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Abstract: The energy use analysis of coal-fired power plant units is of significance for energy
conservation and consumption reduction. One of the most serious problems attributed to Chinese
coal-fired power plants is coal waste. Several units in one plant may experience a practical rated
output situation at the same time, which may increase the coal consumption of the power plant.
Here, we propose a new hybrid methodology for plant-level load optimization to minimize coal
consumption for coal-fired power plants. The proposed methodology includes two parts. One part
determines the reference value of the controllable operating parameters of net coal consumption
under typical load conditions, based on an improved K-means algorithm and the Hadoop platform.
The other part utilizes a support vector machine to determine the sensitivity coefficients of various
operating parameters for the net coal consumption under different load conditions. Additionally,
the fuzzy rough set attribute reduction method was employed to obtain the minimalist properties
reduction method parameters to reduce the complexity of the dataset. This work is based on
continuously-measured information system data from a 600 MW coal-fired power plant in China.
The results show that the proposed strategy achieves high energy conservation performance.
Taking the 600 MW load optimization value as an example, the optimized power supply coal
consumption is 307.95 g/(kW·h) compared to the actual operating value of 313.45 g/(kW·h). It is
important for coal-fired power plants to reduce their coal consumption.

Keywords: big data mining; coal-fired units; operation optimization; energy use analysis; K-means;
sensitivity analysis

1. Introduction

Non-renewable energy and coal comprise the majority of the resources utilized in Chinese energy
use and production. As the Chinese energy structure features an abundance of coal and a shortage
of oil and gas, this resource distribution is not likely to change in the near term [1]. By the end of
2015, the average coal consumption of the thermal power units, which generate 600 MW of power,
was 315 (g/kW·h) [2]. According to the Chinese development plan, by 2020, coal-based power
generation should account for over 60% of the total coal consumption. At the same time, coal-fired
units must be upgraded to reduce emissions and conserve energy. In addition, the average coal
consumption of all the active coal-fired units should be lower than 310 (g/kW·h) [3]. Owing to the
rapid development of clean energy in China, thermal power units are always under a low load [4].
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Determining how to attain minimum coal consumption during low-load operation is a significant
challenge for those who are involved in energy production.

With the application of the supervisor information system (SIS) and distributed control system
(DCS), massive amounts of power plant data can be saved. With the rapid development of data-mining
technology in the power industry, many scholars have begun to use this data to optimize the operation
of coal-fired power plant units [5,6]. The K-means algorithm [7] is a classical clustering algorithm.
It is widely used in the optimization of power unit operations because of its simplicity and fast
convergence. In Reference [8], a method was used to measure the target value of boiler monitoring
parameters by realizing synchronous clustering of several parameters based on the fuzzy C-means
clustering algorithm. In Reference [9], the K-means algorithm was used to measure the reference
value of pressure loss in a reheater and the temperature of the boiler exhaust gas by analyzing
real-time operating data. However, a large number of candidate sets and redundant datasets emerge,
which reduce clustering efficiency and accuracy. Therefore, an attribute reduction method based on
fuzzy rough sets is introduced in this paper. Using this method, the attributes of power units are
reduced before the use of the clustering K-means algorithm, to enhance the efficiency and accuracy
of the algorithm. This is achieved by eliminating redundant attributes and narrowing the data scale.
The theory of fuzzy rough sets is a mathematical tool used for solving problems related to uncertainty
and vagueness. By considering the operating parameters that affect the power supply coal consumption
rate as an information system, this theory can be used to analyze the system and calculate the
degree of dependence of certain parameters on the consumption rate by reducing their attributes.
Then, redundant factors are eliminated based on their degree of dependence. As a result, the simplest
influential parameter set is calculated. In addition, by relying on the initial number of clusters,
the K-means algorithm might lead to a local optimal solution. In this paper, the Canopy algorithm is
used. There is no need to set up the number of clusters in this algorithm. It first conducts a clustering
analysis of the data to affirm the initial cluster center and the number of clusters. Next, it conducts
iterative computations using the K-means algorithm. Lastly, the clustering result is achieved and the
disadvantages of the K-means algorithm are avoided.

Cloud computing [10] meets the demands of massive data mining, and parallel computing is
currently the most effective method [11]. To address massive and high-dimensional data, this paper
introduces the MapReduce Program Mode to the parallel clustering of K-means. First, the method
executes a pre-treatment of controllable operating parameters based on the fuzzy and rough sets
theory. Secondly, the K-means algorithm is improved by the Canopy algorithm, and a new parallel
clustering algorithm called FMK-means is realized. This algorithm is used to mine the reference
value of controllable operating parameters that affect power supply coal consumption under optimal
operational circumstances. Lastly, the method analyzes the sensitivity of each parameter to coal
consumption under different working loads based on vector technology. This step provides guidance
for the optimization and debugging of power units. Compared to traditional data mining, the new
algorithm for massive data mining enhances the accuracy of clustering, eliminates redundant data
sets, and promotes clustering efficiency.

2. Analysis of Energy Loss of Thermal Generators

Because the implementation of policies aimed toward reducing the coal consumption rate of
coal-fired units has intensified, the Chinese power supply coal consumption rate has decreased each
year. However, maintaining consumption reduction, safety, reliance, and environmental factors
must also be taken into consideration. Therefore, small and out-of-date units should be eliminated
and environmentally friendly units featuring low consumption and large capacity should be built.
Heat and power cogeneration remains the dominant trend in the development of thermal generation.
However, active generation units should be upgraded and optimized, and operation modes and
parameters should be confirmed to ensure that units attain the best operation states under different
loads. In addition, environmental pollution caused by coal can be classified as pollution due to coal
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burning and pollution due to coal mining. Pollution by solid particulate waste produced through coal
mining is the main cause of environmental pollution. Combustible coal processing wastes are the most
promising components for coal-water slurries with and without petrochemicals (CWS and CWSP).
The use of coal-water slurries not only reduces the cost of coal milling, but also increases the burning
efficiency of coal and reduces pollution [12,13].

The successful operation of an economical and energy-efficient power plant is dependent on the
efficient analysis of the energy use in generator units. Generally, power plants take the power supply
coal consumption rate as a standard for assessing the energy conservation and consumption level of
units. Currently, energy use analysis methods often refer to the first law of thermodynamics, which is
based on mass balance and energy balance, and the second law of thermodynamics, which is based
on energy analysis [14]. According to the second law, maximum energy loss is caused by energy loss
due to irreversible declining energy quality. Determining how to minimize energy loss caused by
irreversibility is an important task for people working in the energy field. From the control perspective,
the energy loss of thermal units can be classified into controllable and uncontrollable losses [15].
As shown in Figure 1, uncontrollable energy loss is caused by external factors that are difficult
to improve, such as coal quality and ambient temperature. Currently, as a result of coal diversity,
many power plants choose to conduct coal blending [16] and raw coal separation processes [17] before
burning, to reduce the energy loss caused by changes in coal quality. Controllable energy loss can be
divided into operational loss and maintenance loss. The former is caused by the deviance of units from
optimal operating conditions, which is caused by the deviance of operating parameters from a reference
value. At the same time, thermal performance and operating efficiency are affected. This part of the
loss can be recovered by adjusting the controllable operating parameters. Maintenance controllable
energy loss is usually caused by equipment failure, but this element of loss can be recovered by
performing routine maintenance.
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Figure 1. Energy use analysis of plant units.

During unit operation, the equipment is relatively stable, so maintenance controllable energy
loss accounts for a smaller proportion of the total loss. However, operational controllable energy loss
increases significantly if the operators lack professional skills and/or do not properly supervise the
units. Creating a reasonable reference value for controllable operational parameters effectively reduces
operational controllable energy loss. The term “reference value” represents the reference value for each
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operational parameter corresponding to ideal operating circumstances. Many scholars have conducted
research on the reference values of generation units in power plants [18,19]. Therefore, an accurate
and reasonable reference value for operational parameters is of great significance for improving unit
performance and reducing energy use.

3. Relevant Theories of New Algorithm

3.1. Fuzzy and Rough Sets Theory

In 1990, Dubois became the first to combine fuzzy sets and rough sets and proposed the fuzzy and
rough sets model [20]. The fuzzy and rough sets model “softens” data sets and reduces their attributes
by taking advantage of similarly formed data, based on vagueness and roughness. The upper and
lower approximation sets of the fuzzy rough set are defined as follows [21]:

uPX(Fi) = inf
x

max
{

1− uFi(x), uX(x)
}

, ∀i (1)

uPX(Fi) = sup
x

min
{

uFi(x), uX(x)
}

, ∀i (2)

where U is a nonempty domain and Fi is decision equivalence class, Fi ∈ U/P = {F1, F2, ..., Fn}.
The fuzzy positive domain of the fuzzy and rough sets model is:

uposp(Q)(x) = sup
X∈U/P

uPX(x) (3)

where P is the conditional attribute and Q is the decision attribute. The formula reflects the capability
of the conditional attribute to characterize the decision attribute. According to the relevant definition
of the fuzzy positive domain, the attribute dependence rate of the fuzzy and rough sets model can be
defined as follows:

γP(Q) =

∣∣∣uPOSP(Q)(x)
∣∣∣

U
=

∑
x∈U

uPOSP(Q)(x)

U
(4)

Equation (4) represents the dependence rate of decision attribute Q on conditional attribute P.
It is apparent that the bigger the γP(Q), the stronger the dependence of the decision attribute on the
conditional attribute, and the closer the sample to the decision attribute.

The objective of attribute reduction is to search for the simplest characterization set of the
conditional attribute to the decision attribute, and then to delete the redundant conditional attribute.
The QuickReduct attribute reduction algorithm is a classical method used to accomplish this. It has
been utilized in many applications because of its fast search speed and simplicity. Its operating
principle is to select an empty set R, and then add those attributes that increase dependence rate γR(D)

to set R until γR(D) reaches its maximum value. A flow diagram of the attribute reduction algorithm
is presented as follows:

Algorithm 1. The QuickReduct attribute reduction algorithm.

1: R← {}, γbest ← 0, γprev ← 0
2: Do
3: T ← R
4: γprev ← γbest
5: ∀x ∈ {C− R}
6: i f γR∪{X}(D) > γT(D)

7: T ← R ∪ {x}
8: γbest ← γT(D)

9: R← T
10: until γbest = γprev

11: return R
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3.2. Canopy Algorithm

The algorithmic thought of Canopy [22] means that for massive data, a Canopy refers to
an algorithm that divides the input data points into several overlapping clusters by using the distance
measuring method, and then the points in the Canopy are clustered by a computing method with
high accuracy.

Definition 1. Canopy: There is a given dataset F = { fi|i = 1, 2, · · · , n}, if ∀xi ∈ F,
and {c j, |∃||xi − cj|| ≤ D1, cj ⊆ F, i 6= j

}
; then, the set of xi is called the Canopy set, cj is the center point of

the Canopy, and D1 is the semi-diameter of Canopy set.

Definition 2. The center point of Canopy: there is a given dataset F = { fi|i = 1, 2, · · · , n}, if ∀xi ∈ F,
and {c n, |∃||xi − cn||≤ D2, D2 < D1, cn ⊆ F, i 6= n}; then, cn is the set of the non-candidate center points of
the Canopy.

3.3. K-Means Clustering

K-means is defined as a classic unsupervised learning algorithm that is based on the partition
clustering method. Its basic algorithmic process is described as follows. After randomly selecting k
data points in the raw data set, the initial values of these points are taken as the center of each cluster.
Then, the distance between non-central data points and the center of each cluster is calculated, and the
data points are allocated to the cluster nearest to them. After these points are clustered, the mean of
each cluster is calculated and the center point of each cluster is selected once again. This process is
repeated until the objective criterion function converges [23]. The definition of the criterion function is
defined as follows:

E =
k

∑
i=1

∑
x∈Ci

(x− xi)
2 (5)

where E is the sum of the squared Euclidean distances between each data point and its corresponding
cluster center, x is a point in the data space, and xi is the arithmetic mean of each cluster. By adopting
the criterion function, the generated clusters can be as compact as possible, whereas the different
clusters can be as independent as possible.

To count the number of clusters calculated by K-means, this paper introduces the RSS (Ressidual
Sum of Squares) variance function, which can vectorize the data in K-means. In addition, the selected
k data points can be regarded as the center of the vectors; the computational formula is defined
as follows:

→
x i =

1
|Ci| ∑

→
x∈Ci

→
x (6)

RSSk = ∑
→
x∈Ci

∣∣∣→x −→x i

∣∣∣2 (7)

RSS =
k

∑
k=1

RSSk (8)

where RSSk is the distance between each data point in class k and the center, and RSS is the sum of the
RSSk in all k of classes.

3.4. Hadoop Platform

Owing to its high throughput and efficiency, good reliability, and automatic fault
tolerance, the Hadoop platform has been widely used to address massive data in recent years.
HDFS (Hadoop Distributed File System) and MapReduce comprise the core design of this platform;
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the former can store massive amounts of data, whereas the latter can compute the large collections
of data.

HDFS, the data storage management framework of Hadoop, has high reliability. It can copy all
data blocks and store them in three independent slave nodes. Thus, if one of the data blocks is lost,
copies of the data block are available to be called.

As the data computing framework of Hadoop, MapReduce is utilized to execute parallel
processing of the distributed models of massive data. Map and Reduce are the two major functions of
this framework. Data blocks are input and output in the form of <key, value>. The output values of
data blocks are calculated by the independent and parallel Map function, then these output values are
sequenced and merged. Finally, the operation results whose key values are equal are taken as the input
value of the Reduce function, which are reduced and output. The computing process of MapReduce is
shown in Figure 2 [24].
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4. Calculation Process of FMK-Means Algorithm

This paper adopts the FMK (Improvement of K-means algorithm by the fuzzy rough set and
MapReduce)-means algorithm to obtain the reference value of the controllable operating parameter
under optimal conditions, which is closely related to the power supply coal consumption rate.
Firstly, the algorithm reduces the attributes of each operating parameter using the fuzzy and rough
sets model. After the candidate attributes have been reduced, the calculated simplest set of attributes
is converted into the programming model for MapReduce, thus realizing the parallel processing of
the improved K-means algorithm. Then, the center point of the optimal cluster for each operating
parameter is identified. The algorithm flow of FMK-means is presented in Figure 3, and the procedure
is detailed below:

(1) Establish a decision table of energy use. Consider the various factors that may affect power
supply coal consumption and divide the operating conditions according to external conditions,
such as load, coal type, and environment temperature. Take the coal consumption rate as the
decision attribute, and the controllable operating parameters, which have a close relation with
the former, as the condition attribute.

(2) Clarify the fuzzy membership function in accordance with the attributes of each parameter and
convert the parameter data into set y of fuzzy data.

(3) Reduce the operating parameters that affect the coal consumption rate by using the QuickReduct
method. After the simplest set of attributes has been calculated, compute the importance of each
condition attribute to the coal consumption rate.
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(4) In the Map stage of Canopy, convert the simplest set of attributes into the form of <key, value>
and send these key values to m in Map functions. Then, calculate the distance threshold of each
data point and compare these distances with D1 and D2. After being classified, these distances
are iterated into the Canopy set.

(5) In the Reduce stage of Canopy, unite and calculate the output of the Map stage and form the
dataset Q; then, process the set Q using Canopy. Repeat the above steps until the dataset becomes
empty, and then obtain the cluster K and its center point, which is taken as the input value of the
K-means framework.

(6) In the Map stage of K-means, convert the reduced new data set into the form of <key, value> and
send it to m in Map functions. Calculate the distance between each node data and each cluster
center, and then allocate these nodes to the cluster that is nearest to them. Mark each cluster type
and output them in the form of <key, value>.

(7) The Combine function is used to divide the output value of the Map function, then merges the
data that belong to the same cluster. Sum the corresponding dimension of the data in one cluster
and count the number of data objects. Finally, the calculated results are output in the form of
<key, value>. “Key” is the type of cluster, whereas “value” is the corresponding dimension of
data and the accumulated number of the data objects.

(8) In the Reduce stage of K-means, receive the output value of the Combine function, then analyze
the sum of the corresponding dimension of the data in each cluster, as well as the total number
of data objects. Thus, new cluster centers will be obtained, and a new round of iteration will be
conducted until the function converges.
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5. Energy Use Sensitivity Analysis Using Support Vector Machine (SVM)

The energy use sensitivity of a machine refers to the variation in its energy use, which is caused
by the operating parameter deviating from the reference value or the designed value [25]. In actual
operation, it is helpful to reduce the power supply coal consumption rate by identifying the influence
that the operating parameters of the machine exert on the coal consumption rate. This is achieved
by paying attention to the relatively high sensitivity coefficient. Based on the SVM, this paper has
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established a function that can describe the relation between the power supply coal consumption and
controllable operating parameters. By calculating the partial derivative of the coal consumption rate
to each parameter, and then acquiring the response characteristics, the sensitivity of each operating
parameter to coal consumption can be analyzed and confirmed. Therefore, this paper can provide
reference for unit optimization and commissioning in practice.

Establish a sample set
⇀
D =

{
(
⇀
x 1, z1), (

⇀
x 2, z2), . . . , (

⇀
x i, zi), . . . , (

⇀
x n, zn)

}
for power supply coal

consumption and operating parameters.
⇀
x i =

{
xi1, xi2, . . . , xij, . . . , xim

}T is the influence vector of
the i-th sample, i = 1, 2, . . . , n, n is the number of samples, j = 1, 2, . . . , m, and m is the number of
operating parameters. Then set up a mathematical description function of the power supply coal
consumption rate and each operating parameter:

z = f (x) = f (x1, x2, . . . , xi, . . . , xn) (9)

In this paper, the nonlinear low space is mapped into the high space and a linear regression model
is created, thus establishing a mathematical model for coal consumption and operating parameters:

z = f (x) =
n

∑
i=1

(ai − a∗i )k(xi, x) + b (10)

where ai and a∗i are the Lagrange multipliers, and k(xi, x) is a kernel function.
Calculate the sensitivity coefficient of the coal consumption rate by using the linear kernel function

k(xi, x) = xT
i x [26]:

f (x) =
n

∑
i=1

m

∑
j=1

(ai − a∗i )xijxj + b (11)

Calculate the partial derivative of Equation (8) and obtain an influencing parameter xj of the coal
consumption rate:

∂ f (x)

∂x
=

n

∑
i=1

(ai − a∗i )xij (12)

The value of ∂ f (x)/∂x directly indicates the sensitivity coefficient of coal consumption rate to
parameter xj, based on which, a sensitivity analysis model of coal consumption of power supply can
be established:

∆z =
m

∑
j=1

[
n

∑
i=1

(ai − a∗i )xij

]
∆xj (13)

6. Example Analysis

6.1. Object and Goals of Study

Based on the accumulated massive data in the Distributed Control System (DCS) and the rigorous
arithmetic logic, big data mining technology can extract the factors affecting the coal consumption
rate by analyzing the operational data of the thermodynamic system. Although the cumulative
reference value of the optimal operating parameter has certain discrepancies with the theoretical
value, this technology shows the reachable optimal values of the operating parameters among all the
records. We selected a unit from a 600 MW coal-fired power plant for further study. The boiler is
a primary reheat subcritical controlled circulation drum boiler (HG-2023/17.6-YM4), and the turbine is
a subcritical reverse condensing turbine (N600-16.7/537/537-1). A total of 129,600 samples of operating
data from March 2013 to May 2013 were adopted, and the sampling period was 60 s.

There are many different factors that affect the coal consumption rate in a thermal unit. In addition
to the oxygen content in exhaust gas, main steam temperature, reheat steam temperature, and other
internal factors, external factors, such as the quality of the coal and ambient temperature, are equally
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important. Because it is difficult to analyze the nature of coal in real time at present, the net calorific
value of fired coal was chosen to replace the former in this paper. The range of the net calorific
value of coal ranged from 21.35 to 22.15 MJ/Kg, and the ambient temperature was within 20 to 26 ◦C.
Under certain external conditions, we adopted the actual controllable operating parameters that were
closely related to the coal consumption rate. With the aid of the new algorithms derived from the big
data of FMK-means, as well as the corresponding relationship between the cluster centers of operating
parameter and the coal consumption rate, the reference value of the controllable operating parameter
under optimal conditions was calculated. The selected operating parameters are listed in Table 1.

Table 1. Adjustable operating parameters.

Label Parameter Name Unit Label Parameter Name Unit

A1 Main steam pressure MPa A7 Average smoke temperature ◦C
A2 Main steam temperature ◦C A8 Feedwater temperature ◦C
A3 Reheat steam temperature ◦C A9 First degree heat desuperheated water ◦C
A4 Reheat steam pressure MPa A10 Second degree heat desuperheated water ◦C
A5 Condenser vacuum % A11 Condensate water pressure MPa
A6 Average smoke oxygen % A12 Condensate water temperature ◦C

The following section analyzes the influence of partially controllable operating parameters on
the power supply coal consumption rate and the relationship between them. In addition, the relative
parameters were selected based on the above analyses.

(1) Main steam pressure: When the main steam temperature, exhaust pressure, and reheat stream
parameter remain unchanged and the main steam pressure is lowered, the ideal enthalpy drop of
the unit decreases and the turbine steam rate increases, which are accompanied by a drop in unit
power. Thus, the efficiency and security of the unit inevitably degrades. It can be concluded that
the deviation of main steam pressure from the reference value affects the efficiency and security
of the unit.

(2) Main stream temperature: When the parameters of main stream pressure, exhaust pressure,
and reheat steam are constant, and the main steam temperature is reduced, the ideal enthalpy
drop of the unit and its efficiency decrease and exhaust humidity increase, resulting in a decrease
in unit power. Thus, the economy of the unit decreases. It can be seen that the changes in main
stream temperature influence the coal consumption rate.

(3) Reheat stream temperature: Similar to the main stream temperature analysis, the changes in reheat
stream temperature influence unit economy and safety. When the reheat stream temperature
deviates from the reference value, the work capacity loss and coal consumption rate increase.

(4) Emission capacity of oxygen content: The emission capacity of oxygen content is the excess air
coefficient. If the excess air coefficient is too small, it increases the incomplete combustion loss of
the unit and reduces combustion capacity, thereby reducing unit efficiency. If the coefficient is too
large, it cannot only reduce the incomplete combustion loss and unit efficiency; it will increase
the exhaust smoke loss. Therefore, choosing an appropriate range for the excess air coefficient is
crucial for improving the efficiency and economic operation of the unit.

(5) Feedwater temperature: The change in feedwater temperature also leads to economic changes in
the unit. Reducing the feedwater temperature increases the heat absorption of the working
substance in the water-cooled wall and lower the exhaust temperature to a certain extent.
However, the amount of fuel must be increased to maintain a certain amount of evaporation,
which leads to an increase in furnace outlet temperature and each part of gas temperature.
As a result of the two effects, the economy of the unit decreases. Therefore, it is necessary to
maintain the appropriate feedwater temperature.
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6.2. Algorithm Application and Calculation Result

The new FMK-means algorithm was used for large data mining. The power supply coal
consumption rate was taken as the decision attribute and the other operating parameters were used
as the condition attributes. In order to avoid the influence of individual bad data and noisy data,
the dependency threshold value was set as ∆γ = 0.05; when the attribute dependency increment
was greater than ∆γ, other attributes were stipulated in the reduction. The dependency increments
of the reheat steam pressure, the primary reheat desuperheating water temperature, the secondary
reheat desuperheating water temperature, as well as the pressure and temperature of condensate water,
were 0.0056, 0.0072, 0.0064, 0.0012, and 0.0015, respectively. All of the dependency increases were less
than ∆γ, so they were considered to be unnecessary attributes. The final attributes were reduced to
RED (Reduction) (P) = {A1, A2, A3, A5, A6, A7, A8}; the dependency of each parameter was calculated
from definition formulation given in Section 3.1, which is shown in Table 2.

Table 2. Reduction in dependence of parameters.

Rank Parameter Dependence

1 Average smoke oxygen 0.2537
2 Main steam temperature 0.2509
3 Reheat steam temperature 0.2183
4 Feedwater temperature 0.1774
5 Condenser vacuum 0.1372
6 Main steam pressure 0.1168
7 Average smoke temperature 0.0855

The reduced attribute index was applied to the MapReduce programming model for K-means
parallel cluster processing, and the Hadoop platform was set with a minimum support of 2%; that is,
the number of data clustering under a load was not less than 2% of the total number. Based on the
clustering results under a 400 MW load condition, the RSS variance function was used to obtain the
clustering k function graph of RSS, as shown in Figure 4. When the RSS dropped from a significant
decline to a k value whose decrease was not as obvious, it could be used as the final clustering number
k. Then, the classification number, k = 5, was optimal for the clustering results, which are shown in
Table 3. The coal consumption rate was the lowest in the second categories, and there were enough
data tuples to locate a sample point. The clustering results of the main steam temperature, feedwater
temperature, and emission capacity of oxygen content are shown in Figure 5. The sampling points of
the clustering results under different load conditions were determined, and the minimum values of
coal consumption and corresponding controllable operation parameters were excavated. The results
are listed in Table 4.
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Table 3. Clustering results of 400 MW load condition.

Label Cluster-1 Cluster-2 Cluster-3 Cluster-4 Cluster-5

Main steam temperature (◦C) 539.78 538.12 539.15 527.86 538.94
Main steam pressure (MPa) 15.65 15.72 15.65 15.88 15.76

Reheat steam temperature (◦C) 536.48 537.50 534.67 523.07 538.67
Average smoke oxygen (%) 5.14 5.54 5.27 5.39 5.15

Average smoke temperature (◦C) 113.78 111.90 110.76 115.51 117.38
Condenser vacuum (%) 0.92 0.97 0.95 0.92 0.93

Feedwater temperature (◦C) 252.50 250.40 251.38 252.93 251.85
Coal consumption rate (g/(kW·h)) 314.53 312.76 315.77 323.53 320.86
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Figure 5. Clustering of the main steam temperature water supply temperature and exhaust oxygen at
the condition of 400 MW.

Table 4. Optimization of reference values under different load conditions.

Load (MW) 300 400 500 600

Main steam temperature (◦C) 537.91 538.12 538.52 539.13
Main steam pressure (MPa) 8.35 15.72 16.33 16.55

Reheated steam temperature (◦C) 537.71 537.50 538.12 539.78
Average smoke oxygen (%) 6.53 5.54 4.59 3.82

Average smoke temperature (◦C) 104.52 111.90 117.23 120.40
Condenser vacuum (%) 0.98 0.97 0.96 0.94

Feedwater temperature (◦C) 237.96 250.40 262.18 272.60
Coal consumption rate (g/(kW·h)) 320.69 312.76 310.90 307.95

The reference values of the controllable operating parameters that affect the power supply coal
consumption rate, which was calculated by the new FMK-means algorithm, and the optimal target
value of the unit can be seen in Table 4. (1) Under load conditions of 300, 400, 500, and 600 MW,
the actual values of the unit coal consumption rate were 320.69, 312.76, 310.90, and 307.95 g/(kW·h),
respectively; (2) Taking the 600 MW load optimization value as an example, the optimized value
of power supply coal consumption was 307.95 g/(kW·h) compared to the actual operating value of
313.45 g/(kW·h). This indicates a reduction of 5.5 g/(kW·h). If the optimization method is adopted in
the operation of a unit under the 600 MW load condition, the unit can save 5.5 g of coal per 1 kW·h of
power generation. While saving the amount of coal for power generation, it not only reduces the coal
consumption and pollutant emissions, but also serves as an energy conservation mechanism.
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6.3. Analysis of Energy Use Sensitivity Under Different Loads

Take the simplest attribute parameter of the fuzzy and rough attribute reduction as the input
model and the coal consumption rate as the modeling target to calculate the sensitivity coefficient
under the load conditions of 300, 350, 400, 450, 500, 550, and 600 MW using the SVM coal consumption
sensitivity analysis model built in Section 4. Taking the sensitivity coefficient under the 400 MW load
condition as an example, apply the Genetic Algorithm for data reprocessing and the calculation of
parameter iteration optimization to select the optimum parameters c and g (the better the parameters
c and g, the better the SVM fit) as the input parameters of SVM. The results are listed in Figure 6.
The relative error curves of the training and testing samples under the 400 MW load condition are
shown in Figures 7 and 8, respectively, in which the sample accuracy is basically within ±0.04%
(less than 0.5%). Therefore, it was practicable to calculate the sensitivity coefficient of the operation
parameter for coal consumption with the SVM algorithm. The sensitivity coefficient value of each
operation parameter under the 400 MW load condition was calculated by the SVM energy use analysis
model, which is shown in Table 5. As such, the sensitivity coefficients of each operation parameter
under different load conditions can be calculated.

Table 5. Parameter sensitivity coefficient of 400 MW load condition.

Parameter Main Steam
Temperature (MPa)

Main Steam
Pressure (◦C)

Reheated Steam
Temperature (◦C)

Feedwater
Temperature

Average Smoke
Oxygen (%)

Average Smoke
Temperature (◦C)

Condenser
Vacuum (%)

Sensitivity valve 0.0245 0.1427 0.0976 0.2202 0.1178 0.0146 0.3827
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Figure 6. Genetic algorithm parameter optimization.

The sensitivity analysis model of power supply coal consumption based on SVM was used
to calculate the sensitivity coefficient of each parameter for coal consumption under different load
conditions. The number of training data sets, test data sets, and SVMs, as well as the average error
of training data and test data, are provided in Table 6. The sensitivity coefficient calculation results
of each parameter for the coal consumption under the load conditions of 300, 350, 400, 450, 500, 550,
and 600 MW are listed in Table 7.
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From the above calculation results, we drew the following determinations:

(1) The number of samples in each load interval was larger than that of the modeling support vectors
(Table 6). Instead of using all the samples, the typical sample training model that can be used as
a support vector is applied to modeling, which can not only reduce the complexity of training
samples but also the time spent in modeling.

(2) The model accuracy of the 300, 350, and 400 MW load condition was lower than that of the 450,
500, 550, and 600 MW load condition (Table 6). The reason is that the higher the load, the more
stable the units, which results in the reduction in noise data in the high load area and decreased
influence on modeling. Thus, the model accuracy in the high load area is higher.

(3) The operating parameters under different load sensitivity coefficients on the power supply coal
consumption was constantly changing (Table 7), which indicates that the influence of all operating
parameters on coal consumption is different if the load condition is not the same. In addition,
the relationship between the sensitivity coefficient and the load was non-linear; therefore, it is
necessary to analyze the sensitivity coefficient of each parameter for the coal consumption
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under typical load conditions. In actual unit operating processes, corresponding measures
should be adopted to reduce the coal consumption in accordance with different load conditions,
and measures should be taken first for the parameters with high sensitivity coefficients.

Table 6. Sensitivity analysis model features under different load condition.

Load/MW Quantity of
Training Datasets

Quantity of
Test Datasets

Quantity of Support
Vector Machines

Average Training
Data Error/%

Average Test Data
Error Data/%

300 1549 387 1465 0.7606 0.7396
350 1055 264 1038 1.3994 1.2580
400 1067 267 1006 1.0019 0.9232
450 272 68 253 0.3441 0.3875
500 194 49 175 0.2235 0.2390
550 125 31 114 0.2409 0.2412
600 256 64 241 0.4679 0.4477

Table 7. Parameter sensitivity coefficient of different load condition.

Load (MW) 300 350 400 450 500 550 600

Main steam pressure (MPa) 0.0028 0.1349 0.0245 0.0856 0.0386 0.0337 0.0288
Main steam temperature (◦C) 0.1405 0.1265 0.1427 0.0974 0.1361 0.0862 0.1069

Reheated steam temperature (◦C) 0.0026 0.1483 0.0976 0.1571 0.1476 0.1381 0.0973
Feedwater temperature (◦C) 0.1698 0.1345 0.2202 0.1749 0.1790 0.2427 0.2859
Average smoke oxygen (%) 0.0551 0.1024 0.1178 0.0355 0.0303 0.0211 0.0190

Average smoke temperature (◦C) 0.0929 0.0225 0.0146 0.0326 0.0759 0.1591 0.1739
Condenser vacuum (%) 0.5364 0.2910 0.3827 0.2170 0.4525 0.3933 0.2883

7. Discussion

In recent years, many researchers have utilized data mining techniques to develop methods for
coal saving in coal-fired power plants. A previous study [4] reported the combination of different data
mining methods to construct a plant-level load optimization model. When the model was used for the
simulation of three different types of power plants, the maximum reduction of coal consumption for
power generation in coal-fired power plants could be achieved. In the present study, big data mining
methods were used to calculate the baseline values and sensitivity coefficients of controllable operating
parameters affecting coal consumption for power generation in a stand-alone coal-fired power plant.
The operating data of the thermodynamic system were subsequently analyzed to investigate the
effectiveness of the proposed methods on the reduction of coal consumption. The clustering results
in Figure 5 and the optimization results in Table 4 clearly demonstrate that the methods used in the
present study effectively lower coal consumption for power generation and substantially reduce coal
usage. The support vector machine-based method for the calculation of sensitivity of controllable
operating parameters developed in this study can also provide guidance for the reduction of coal
consumption during actual operations of power plants.

8. Conclusions

To conduct energy use analysis and examine the energy efficiency of coal-fired power stations,
this paper takes controllable operating parameters as the starting points and adopts a large amount of
operating data to study algorithm and SVM technology. The objective was to determine controllable
operating parameter reference values and sensitivity coefficients that influence the degree of coal
consumption within a thermal unit. The results of the study are as follows:

(1) The introduction of the Fuzzy and Rough Sets Theory and the Canopy algorithm improved the
K-means clustering algorithm. The improved K-means algorithm was then subjected to parallel
processing by the MapReduce programming model to study the new FMK-means algorithm,
which eliminated redundant data and greatly improved clustering accuracy and efficiency.
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(2) The multi-index data mining of the historical data of a 600 MW coal-fired generating
units was conducted by using the new FMK-means algorithm. The algorithm was able to
determine the controllable operating parameter reference values and the actual reachable
values of coal consumption under the optimal working conditions and provides guidance
regarding how to adjust the operation of the unit. Under load conditions of 300, 400, 500,
and 600 MW, the actual values of the unit coal consumption rate were 320.69, 312.76, 310.90,
and 307.95 g/(kW·h), respectively.

(3) The SVM technique was used to develop an energy use analysis model and to calculate the
sensitivity coefficient of each parameter for coal consumption under different load conditions.
The model accuracy of the 300, 350, and 400 MW load condition was lower than that of the 450,
500, 550, and 600 MW load condition. This activity serves as a method to optimize thermal unit
operation and minimize energy use.
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