, thorax length, thorax
width). All traits were quantified in the same laboratory under the
same culture conditions used in this study. The line means for all
traits are given in Supplemental Table S12; quantitative genetic
analyses of the metabolic and body size traits are given in
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Figure 5. TE genetic regulatory network. Symbols and color-coding are
as for Figure 3. Black squares denote TE sequences.
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Supplemental Table S13; and the most significant associations
(P<10−5) from GWA analyses (separately for males and females)
for these quantitative traits based on the 200 lines for which
we have gene expression data are in Supplemental Table S14.

We first assessed whether variants associated with all organis-
mal traits were enriched for eQTLs, as found in human studies
(Chen et al. 2008; Emilsson et al. 2008; Cookson et al. 2009;
Nicolae et al. 2010; Boyle et al. 2017). Of all the eQTLs
(before model selection) and GWA study (GWAS) hits, only 26 in
males and eight in females were common between eQTLs and
GWAS hits, with clear patterns of clustering. We found no enrich-
ment of cis-eQTLs (P= 0.13 in females and P=0.71 in males),
trans-eQTLs (P=0.98 in females and P=0.28 in males), or all
eQTLs (P=0.94 in females and P=0.23 in males) among top GWA
hits in either sex. Many top GWA hits as well as eQTLs map to re-
gions >1 kb from any gene and may indicate novel regulatory re-
gions. To exclude the possibility that the lack of overlap was
owing to using different mapping procedures, we performed QTL
mapping for the organismal traits using the same procedure as the
eQTL mapping. At an empirical FDR=0.05, we found four SNPs as-
sociated with three traits (chill coma recovery in females, day sleep
duration, and free glucose level in males), and none was an eQTL.

We next performed transcriptome-wide association studies
(TWASs) for individual genetically variable transcripts for gene ex-
pression, TE sequences, and microbial species for each of the 18
(19) genetically variable organismal phenotypes in females
(males). We found several significant (Benjamini–Hochberg FDR
<0.05) associations of transcripts with organismal phenotypes
(Supplemental Table S15). These associations include a known
noncoding RNA (CR46032) with male aggression, two NTRs with
male waking activity, Gbs-70E with free glucose in both sexes,
AkhR with starvation resistance in males and females, and A. tem-
perans with male aggression (Supplemental Table S15).

Discussion

Deep RNA sequencing gives accurate estimates of gene expression
of annotated genes and can implicate novel noncoding RNAs and
their regulatory interactions with annotated genes. We have iden-
tified 4282 NTRs, which are unlikely to be artifacts because the
majority are genetically variable, and they are not randomly
distributed in the genome but are preferentially located in hetero-
chromatic regions and in pericentromeric euchromatin bordering
heterochromatin. Thus, there is genetic variation in heterochro-
matic gene expression, thought to be largely transcriptionally
silent (Riddle et al. 2011). These heterochromatic and pericentro-
meric NTRs are regulated by pericentromeric cis-eQTLs as well as
trans-eQTLs dispersed throughout the euchromatic genome.
Genes associated with eQTLs with both cis- and trans-effects
form sex-specific networks of regulator and target genes, the larg-
est of which is enriched for NTR target genes in heterochromatin
and regulator and target genes in pericentromeric euchromatin.
The considerable overlap between eQTLs associated with NTRs
in the large networks and eQTLs associated with TE expression re-
cruits TEs to the network.We do not knowwhere the TE sequences
with genetically variable expression are integrated in the genome;
however, heterochromatin is composed of largely silenced TE
repeats (Riddle et al. 2011), raising the possibility that TEs in het-
erochromatin are subject to the same regulation as other hetero-
chromatic genes. Further work is needed to confirm the
regulatory networks derived from naturally occurring genetic var-
iation and determine the regulatory mechanism(s) through which

the NTRs act. We speculate that many of the NTRs may be long
noncoding RNAs, operationally defined as encoding transcripts
>200 bp with no significant protein-coding potential, but further
work is needed to establish whether this is true (Khalil et al.
2009; Wang et al. 2011; Hacisuleyman et al. 2014; Rogoyski et al.
2017; Wang et al. 2017; Ransohoff et al. 2018).

The first step in systems genetic analysis is to identify eQTLs
associated with both gene expression and organismal quantitative
traits, for which variation in gene expression is correlated with var-
iation in the organismal phenotypes (Sieberts and Schadt 2007;
Rockman 2008; Mackay et al. 2009). We did not find any such tri-
os, although we did find interesting transcript–trait associations.
This may be because our sample size is adequate to detect eQTLs
but not QTLs affecting organismal traits, which have smaller ef-
fects; because eQTLs need to be mapped in tissues relevant to
the organismal trait; and because there are nonlinear (epistatic) re-
lationships between QTLs for both transcripts and organismal
phenotypes. The complex and highly connected cis-trans regulato-
ry networks suggest that higher-order interactions need to be ac-
commodated in systems genetic modeling, at least at the level of
gene expression.

Methods

Drosophila lines

We used 200 inbred, sequenced DGRP lines (Mackay et al. 2012;
Huang et al. 2014) established by 20 generations of full sib inbreed-
ing from gravid females collected at the Raleigh, North Carolina,
Farmer’s Market. Genome sequences of the lines were obtained
previously using the Illumina platformwith an average of coverage
of 27×. A total of 4,565,215 molecular variants (3,976,011 single/
multiple-nucleotide polymorphisms [SNPs/MNPs], 169,053 poly-
morphic insertions [relative to the reference genome], 293,363
polymorphic deletions, and 125,788 polymorphic microsatellites)
segregate in the DGRP.

Sample collection

All lines were reared on cornmeal-molasses-agar medium at 25°C,
60%–75% relative humidity, and a 12-h light–dark cycle at equal
larval densities. We collected two replicates of 25 females and 30
males per line for a total of 800 samples. We used a strict random-
ized experimental design for sample collection. We collected mat-
ed 3- to 5-d-old flies between 1:00 and 3:00 pm.We transferred the
flies into empty culture vials and froze them over ice supplement-
ed with liquid nitrogen and then sexed the frozen flies. The sam-
ples were transferred to 2.0-mL nuclease-free microcentrifuge
tubes (Ambion) and stored at −80°C until ready to process.

RNA sequencing

Total RNA was extracted with QIAzol lysis reagent (Qiagen) and
the quick-RNA MiniPrep Zymo research kit (Zymo Research).
Ribosomal RNA (rRNA) was depleted from 5 µg of total RNA using
the Ribo-Zero gold kit (Illumina). DepletedmRNAwas fragmented
and converted to first-strand cDNA using SuperScript III reverse
transcriptase (Invitrogen). During the synthesis of second-strand
cDNA, dUTP instead of dTTP was incorporated to label the sec-
ond-strand cDNA. cDNA from each RNA sample was used to pro-
duce barcoded cDNA libraries using NEXTflex DNA barcodes
(Bioo Scientific) with an Illumina TruSeq compatible protocol.
Libraries were size-selected for 250 bp (insert size ∼130 bp) using
Agencourt AMPure XP beads (Beckman Coulter). Second-strand
DNA was digested with uracil-DNA glycosylase before

Gene expression variation in the DGRP

Genome Research 491
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257592.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257592.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257592.119/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.257592.119/-/DC1


amplification to produce directional cDNA libraries. Libraries were
quantified using Qubit dsDNA HS kits (Thermo Fisher Scientific)
and Bioanalyzer (Agilent Technologies) to calculate molarity.
Libraries were then diluted to equal molarity and requantified.
A total of 50 pools of 16 libraries were made, again randomly as-
signing samples to each pool. Pooled library samples were quanti-
fied again to calculate final molarity and then denatured and
diluted to 14 pM. Pooled library samples were clustered on an Illu-
mina cBot; each poolwas sequenced on one lane of IlluminaHiSeq
2500 using 125-bp single-read v4 chemistry.

RNA sequence analysis

Barcoded sequence reads were demultiplexed using the Illumina
pipeline v1.9. Adapter sequences were trimmed using cutadapt
v1.6 (Martin 2011), and trimmed sequences <50 bpwere discarded
from further analysis. Trimmed sequences were then aligned to
multiple target sequence databases in the following order, using
BWA v0.7.10 (MEM algorithm with parameters “-v 2 –t 4”) (Li
and Durbin 2010): (1) All trimmed sequences were aligned against
a database containing the complete 5S, 18S-5p8S-2S-28S, mt:
lrRNA, andmt:srRNA sequences to filter out residual rRNA that es-
caped depletion during library preparation; (2) remaining se-
quences were then aligned against a custom database of
potential microbiome component species (see below) using
BWA; and (3) sequences that did not align to either the rRNA or
microbiome databases were aligned to allD. melanogaster sequenc-
es in Repbase (Jurka et al. 2005). The remaining sequences that did
not align to any of the databases abovewere then aligned to theD.
melanogaster genome (BDGP5) and known transcriptome (FlyBase
v5.57) using STAR v2.4.0e (Dobin et al. 2013). Libraries with fewer
than 5 million reads uniquely aligned to the D. melanogaster refer-
ence genome were resequenced to achieve sufficient read depth.

Generation of microbiome database

We first performed a preliminary alignment of RNA-seq reads by
filtering only rRNA sequences and then aligning directly to the
D. melanogaster genome using the tools and parameters described
above. Sequences that did not align to the rRNAdatabase orD.mel-
anogaster reference genomewere then analyzedwith Trinity v2.1.1
(Garbherr et al. 2011) to perform de novo assembly of longer se-
quences from the short reads. Assembled sequences >1 kb in
length were then searched against the RefSeq_genomic database
(downloaded from NCBI on 1/27/16) using BLAST. We then com-
piled a list of all RefSeq genomes that were found as a top BLASThit
for at least two assembled sequences. We compiled all FASTA files
for each of these RefSeq genomes into a single database for align-
ment with BWA.

Genotype validation

To validate the DGRP line assigned to each RNA-seq sample, we
identified SNPs from the RNA-seq reads that aligned to the D. mel-
anogaster reference genome using STAR as described above. We re-
tained only those SNP calls covered by at least three reads and at
least 75% of all reads supporting the major genotype (note that
DGRP lines are inbred, and therefore, the majority of SNPs are ho-
mozygous). This filtering process produced >400,000 usable SNPs
per sample, primarily located in transcribed regions of the ge-
nome. We then performed two validation tests of the DGRP line
assigned to each sample X by comparing to the previously pub-
lished genotype calls for each DGRP line (Huang et al. 2014; http
://dgrp2.gnets.ncsu.edu/data/website/dgrp2.tgeno). First, we com-
puted the “line mean error” (LME) for each line as follows: given
the set of homozygous SNPs from line Y that have sufficient cover-

age (described above) in sample X, LME(X,Y) = # of mismatching
SNPs/total # of comparable SNPs.We confirmed that for each sam-
ple X, the DGRP line Ylab labeled for that samples produced the
minimum value of LME(X,Y) compared with all other possible
line assignments Yalt, and further confirmed that LME(X,Ylab)
was <1%. Second, we performed competitive tests between the la-
beled line Ylab and each possible alternate line Yalt.Under this test,
we considered only the SNPs that are homozygous for different ge-
notypes in Ylab and Yalt (i.e., only the segregating SNPs for the two
lines) and that have sufficient coverage in sampleX.We then com-
puted the “line error ratio” (LER) = # of SNPs matching Ylab/# of
SNPsmatchingYalt.We confirmed that for each sampleX, the low-
est LER for any Yalt was more than one (i.e., the majority of SNP
calls always supported the labeled line compared with any alterna-
tive line).

Inference of novel transcripts

We constructed a de novo transcriptome for each individual sam-
ple by inputting the RNA-seq reads aligned to the D. melanogaster
reference genome into Cufflinks v2.2.1 (Trapnell et al. 2012). We
also considered the NTRs identified in a previous study based on
unstranded pooled RNA sequencing of the DGRP lines (Huang
et al. 2015). However, the previously published data do not pro-
vide strand-specific signal, whereas our current RNA-seq data use
a strand-specific library preparation. Therefore, we reassigned the
strand for each of the previously published NTRs that was support-
ed by the greater number of total aligned reads across all samples.
We then merged all de novo sample transcriptomes and the previ-
ously published NTRs using the cuffmerge tool included with
Cufflinks v2.2.1 and then removed all merged transcript models
with any exon overlapping on the same strand any exon in the
known D. melanogaster transcriptome. We defined the known
transcriptome here as all genemodels in FlyBase v5.57 plus all sub-
sequently added gene models in FlyBase v6.11 to account for re-
cently discovered lncRNA sequences. Thus, the final output of
this analysis was a set of NTRs constructed from both our current
RNA-seq data and previously published pooled RNA-seq data
that do not overlap any known gene exons on the same strand.

Gene expression estimation

Read counts for individual microbial species were computed as all
reads aligning to any sequence in any genome for any strain of that
species. Reads aligning to multiple species were ignored for indi-
vidual species read counts. We also aligned microbiome-aligning
reads to the D. melanogaster genome and removed all reads that
aligned to both microbial and D. melanogaster sequences before
computing read counts to account for several domains that are
highly conserved between microbial and metazoan species. Read
counts were computed for transposon sequences by computing
the number of reads uniquely aligned to each transposon sequence
in Repbase. Highly homologous sequences were grouped together
for computing transposon read counts. Read counts were comput-
ed for known and novel gene models using HTSeq-count (Anders
et al. 2015) with the “intersection-nonempty” assignment meth-
od for exonic reads only. Tabulated read counts for each expression
feature type (microbiome, transposon, endogenous genes) were
then normalized across all samples using edgeR (Robinson et al.
2010) as follows. First, genes with low expression overall (fewer
than 10 aligned reads in >75% of the libraries) were excluded
from the analysis. Library sizes were recomputed as the sum of
reads assigned to the remaining genes and further normalized us-
ing the trimmedmean of M-values (TMM)method (Robinson and
Oshlack 2010). At this point, we retained only genes (known or
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novel) whose expression in both biological replicates was above an
empirical threshold in more than 200 line-sex combinations (400
samples total). This criterion retains genes expressed in only one
sex. The threshold was determined by fitting all log2 transformed
FPKM expression data points using a two-component Gaussian
mixture model and by finding the expression value (FPKM=
0.280263) where the posterior probability of being in the lower ex-
pression component is 0.95. Genes on Chr U and Chr Uextrawere
also removed. We further adjusted transposon expression esti-
mates to account for differences in transposon copy number across
lines by fitting a linear model: RNA∼DNA+ ε, where RNA= the
normalized log2 (RNA-seq read count), and DNA=normalized
log2 (DNA read count) derived from the previously published
DNA-seq data for each DGRP line (Huang et al. 2014). After fitting
the linear model for each transposon sequence, ε estimates the rel-
ative transcription rate in each line independent of copy number
and was used as the adjusted transposon expression for all subse-
quent analysis. We further adjusted endogenous gene expression
values by estimating and removing the effect of alignment bias re-
sulting from higher rates of nonreference variants clustering in
some lines. We computed the alignment bias score A(g,L) defined
as the number of nonreference nucleotides per kilobase in all ex-
ons of gene g in DGRP line L, based on the previous map of geno-
mic variation in the DGRP (Huang et al. 2014).We then fit a linear
model for each endogenous gene: Y=A+ ε, where Y is the normal-
ized expression profile for gene g after the read counting and edgeR
normalization described above. After fitting these linear models, ε
represents the alignment bias–corrected expression and was used
as the normalized gene expression in all subsequent analysis.
Read mapping ambiguity could affect the confidence in defining
NTRs. We assessed this by using BLAT (https://genome.ucsc.edu/
FAQ/FAQblat.html) to map all RNA transcripts to the fly genome
and identified all possible alignments. We used a metric
(ΔBitscore) to characterize the mapping ambiguity of the full-
length RNA transcripts for known genes, NTRs filtering for low ex-
pression across the DGRP, and NTRs retained after filtering.
ΔBitscore is defined as the difference between the bit score for
the best alignment and the second best one. The greater the
ΔBitscore, the less ambiguous is the alignment. In addition, we as-
sessedwhether theNTRs identified in theDGRPwere present in an
independent data set of 41Drosophila cell lines thatwere either un-
treated or treated with the hormone ecdysone (Stoiber et al. 2016).
We computed themedian andmaximum expression across all cell
lines for each transcript using kallisto (Bray et al. 2016), an align-
ment-free abundance estimator, and calculated the median and
maximum expression RNA transcripts for known genes, NTRs fil-
tered for low expression across the DGRP, and NTRs retained after
filtering.

Genetics of gene expression

For each class of expression features (endogenous genes, transpo-
sons, microbiome), we fit mixed-effect models to the gene expres-
sion data corresponding to Y= S+W+W× S+L+ L× S+ ε, where Y
is the observed log2 (normalized read count), S is sex, W is
Wolbachia infection status, W× S is Wolbachia by sex interaction,
L is DGRP line, L× S is the line by sex interaction, and ε is the resid-
ual error. We also performed reduced analyses (Y=W+L+ ε) inde-
pendently for males and females. We identified genetically
variable transcripts as those that passed a 5% FDR threshold (based
on Benjamini and Hochberg [1995] corrected P-values) for the L
and/or L× S terms. We computed the broad sense heritabilities
(H2) for each gene expression trait separately formales and females
as H2 = s2

L/(s
2
L + s2

1 ), where s2
L and s2

1 are, respectively, the
among line and within line variance components.

Clustering by genetic correlation

For each feature type (microbiome, transposons, endogenous
genes), we clustered line means using the WGCNA R package
v1.51 (Langfelder and Horvath 2008) as follows. Only genes with
sufficient average expression (log2 FPKM>0) and genetic variance
(linemean variance >0.05) were considered in these analyses. First,
the Pearson correlation coefficient for every pair of lines means
that the soft-power threshold was computed using the
pickSoftThreshold function and used to convert the correlation
matrix to an adjacency matrix with approximately scale-free con-
nectivity. The adjacencymatrixwas then converted to a dissimilar-
ity matrix based on the topological overlap map (Langfelder and
Horvath 2008). Expression features were then clustered using hier-
archical clustering (hclust function) based on the dissimilarity ma-
trix and split into distinct modules using the cutreeDynamic with
deepSplit = 4 and minClusterSize = 20 (for endogenous gene ex-
pression,minClusterSize = 4was used formicrobiome and transpo-
son clustering). Module eigengenes were computed for each
cluster, and highly similar clusters were combined using the
mergeCloseModules function with cutHeight= 0.25. Expression
features assigned tomodule 0 (insufficient similarity) were discard-
ed. Modules consisting of more than 1000 features were also dis-
carded as insufficiently split into distinct modules. For each
expression feature, the degree was computed as the overage topo-
logical overlapwith all other features assigned to the samemodule.
The average degree of each module was computed as the mean de-
gree across all features in the module. Modules were sorted by av-
erage degree, such that module 1 has the highest average degree in
each analysis.

Gene set enrichment analyses

Lists of known gene IDs (FlyBase FBgn accessions) were uploaded
to FlyMine (Lyne et al. 2007) or Panther (Mi et al. 2017) for func-
tional enrichment. For analysis of gene lists fromWGCNAclusters,
the list of known genes input to WGCNA was used as the back-
ground set to correct for any biases inherent to highly heritable ex-
pression patterns in general.

eQTL mapping

For each gene expression feature, we performed eQTL analysis as
previously described (Huang et al. 2015). Briefly, we adjusted
mean expression values in each sex for fixed effects of Wolbachia
infection status, five major polymorphic inversions (In2L(t), In2R
(NS), In3R(P), In3R(K), In3R(Mo)), and the first 10 principal compo-
nents of the genetic relatedness matrix of all DGRP lines using a
linear model. We mapped QTLs for the adjusted line means using
PLINK (Purcell et al. 2007) against 1,932,427 SNPs with major al-
lele frequency >0.05 and missing genotypes in <25% of the 200
DGRP lines profiled by RNA-seq. Instead of controlling for experi-
ment-wise type I error rate, which can be overly conservative, we
controlled for the FDR (Benjamani and Hochberg 1995). We com-
puted FDR of eQTL calls by comparing observed eQTL P-value dis-
tributions to those obtained from running PLINK on 100
permutations of the observed line means for each expression fea-
ture. At any given P-value cut-off X, the estimated false-positive
rate of eQTLs for a specific gene expression feature is the average
number of eQTLs with P-value<X across all permutations. The
FDR at the same P-value is then computed as the estimated false-
positive rate divided by the number of eQTLs with P-value <X in
the observed data. By using this formulation of FDR, we identified
the unadjusted P-value cut-off corresponding to 5% FDR for each
gene expression feature. No further model selection was per-
formed; however, we classified eQTLs as being either cis-eQTLs
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(within 1 kb of the gene body for the associated expression feature)
or trans-eQTLs (>1 kb of the gene body). To eliminate eQTLswhose
genotypes are correlatedwith each other and cannot be genetically
distinguished, we used forward model selection to iteratively add
eQTLs to the model in the order of their conditional association
(Huang et al. 2015). The model selection was stopped when
none of the remaining putative eQTLs can enter the model with
P< 0.00001. When two putative eQTLs had equal P-values, the
one closer to the transcription start site was added.

Construction of eQTL networks

We then constructed regulatory eQTL networks based on individ-
ual SNPs that were called as both cis- and trans-eQTLs for multiple
expression features. Specifically, we assign a directed edge X→Y if
there is at least one variant that is both a cis-eQTL for gene X (de-
fined as within 1 kb of gene X) and a trans-eQTL for gene Y at 5%
FDR. We then broke all loops in the regulatory network for each
sex by dropping the edge in each loop with the highest minimum
P-value from all associated SNPs to create a directed, acyclic
network.

Quantitative traits

We retrieved phenotypic data documented from previous publica-
tions on the same fly lines formale aggression (Shorter et al. 2015),
chill coma recovery time and startle response (Mackay et al. 2012),
food consumption (Garlapow et al. 2015), phototaxis (Carbone
et al. 2016), sleep traits (day andnight bout number, day andnight
total sleep duration, total waking activity) (Harbison et al. 2013),
and starvation resistance (Huang et al. 2014).

Tomeasure bodyweight and size, we collected 10 replicates of
10 flies per line and sex into preweighed 1.7-mL tubes andweighed
and flash-froze them for downstream analyses. Virgin flies were
used to avoid body weight variation owing to variation in egg pro-
duction. In addition, wemeasured thorax length and thoraxwidth
as metrics for body size.

Frozen flies were homogenized in 250 μL Dulbecco’s
Phosphate Buffered Saline, and after gentle centrifugation, super-
natants were collected for measurements of free glucose, glycogen,
free glycerol, triglyceride, and total protein (further diluted 10-
fold). For free glucose and glycogen, samples were denatured for
25min at 95°C to prevent glycogenolysis. Measurements were per-
formed following protocols provided by the glycogen colorimet-
ric/fluorometric assay kit (BioVision). For free glycerol and
triglyceride, we used the serum triglyceride determination kit
(Sigma-Aldrich) and incubated samples with the triglyceride re-
agent for 1 h at 37°C. For total protein measurement, we used
the Qubit protein assay kit (Thermo Fisher Scientific).

Quantitative trait genetic parameters

We used mixed-model, factorial ANOVAs (Y= S+L+L× S+Rep(L)
+ S×Rep(L) + ε) to partition variation of the quantitative traits
between sexes (S), DGRP lines (L), and replicate vials within
lines (Rep). Broad sense heritabilities were estimated as
H2 = (s2

L + s2
SL)/(s

2
L + s2

SL + s2
1 ), where s2

L, s2
SL and s2

1 are, re-
spectively, the among line, sex by line, and within line vari-
ance components.

eQTL-GWA enrichment analysis

We performed GWA analyses for all quantitative traits separately
for females and males. All phenotypes (line means) were first ad-
justed for the effect ofWolbachia infection andmajor polymorphic
inversions using a linear model. The residuals (plus the intercept)

from this analysis were then used as phenotype in a linear mixed
model to test for the effect of each common variant individually,
while adjusting for sample structure using a genomic relationship
matrix (GRM), as implemented inGCTA-MLMA (Yang et al. 2011).
TheGRMwas built asWW

′
/p, whereW is amatrix of centered and

scaled genotypes for the 200 lines, and p is the total number of ge-
netic variants. Similarly, we have alsomapped trait QTLs using the
same procedure as the eQTLmapping described above by deriving
empirical FDR based on 100 permutations of phenotypes.

For each trait and sex, variants with P<10−5 were retained
for downstream analysis. We then combined the lists of variants
associated with each trait, separately for females and males, to ob-
tain a single list of unique variants (i.e., no duplicates) associated
with any of the traits of interest. The enrichment analysis pro-
ceeded as described by Nicolae et al. (2010) within each sex.
Briefly, GWAS hits were divided into minor allele frequency
bins of width equal to 0.05. Then, an equal number of common
variants (which may or may not have included actual GWAS hits)
per bin were sampled at random, and the overlap with eQTLs was
calculated. This procedure was repeated 10,000 times, and an em-
pirical P-value for the enrichment was calculated as the number
of replicates where the overlap between randomly sampled vari-
ants and eQTLs was greater than or equal to the observed overlap
between GWAS hits and eQTLs over the total number of
replicates.

Association of expression and quantitative traits

A TWAS, namely, regressing the phenotype on each gene’s ex-
pression level, was performed for each sex separately for each
quantitative trait. We developed a method that accounts for
structure present in the transcriptome due correlations between
transcripts. This was achieved by fitting a linear mixed model
of the type: y= 1μ+ wβ+ t+ e, where y=n-vector of mean
phenotypic values for n lines, μ= fixed population mean effect,
w=n-vector of the tested gene’s centered and scaled expression
level, β= fixed effect of the gene, t=n-vector of random transcrip-
tomic line effect(t � N(0, Ts2

t )), and e=n-vector of random
error(e � N(0, Is2

e )).
The key term in the model that accounts for sample structure

is T, the transcriptomic relationship matrix (TRM). The TRM was
computed as W−W−′/p, where W− is a matrix of centered and
scaled gene expression levels for the 200 lines, excluding the
gene tested to maximize the power to find an association (Yang
et al. 2014), and p is the total number of genes. The TRM in
TWAS has similar role to the GRM in GWAS.

The effect of each gene’s expression level on the phenotype
was tested using a Wald test of the form b2/(SE(b))2 � x21. Raw
P-values and Benjamini and Hochberg (1995) FDR-corrected
P-values were computed.

The phenotypes were adjusted for the effects of Wolbachia
and major polymorphic inversions as described in the previous
section. Because the phenotypes were adjusted, we did not adjust
gene expression in this analysis to avoid spurious associations ow-
ing to adjustment on both sides of the equation.

We also performed similar associations of quantitative traits
with TEs and microbial gene expression, using the same models
as for TWAS but substituting TE and microbial expression for
gene expression levels. Quantitative trait phenotypes were adjust-
ed for the effects of Wolbachia and major polymorphic inversions
but the TE andmicrobial expression data were not. The TE analysis
was performed for males and females separately, whereas sex-
pooled microbe expression data were used with female or male
quantitative trait phenotypes because microbial gene expression
was not sex specific.
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Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE117850. The DGRP lines are available from the Bloomington
Drosophila Stock Center (Bloomington, IN). All analysis codes are
available in Supplemental Codes and on GitHub (https://github
.com/qgg-lab/dgrp-rna-seq/).
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