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Abstract

The net reproductive rate R0 measures the expected lifetime reproductive output of an individual, and plays an important role
in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-
classified demographic data. As an expectation, R0 provides no information on variability; empirical measurements of lifetime
reproduction universally show high levels of variability, and often positive skewness among individuals. This is often
interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides
evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all
experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from
demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the
moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant,
periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical
studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants).
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Introduction

The net reproductive rate R0 is a familiar concept in

demography. It has three important properties [1–3]: it measures

mean lifetime reproductive output, it is the population growth rate

per generation (not per unit of time), and it is an indicator function

for population growth, in that population growth is positive if and

only if R0w1. It is calculated from age-classified models as

R0~

ð ?

0

‘(x)m(x)dx, ð1Þ

where ‘(x) is surivorship to age x and m(x) is fertility at age x [4],

and from stage classified models as

R0~ max eig F I{Uð Þ{1
h i

, ð2Þ

where F is a matrix of stage-specific fertilities and U is a matrix

giving transition probabilities of individuals among stages [1–3,5].

In evolutionary biology, R0 is sometimes used as a measure of

fitness, although this works only under certain circumstances; e.g.

[6–10]. In epidemiology, R0 gives the expected number of

secondary infections following the introduction of a single

infectious individual into a susceptible population [11–13]. The

infection can spread and produce an outbreak if and only if R0w1.

The net reproductive rate, however, is an expectation. Measure-

ments of lifetime reproduction invariably show variability – often

large amounts of variability – among individuals. The distribution is

often positively skewed, with a long tail of rare individuals producing

more than the average number of offspring; e.g., many examples in

[14,15]. Variability in lifetime reproduction is an important

demographic property [16], with many consequences. Skewness

among individuals in disease transmission affects the likelihood and

severity of disease outbreaks [17]. Variance in lifetime reproductive

output is one of the determinants of the genetic effective population

size [18,19]. The observed variability and skewness of lifetime

reproduction is sometimes interpreted as evidence of heterogeneity

among individuals, or as part of a strategy in which dominant

individuals control reproduction by subordinate individuals [20,21].

If such heterogeneity exists and has a genetic basis, the resulting

variability in lifetime reproduction provides an opportunity for

selection; the variance in lifetime reproduction is part of one

measure of the opportunity for selection [22].

However, variability in lifetime reproduction is to be expected

even in the absence of heterogeneity. One source of variability is

stochastic variation among individuals in the pathways they take

through the life cycle (‘‘individual stochasticity’’ in the usage of

Caswell [3], ‘‘dynamic heterogeneity’’ in the usage of Tuljapurkar

and Steiner [23,24]). A cohort of identical individuals, experienc-

ing identical vital rates at every stage, will differ in how long they

live and how long they spend in each stage [3]. A second source of

variation is within-stage variation in reproduction. A cohort of

identical individuals, in the same stage, experiencing the same

probability distribution of stage-specific reproduction, will differ in

how many offspring they produce.
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Thus, variability in lifetime reproductive output is evidence for

heterogeneity only if it exceeds the baseline level created when a

set of identical vital rates are applied to a cohort of identical

individuals. Such comparisons require a way to calculate that

baseline, as (1) and (2) do for the expectation. An limited approach

for age-classified populations was presented by Barrowclough and

Rockwell [19,25]. A partial solution was provided by Caswell

[3,26] for the special case of life cycles that contain a ‘‘breeding’’

stage; e.g., [27–33]. Steiner and Tuljapurkar [34] have indepen-

dently analyzed variability in lifetime reproduction, for some

special cases of the models to be analyzed here, using different

methods and emphasizing the importance of distinguishing

variance due to individual stochasticity form that due to genetic

variation.

In this paper, I derive, for the first time, a general and tractable

calculation of all the moments of lifetime reproductive output, for

stage- or age-classified populations, for arbitrary distributions of

stage-specific reproduction, in constant, periodic, and stochastic

environments. The calculations use a mathematical framework

(Markov chains with rewards) that is new to population biology,

but which has great potential applications to questions in addition

to lifetime reproductive output. In the remainder of this

Introduction, I present the mathematical framework and how to

adapt it to the problem of lifetime reproduction. In the section

Analysis, I formally prove the results on moments of lifetime

reward, in both constant and time-varying environments. In the

section Case Studies, I analyze a series of examples, ranging from

laboratory studies of genetically identical individuals in constant

conditions to field studies of genetically heterogeneous populations

in stochastic environments. I conclude with a Discussion.

Notation: Matrices are denoted by upper-case bold symbols

(e.g., P), vectors by lower-case bold symbols (e.g., r). Some block-

structured matrices are denoted by, e.g., P. Vectors are column

vectors by default. The transpose of P is PT. The vector 1 is a

vector of ones, ei is a vector with a 1 in the ith entry and zeros

elsewhere. The diagonal matrix with the vector x on the diagonal

and zeros elsewhere is denoted D(x). The expected value is

denoted by E(:). The Hadamard, or element-by-element, product

of matrices A and B is denoted by A0B. The Kronecker product is

denoted by A6B.

Markov chains with rewards
I propose to analyze lifetime reproductive output using the

theory of Markov chains with rewards [35–37]. These models use a

Markov chain to describe the dynamics of a system, and associate

a reward with each possible transition among the states of the

Markov chain. Rewards accumulate as the system moves from

state to state, and the goal is to compute the properties of this

accumulated reward. Markov chains with rewards are used to

analyze the reliability of industrial and engineering systems

[38,39]. In demography, the Markov chain describes transitions

among life cycle stages, with death as an absorbing state

[2,3,26,28,29,40,41]. The transition matrix of this absorbing

chain is

P~
U 0

mT 1

� �
ð3Þ

where U is the transient matrix (dimension s|s) and m a vector of

mortality rates. I will assume throughout that the dominant

eigenvalue of U is less than 1, so that an individual beginning in

any transient state will eventually be absorbed (i.e., will eventually

die) with probability 1.

In a Markov chain with rewards, an individual moving from

state j to state i collects a reward rij . In the application here, the

reward corresponds to reproduction. Later I will discuss other uses

for the approach. Markov chains with rewards were introduced by

Howard [35] to analyze Markov decision processes. In his

development, the reward rij was a fixed quantity. Here, however,

I will consider the rij to be random variables with specified

statistical properties [42]. Fixed rewards are included as a special

case.

Reproduction as a reward
In most matrix population models, reproduction between t and

tz1 is a function of the stage at time t, independent of the stage to

which the individual moves at tz1. If this is so, the rij will depend

only on j, but this restriction can be relaxed. The exceptions to this

rule are models with explicit reproductive stages, in which

reproduction is associated with the transition into a reproductive

state; e.g., [29]. In these cases, rij will depend explicitly on both i

and j. In demographic models, it is also the case that the dead do

not reproduce (I know of no exceptions, but the recent literature

on the population biology of zombies [43] may yet provide one).

Thus ri,sz1~0, for all i, in the models here.

Analysis

As an individual moves through the stages of the life cycle, it

accumulates rewards. The goal of the analysis is to calculate the

statistical properties (mean, variance, skewness) of the accumulated

lifetime reward. The solution to this problem is provided by an

simple set of recurrence relations.

Define r as the vector (dimension (sz1)|1) of accumulated

rewards as a function of the initial stage of the individual. The

vector of kth moments of the entries of r is denoted rk, where

rk~ E rk
i

� �� �
: ð4Þ

The rewards rij are random variables. The matrix of the kth

moments of the rij is denoted Rk:

Rk~ E rk
ij

h i� 	
: ð5Þ

Notation alert: The subscripts on the vectors rk and the matrices

Rk denote the order of the moments. When referring to the entries

of the vector or the matrix, subscripts refer to the location in the

matrix and the order of the moments migrates to become a

parenthetical superscript. That is, the ith entry of rk is r
(k)
i and the

(i,j) entry of Rk is r
(k)
ij .

The calculation of the accumulated rewards proceeds in the

‘‘backwards’’ fashion familiar from dynamic programming; e.g.,

[35,44]. Choose some terminal time T , define t as the time

remaining until this terminal time, and let r(t) be the reward yet to

be accumulated at t. At the terminal time, no more rewards will be

accumulated, so r(0)~0.

Consider an individual in state j with t steps remaining to the

terminal time. If this individual makes a transition from j to i, it

will receive a reward rij . After the transition, the individual is in

stage i and has t{1 time steps remaining to the terminal time.

Thus the conditional expectation of the reward in stage j, given the

transition from j to i, is

E rj(t)jj?i
� �

~E rijzri(t{1)
� �

: ð6Þ

Variability of Lifetime Reproduction
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The unconditional expectation of rj(t) is

E rj(t)
� �

~
X

i

pijE rj(t)jj?i
� �

ð7Þ

~
X

i

pij E rij

� �
zE ri(t{1)½ �


 �
: ð8Þ

Writing this in matrix form gives the recursion relation for the first

moment of rewards

r1(tz1)~ P0R1ð ÞT1zPTr1(t) t~0, . . . ,T{1 ð9Þ

with initial condition r1(0)~0, where 1 is a vector of ones [35, Eq.

2.5].

The combination of the assumptions that P has the structure (3)

and that ri,sz1~0 for all i means that every individual will

eventually be absorbed in a state in which future rewards are zero;

thus r1(t) will converge to a limit as T??; this limit is the

expectation of lifetime rewards calculated over the entire lifetime

of every individual. See the section Discussion for discounting

necessary to calculate asymptotic rewards in ergodic Markov

chains, when this eventual end to accumulation does not hold.

The main result of this paper is the following set of recurrence

relations for the higher-order moments of accumulated rewards.

Calculating the moments of lifetime rewards
Proposition 1 Let P be the transition matrix of the Markov

chain, let Rk be the matrix of kth moments of the transition-

specific rewards, and let T denote the terminal time. The first

three moments of the accumulated reward satisfy

r1(tz1)~ P0R1ð ÞT1zPTr1(t) ð10Þ

r2(tz1)~ P0R2ð ÞT1z2 P0R1ð ÞTr1(t)

zPTr2(t)
ð11Þ

r3(tz1)~ P0R3ð ÞT1z3 P0R2ð ÞTr1(t)

z3 P0R1ð ÞTr2(t)zPTr3(t)
ð12Þ

for t~0, . . . ,T{1, with r1(0)~r2(0)~r3(0)~0. In general, the

mth moments of accumulated rewards are given by

rm(tz1)~
Xm

k~0

m

k

� �
P0Rm{kð ÞTrk(t) ð13Þ

with rm(0)~0.

Derivation. Equation (10) for the first moment is derived as

(9). The conditional second moment of an individual in stage j,

given a transition from j to i, satisfies

E r2
j (tz1)

���j?i
h i

~E rijzri(t)
� �2n o

ð14Þ

~E r2
ij

h i
z2E rij

� �
E ri(t)½ �

zE r2
i (t)

� �
,

ð15Þ

because rij and ri(t) are independent. The unconditional second

moments are

E r2
j (tz1)

h i
~
X

i

pijr
(2)
ij z2

X
i

pijr
(1)
ij r

(1)
i (t)

z
X

i

pijr
(2)
i (t):

ð16Þ

Rewriting this in matrix form gives (11).

The conditional third moment of accumulated reward, for an

individual in stage j, is

E r3
j (tz1)

���j?i
h i

~E rijzri(t)
� �3n o

ð17Þ

~E r3
ij

h i
z3E r2

ij

h i
E ri(t)½ �

z3E rij

� �
E r2

i (t)
� �

zE r3
i (t)

� �
:

ð18Þ

The unconditional moments are

E r3
j (tz1)

h i
~
X

i

pij r
(3)
ij z3r

(2)
ij r

(1)
i (t)

n

z3r
(1)
ij r(2)

i (t)zr(3)
i (t)

o
:

ð19Þ

Rewriting this in matrix form gives (12).

In general, expanding the conditional expectation of the mth

moment gives

E rm
j (tz1)

���j?i
h i

~E rijzri(t)
� �m
 �

ð20Þ

~E
Xm

k~0

m

k

� �
rm{k

ij rk
i (t)

( )
ð21Þ

~
Xm

k~0

m

k

� �
r

(m{k)
ij r

(k)
i (t): ð22Þ

The unconditional expectation is then

E rm
j (tz1)

h i
~
X

i

pij

Xm

k~0

m

k

� �
r

(m{k)
ij r(k)

i (t) ð23Þ

which, in matrix form, becomes (13).

The first moment r1 gives the mean lifetime reproductive

output. This will often (but not always) be equivalent to R0

calculated from the Cushing-Zhou formula (2). See the Discussion

for an exploration of the relationship between the two. The

variance, standard deviation, coefficient of variation, and skewness

of lifetime reproductive output are calculated from the moment

vectors

V rð Þ~r2{r10r2 ð24Þ

SD rð Þ~
ffiffiffiffiffiffiffiffiffiffiffi
V rð Þ

p
ð25Þ

Variability of Lifetime Reproduction
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CV rð Þ~D r1ð Þ
{1

SD rð Þ ð26Þ

Sk rð Þ~D V (r)½ �{3=2

| r3{3r10r2z2r10r10r1ð Þ:
ð27Þ

The variance is useful because it can be partitioned additively

among sources. The standard deviation cannot be partitioned in

this way, but it has the advantage of appearing in the same units as

r. The CV scales the standard deviation relative to the mean, and

hence is dimensionless. The CV is also the square root of Crow’s

[22] index of the opportunity for selection; this provides a upper

bound on the rate of increase of mean fitness, if fitness is measured

by lifetime reproduction and all the variance in reproduction is

genetic. Finally, the skewness, which is dimensionless, measures

the symmetry of the distribution of rewards. Positive skewness

implies a long tail of positive values, and vice versa.

Several authors in the widely scattered literature on Markov

chains with rewards have addressed the variance of accumulated

rewards. Sladky and van Dijk [45,46] have given results for

discrete- and continuous-time chains with fixed rewards. Benito

[42] provides variances for discrete chains with random rewards;

my proof of Proposition 1 follows his approach.

Distributions of stage-specific rewards
The statistics of lifetime reproduction depend, in equations (10)–

(12), on the moments of the stage-specific rewards rij . These

moments can be obtained in several ways.

1. Empirical measurement. Given stage-specific individual data

on reproductive output, the moment matrices Ri can be

calculated directly. Such data are often collected, but the

moments other than the mean are seldom published.

If the empirical moments are not available, they can be

estimated by applying a statistical model, such as:

2. The Poisson model. Given a mean reproductive output m, the

Poisson distribution [47] describes a random distribution of

reproduction among individuals, and leads to

E½rij �~m ð28Þ

E r2
ij

h i
~m(1zm) ð29Þ

E r3
ij

h i
~m 1z3mzm2
� �

: ð30Þ

3. The Bernoulli model. In species that produce at most a single

offspring, the mean reproductive output m is equal to the

probability of reproducing, and the number of offspring has a

Bernoulli distribution with

E½rij �~m ð31Þ

E r2
ij

h i
~m ð32Þ

E r3
ij

h i
~m: ð33Þ

4. The fixed reward model. If stage-specific rewards were fixed,

instead of random variables, then every individual would

produce the same number of offspring, so that

E½rij �~m ð34Þ

E r2
ij

h i
~m2 ð35Þ

E r3
ij

h i
~m3: ð36Þ

Comparing the fixed reward model with one of the random

reward models makes it possible to partition variance in

lifetime reproduction into components due to variability in

stage-specific rewards and to variability in the visits by

individuals to the various stages.

Lifetime reproduction in variable environments
In a variable environment, both the Markov transition matrix P

and the reward matrices Rj may change over time. The variation

may be periodic, deterministic but aperiodic, or stochastic. The

distribution of accumulated rewards will depend on the pathways

followed by individuals through the life cycle, which in turn will

depend on the trajectory followed by the environment through its

set of states. As a result, the statistics of lifetime reproduction in a

variable environment depend on both the initial stage of the

individual and the initial state of the environment. For example,

the lifetime reproduction of a seedling that germinates in early

spring will be very different from that of seedling germinating in

late summer; see [3,26,48] for discussions of the effect of starting

state in the analysis of survival and longevity.

The demographic net reproductive rate R0 can be calculated in

periodic environments by extending the Cushing-Zhou approach to

periodic matrix products [3,30]; for a more detailed analysis see

[49]. (I note that [1] has been cited by many, including me, to

Cushing and Yicang, an unfortunate confusion of the family and

personal names of Zhou Yicang. I regret contributing to this

confusion.) Here, I apply Proposition 1 to variable environments by

creating a Markov chain in which individuals are jointly classified by

life cycle stage and environmental state [3,26]. This Markov chain is

based on the vec-permutation model introduced by Hunter and

Caswell [50] for individuals classified by stage and location.

I assume a finite number q discrete environmental states. These

could represent, e.g., seasons of the year, stages of recovery from

fire, or years in an observed historical sequence. Define the reward

vector for the joint process as

~rr~

r1½1�
..
.

r1½q�
..
.

rsz1½1�
..
.

rsz1½q�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: ð37Þ

Variability of Lifetime Reproduction
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That is, the first q entries of ~rr contain the rewards for stage 1 in

each of the q environments, and so on.

Associated with each environmental state is a transition matrix

and a set of reward moment matrices:

P½1�, . . . ,P½q� ð38Þ

Ri½1�, . . . ,Ri½q� i~1,2,3: ð39Þ

The movement of the environment among its states is governed by

a q|q transition matrix M. If the environment is stochastic, M is

a column-stochastic Markov chain transition matrix. If the

environment is periodic, numbering the environmental states in

order of occurrence makes M a circulant matrix of the form (for

the case when q~3)

M~

0 0 1

1 0 0

0 1 0

0
B@

1
CA: ð40Þ

If the environment is deterministic but aperiodic, moving through

a specified sequence of states, then by numbering the states in the

order in which they occur M can be written

M~

0 0 0

1 0 0

0 1 1

0
B@

1
CA: ð41Þ

The 1 in the (q,q) entry is required to provide an end state for the

environmental sequence.

Starting at some time t, an individual makes a demographic

transition according to P½t� and collects rewards according to Ri½t�,
after which the environment changes to its next state according to

M and the process repeats. Rewards are based on the

demographic transition, and not on the environmental change;

this assumption is implicit in all time-varying demographic models

of which I am aware.

To model this process, define block matrices for demographic

transitions

P~

P½1�
P

P½q�

0
B@

1
CA ð42Þ

~
Xq

i~1

eie
T
i

� �
6P½i�, ð43Þ

environmental transitions,

M~

M

P

M

0
B@

1
CA ð44Þ

~Isz16M, ð45Þ

and rewards

Rj~

Rj ½1� � � � Rj ½q�

..

. ..
.

Rj ½1� � � � Rj ½q�

0
BB@

1
CCA ð46Þ

~
Xq

i~1

0 � � � 1 � � � 0
0 � � � 1 � � � 0
..
. ..

. ..
.

0 � � � 1 � � � 0

0
BBBB@

1
CCCCA6Rj i½ � ð47Þ

~
Xq

i~1

1qeT
i

� �
6Rj ½i� j~1,2,3: ð48Þ

Here, ei is the ith unit vector, Isz1 is the identity matrix of

dimension sz1, and 1q is a vector of ones of dimension q|1.

In terms of these block matrices, the transition matrix and

reward matrices are

~PP~MKPKT ð49Þ

~RRj~RjK
T j~1,2,3: ð50Þ

where K is the vec-permutation matrix of order (sz1,q), given by

Ksz1,q~
Xsz1

i~1

Xq

j~1

Eij6ET
ij ð51Þ

with Eij is a (sz1)|q matrix with a 1 in the (i,j) entry and zeros

elsewhere [51]. This permutation matrix rearranges the entries of

the probability vector so that block-diagonal forms can be used for

the matrices P and M [50].

Since ~PP defines a Markov chain, Proposition 1 can be applied

directly. The resulting reward vectors ~rr1, ~rr2, and ~rr3 give the

moments of lifetime reward as a function of the initial stage of the

individual and the initial state of the environment, arranged as in

(37). These moment vectors can be averaged over the distribution

of states, thereby obtaining a summary measure of accumulated

rewards as a function of initial stage alone. In a stochastic

environment, the stationary probability distribution of environ-

mental states is given by the vector p satisfying

p~Mp: ð52Þ

The average, over the stationary distribution p, of the kth

moments of the lifetime reward, as a function of initial life cycle

stage, is

~rr}k~ Isz16pT
� �

~rrk ð53Þ

cf. notation in [3]. Variances, standard deviations, skewness, and

other statistics can be calculated from the moment vectors ~rr}
j .

Case Studies

Novel demographic calculations acquire much of their power

from comparative studies. As a step in that direction, I present

Variability of Lifetime Reproduction
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here several examples of calculation of the statistics of lifetime

reproduction. The studies were selected to provide examples of

different life histories, study designs, and types of data. The first

example is a laboratory study of three genotypes of the nematode

Caenorhabditis elegans. The second example is a laboratory study of

the estuarine polychaete Streblospio benedictii under four pollutant

exposure conditions. The third example is a historical sequence of

vital rates for the human population of Sweden from 1891 to 2007.

These three studies are age-classified, but the distribution of

rewards differs, with C. elegans and S. benedicti producing large

clutches, while humans are (to a good approximation) monovular.

The fourth example is a stage-structured analysis of a plant,

Trillium grandiflorum, in an experiment in which pollination

manipulations were applied to alter reproductive output. The

final two examples explore the effects of temporal variation in the

environment. The first is a periodic model for seasonal variation in

the perennial plant Lobularia maritima. Two kinds of reproduction

(seeds and seedlings) appear in this model; the approach here

permits analysis of lifetime reproductive output for each type of

offspring separately. The final example is an analysis of the

threatened perennial plant Lomatium bradshawii in a stochastic fire

environment.

These examples include age-classified and stage-classified life

cycles, laboratory and field studies, and constant and variable

environments, and include comparisons among experimental

conditions, over time, or as a response to environmental

fluctuations. In some cases, data are available on the moments

of stage-specific reproductive output. In other cases, only the mean

is available, and the higher moments must be obtained from a

model. I intend them not as a complete survey of patterns, but as

examples of the kinds of data that investigators using these

methods might want to explore.

Case study 1: Longevity mutants in Caenorhabditis
elegans

The nematode C. elegans is widely used as a model organism for

studies of genetics, development, aging, and behavior. A number of

mutations have been identified that have dramatic effects on

longevity, through a variety of developmental pathways [52,53].

These mutations affect lifetime reproductive output both through

their effects on longevity, but also from pleiotropic effects on fertility.

Chen et al. [54] carried out laboratory life table studies of three

genetic strains of C. elegans: the standard laboratory strain N2 and two

well-studied longevity mutants, clk-1 and daf-2. The clk-1 gene affects

metabolic activity and extends longevity, perhaps by reducing

production of reactive oxygen. The daf-2 gene also extends longevity;

it codes for an insulin-like growth factor (IGF-I) receptor, which is

part of a signaling cascade that influences life span [53].

Under laboratory conditions, life expectancies for the three

strains were 14.3 days for N2, 18.3 days for clk-1, and 30.3 days for

daf-2. In spite of their greater longevity, however, the clk-1 and daf-

2 mutants had significantly lower fitness due to associated

reductions in early fertility [54].

C. elegans is a self-fertilizing hermaphrodite. Laboratory cultures

are homozygous and genetically homogenous, and are grown

under carefully controlled conditions to minimize environmental

differences among individuals. To the extent that heterogeneity is

supposed to have a genetic basis, laboratory populations of C.

elegans should exhibit as little heterogeneity as possible.

Study design. Individual survival and reproductive data were

collected on cohorts of nematodes in laboratory culture. Because

the study collected individual cohort data, the observed

distributions of age-specific rewards and of lifetime reproductive

output are available.

The demographic model. Demography was described with

an age-classified projection matrix with a projection interval of 1

day; see [54] for details.

Rewards. Reproduction was measured as egg production

and was recorded for each individual on each day, hence

rij~egg production by age j individuals ð54Þ

Rewards were described by their empirical moments, by the

Poisson model, and by the fixed rewards model.

Results. The statistics of lifetime reproduction calculated from

the demographic model are shown in Figure 1. The clk-1 and daf-2

genotypes exhibit reduced mean lifetime reproduction, as also reported

by [54]. In spite of the genetic and environmental homogeneity of the

system, there is considerable variability in lifetime reproduction. The

calculated values of V (r) agree well with the observed values,

suggesting that there is no need to invoke heterogeneity to explain the

variance. The observed skewness is slightly negative, and is

underestimated by the calculated values of Sk(r).

The three reward models: one using the empirical moments of

age-specific reproduction, one using Poisson moments, and one

treating age-specific reproduction as fixed, give very different

results. The Poisson and the fixed rewards models seriously

underestimate the variance and exaggerate the negative skewness

of lifetime rewards. In this case, the variability in stage-specific

rewards cannot be ignored. That variance is considerably larger

than the Poisson expectation, with an index of dispersion (variance-

to-mean ratio) of 10.3, 7.1, and 5.8 for the three genotypes. With

sample sizes of 800, 800, and 1000, respectively, the variance is

greater than Poisson at a significance level too small to be calculated.

The negative skewness in lifetime reproduction seems to arise

from a combination of high survival through reproductive life and

low variability in reproduction for the survivors. The distributions

generated by the Poisson or fixed rewards models contain a small

peak at zero (the rare individuals who died before reproducing)

and a large peak centered around the mean reproductive output

(simulation data, not shown here).

Figure 1 shows statistics of lifetime reproduction from birth, but

the reward vector r also contains information on the remaining

lifetime reproductive output of individuals of any age. Figure 2

shows the mean, variance, coefficient of variation, and skewness of

remaining reproduction as a function of age. Mean reproduction

declines with age as individuals pass through the reproductive age

classes. The variance declines, but the relative variability, as

measured by the CV, and the skewness both increase with age.

Case study 2: Pollutant responses in the polychaete
Streblospio benedicti

Streblospio benedicti is a deposit-feeding spionid polychaete

common in estuarine, salt marsh, and shallow subtidal habitats,

where it is frequently exposed to various pollutants. Levin et al.

[55,56] conducted a laboratory experiment to measure the

demographic effects of exposure to sewage sludge, fuel oil, and

blue-green algae. Life expectancy in the laboratory was 20–50

weeks, depending on conditions. Reproduction is sexual, with

embryos retained within the body of the female for 4–5 days,

before being released as planktonic larvae.

The algae and oil treatments significantly reduced reproduction

and population growth rate compared to controls [55]. Population

growth rate in the sewage treatment was not significantly different

from the control, and indeed, S. benedicti is so tolerant of increased

nutrient levels that it is often used as an indicator of anthropogenic

nutrient input [56].
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Laboratory cultures in this study were developed from worms

collected from the field, and hence are presumably genetically

heterogeneous, certainly more so than is the case for C. elegans.

Study design. Individual survival and fertility (number of

larvae released) were recorded for cohorts under control and three

exposure treatments. Data were available for the complete

distribution of age-specific reproduction, and for the distribution

of total lifetime reproduction.

Demographic model. Demography was described with an

age-classified projection matrix with projection interval of 1 week.

Reproductive rewards. Larval production was measured for

each individual at each week; hence

rij~larvae produced per week by age j individuals: ð55Þ

Rewards are described by their empirical moments, by the Poisson

model, and by the fixed reward model.

Results. Figure 3 shows the statistics of lifetime reproduction.

Mean lifetime rewards were slightly reduced in the sewage

treatment, and dramatically reduced in the oil and blue-green

algae treatments. There is considerable variation around this

mean; on an absolute scale, variances are much higher in the

control and sewage treatment than in the oil and algae treatments.

On a relative scale, the pattern is reversed; the CV of lifetime

reproduction increases from control through sewage and oil

treaments, to the algae treatment. The CV (r) for S. benedicti is

about 2–5 times greater than that for C. elegans. The calculated

skewness values increase from control to the algae treatment.

Except for the algae treatment, there is a consistent pattern of the

observed skewness (which includes effects of unobserved

heterogeneity) being more positive than the calculated skewness

(which excludes heterogeneity).

The differences among the full distribution, Poisson, and fixed

reward models are relatively small. Except in the algae treatment,

Figure 1. The statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproductive output of the nematode
Caenorhabditis elegans. Results are shown for two longevity mutants (clk-1 and daf-2) and the standard laboratory strain (N2). The observed
statistics of lifetime reproduction are compared with values calculated from the empirical moments, the Poisson reward model, and the fixed reward
model. Based on data from [54].
doi:10.1371/journal.pone.0020809.g001
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the calculated variance is smaller than the observed variance, and

the calculated skewness less than the observed skewness. This may

be a consequence of heterogeneity, if increasingly stressful

treatments reveal more effects of such heterogeneity.

Figure 4 shows the statistics of remaining lifetime reproduction

as a function of age. Mean lifetime reproduction first increases and

then decreases with age; the variance declines dramatically with

age. The relative variability, as measured by the CV (ri) increases

with age for all treatments except the algae treatment. The

skewness increases with age, again except for the algae exposure

treatment. The CV and the skewness decline with age for the algae

treatment, suggesting that extreme demographic stress can change

what appears to be a typical pattern for less stressful conditions.

Case study 3: Historical changes in the human
population of Sweden

Both C. elegans and S. benedicti produce large numbers of

offspring. The distributiion of stage-specific rewards will be

different for a monovular species (producing only a single

offspring). If multiple births are ignored (they account for

approximately 1% of live births), humans fall into this category.

As an example, I analyze a historical sequence of mortality and

fertility for the human population of Sweden from 1891 to 2007

[57,58]. This period included two world wars, the 1916 flu

epidemic, and a health transition sufficient to raise female life

expectancy at birth from 53 to 83 years.

Study design. The data are cross-sectional measurements of

age-specific mortality and fertility. In the absence of individual

longitudinal data, the distribution of lifetime reproductive output is

not available.

Demographic model. Rewards were analyzed using an age-

classified projection matrix with an age interval and projection

interval of 1 year.

Reproductive rewards. Rewards are defined as female births

rij~female births per female of age j: ð56Þ

Figure 2. The statistics (mean, variance, coefficient of variation, and skewness) of remaining lifetime reproductive output as a
function of age, for the nematode Caenorhabditis elegans. Results are shown for two longevity mutants (clk-1 and daf-2) and the standard
laboratory strain (N2), based on calculations form the empirical moments of rewards. Based on data from [54].
doi:10.1371/journal.pone.0020809.g002
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Rewards were described by the Bernoulli model and the fixed

reward model. Given the neglect of multiple births, the Bernoulli

model gives the actual moments of births. The fixed reward model,

in this case, transforms a situation in which a proportion x of

women give birth to one in which every woman gives birth to a

fraction x of a child.

Results. The statistics of lifetime reproductive output are

shown as a function of time in Figure 5. Mean lifetime

reproduction fluctuated around 1.5 from 1890 to about 1915,

and then declined dramatically until the early 1930’s. This was

followed by an increase to a period with R0 above replacement

level (early 1940s to early 1960s), and then another decline. As in

many developed countries, mean lifetime reproduction has been

below replacement level since the 1970s. The variance calculated

from the Bernoulli model declined over that time period, but the

CV fluctuated around 1 with no clear trend. The skewness

remained roughly constant at about 1. The fixed reward model

gives very different results; it shows the variance in lifetime

reproduction declining to near zero, and the skewness becoming

very negative. This reflects the high survival in Sweden in recent

years. With almost every woman living through childbearing

years, and with fixed age-specific rewards, there is very little

variance in lifetime reproductive output. The distribution

eventually consists of a small left hand tail of individual who die

before completing reproduction, and a peak of individual who live

through childbearing years. The result is a negative skew, and

since skewness is scaled relative to the standard deviation, the low

variance yields a large negative skewness.

The statistics of remaining lifetime reproduction as a function of

age are shown for four selected years in Figure 6. The mean and

variance of ri decline with increasing age, whereas CV (ri) and

Sk(ri) both increase dramatically with age. The patterns of CV

and skewness are quite similar, a fact to which I will return in the

Discussion.

Figure 3. Statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproductive output of the polychaete
Streblospio benedicti under four pollutant manipulations (control, sewage, fuel oil, and blue-green algae). Results are shown for the
observed statistics of lifetime reproduction and the values calculated from the empirical moments, the Poisson reward model, and the fixed reward
model. Based on data from [55].
doi:10.1371/journal.pone.0020809.g003
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Case study 4: Effects of pollen supplementation on
Trillium grandiflorum

In age-classified populations, an individual either survives to the

next age class or dies. Stage-classified models permit a greater

diversity of individual trajectories through the life cycle. Thus one

might expect individual stochasticity in those trajectories to be

more important in determining lifetime reproduction in stage-

classified models.

Trillium grandiflorum is a perennial herb found in deciduous

forests of eastern North America. Knight [59,60] developed a

stage-classified model for Trillium with six stages (stage 1 = germi-

nants, 2 = seedlings, 3 = one-leaf plants, 4 = small three-leaf plants,

5 = large three-leaf plants, 6 = reproductive plants). Germinants

are newly germinated seeds which remain below ground for their

first year of life. At Knight’s study sites, T. grandiflorum is self-

incompatible, and pollinated by bumblebees. To see if reproduc-

tion was limited by pollen, she conducted pollen supplementation

experiments, which significantly increased seed production [59,

Fig. 2]. This manipulation is interesting here because it directly

affects the distribution of stage-specific reproductive output

without intentional effects on survival.

Study design. Demographic data were obtained as a cross-

sectional field study. Individual seed production was measured

under control and pollen supplementation conditions.

Demographic model. Demography was modelled using a

stage-classified projection matrix with a projection interval of one

year. Transition probabilities under ‘‘no herbivory’’ conditions

[59, Fig. 3b] were used to construct the transition matrix P

P~

0 0 0 0 0 0 0

0:51 0 0 0 0 0 0

0 0:31 0:50 0:04 0 0 0

0 0 0:32 0:82 0:17 0 0

0 0 0 0:09 0:72 0:33 0

0 0 0 0 0:11 0:67 0

0:49 0:69 0:18 0:05 0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð57Þ

Figure 4. The statistics (mean, variance, coefficient of variation, and skewness) of remaining lifetime reproductive output as a
function of age, for the polychaete Streblospio benedicti, under four pollutant manipulations (control, sewage, fuel oil, and blue-
green algae). Calculated using the empirical moments of age-specific reproduction. Based on data from [55].
doi:10.1371/journal.pone.0020809.g004
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Note that individuals in stages 4–6 may increase or decrease in

size, or remain in the same stage.

Reproductive rewards. Rewards were defined as seed

production. Because only stage 6 reproduces, rij~0 for j=6, and

ri6~seed production per flowering plant: ð58Þ

Rewards were measured by their empirical moments (data

provided by T. Knight), the Poisson model, and the fixed

reward model.

Results. Figure 7 shows the statistics of lifetime reproduction

for an newly germinated seed. The pollen supplementation

treatment nearly doubled the mean lifetime seed production,

and increased the variance by an even greater factor. Relative

variability, as measured by the CV , was nearly identical for the

control and pollen supplement treatments. The skewness was

large, positive (Sk(r1)&11) and similar in both treatments.

The Poisson and the fixed reward models produced very similar

results, nearly identical to those based on the empirical moments.

This contrasts with the results from the age-classified examples, and

suggests that much more of the variability in lifetime reproductive

output is due to individual stochasticity in this stage-classified model.

The remaining lifetime reproductive output as a function of

individual stage is shown in Figure 8. Mean lifetime reproduction

increases with increasing plant size, as does the variance. The CV

decreases from about 7 for germinants to about 1 for flowering

plants. The skewness is positive, declining from about 11 for

germinants to about 2 for flowering plants.

Case study 5: Lobularia maritima in a seasonal
environment

Species that live in strongly seasonal environments often exhibit

reproductive output coupled to the periodic seasonal signal. This is

the case for Lobularia maritima, an herbaceous perennial crucifer

distributed around the Mediterranean basin [61]. The Mediter-

ranean climate is strongly seasonal (cold winters and hot dry

summers), and L. maritima has an unusually extended 10-month

flowering season. Picó et al. [61] developed a periodic model for

this plant; here I will analyze lifetime reproduction using the time-

varying analysis described in the section Analysis.

Figure 5. The statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproductive output of Swedish women
from 1891 to 2007. Results are shown for the Bernoulli reward model and the fixed reward model.
doi:10.1371/journal.pone.0020809.g005
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Study design. Cross-sectional data were collected by in a

field study, in which the year was divided into 6 periods of 2

months each [61]. Published results include only the mean

reproductive output per individual. Two types of reproduction

were defined: production of seeds, and production of seedlings.

Demographic model. Pico et al. [61] presented a periodic

model, with five stages (1 = seeds, 2 = seedlings, 3 = small adults,

4 = medium adults, 5 = large adults). Matrices were reported for

September, November, January, March, May, and July. The

model is thus a stage-classified projection matrix, with a projection

interval of 2 months within the year, and 1 year between years. My

analyses were based on mean parameter values over a five-year

study [61, Table 2]. The periodic model was constructed using (49)

for ~PP and (50) for the ~RRi, with M in (49) given by a circulant

matrix of the form (40).

Reproductive rewards. Adult plants at time t can produce

seeds at time tz1 (2 months later), or can produce seeds that

germinate to become seedlings at time tz1. The production of

seeds and of seedlings thus constitute two modes of reproduction in

this life cycle. Each reproductive mode may exhibit its own pattern

of variability, so I have analyzed each of them in order to compare

their statistics. Rewards are defined as

rij~per{capita seeds or seedling production by stage j: ð59Þ

Because only means were reported [61], rewards were described

using the Poisson model and the fixed reward model.

Results. The prospects for lifetime reproduction by seeds and

by seedlings are quite different (Figures 9 and 10). Expected lifetime

reproduction of a seed is strongly season-dependent, being high for a

seed in September and lower in all other seasons. Expected seed

production is much higher than expected production of seedlings.

The variance V (r) is also high in September and much lower in

other seasons, but CV(r) is lowest in September, increasing through

May, and is higher for seedling production than for seed production.

The CV exceeds that of Trillium by more than an order of magnitude.

Skewness follows a similar pattern, and is extremely large and

positive. This level of variance and of positive skewness is implied by

the reported vital rates and their seasonal variation, without any

contribution from unobserved heterogeneity.

Figure 6. The statistics (mean, variance, coefficient of variation, and skewness) of remaining lifetime reproductive output as a
function of age, for Swedish women in 1900, 1935, 1965, and 2000. Calculated using the Bernoulli reward model.
doi:10.1371/journal.pone.0020809.g006
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Only results for the Poisson model are shown in Figures 9 and 10;

those for the fixed reward model are nearly indistinguishable, implying

that almost all the variance in lifetime reproduction is due to individual

stochasticity rather than to variance in stage-specific reproduction.

Expected lifetime reproduction for a seedling is zero in

September, as are all the moments, because survival of seedlings

in September is zero. There is little difference among the other

seasons. Mean lifetime seed production is higher than mean

seedling production, and the change from seed to seedling

increases expected reproduction by an order of magnitude (cf.

Figures 9a and 10a). The CV and skewness are higher for seedling

production than for seed production. However, the future success

of a seedling is much more certain than that of a seed.

These results quantify what might have been expected: that

developing to the seedling stage increases the mean, and reduces

the variance, of lifetime reproduction. It would be harder to

predict a prior the changes in, or the seasonal patterns of, the CV

and skewness without an analysis like the one presented here.

Case study 6: Lomatium bradshawii in a stochastic fire
environment

L. bradshawii is an endangered herbaceous perennial plant now

occurs as a few isolated populations in prairies of Oregon and

Washington. These habitats were, until recent times, subject to

frequent natural and anthropogenic fires. L. bradshawii is well

adapted to fires, which increase plant size and seedling

recruitment, although the effect fades after a few years.

Populations that have been recently burned exhibit higher growth

rates and lower probabilities of extinction than unburned

populations [62–65].

A stochastic demographic model for L. bradshawii was developed

by Caswell and Kaye [63], based on data from an experimental

burning study. The study investigated two sites; here I analyze

results from one of them (Rose Prairie), in which a critical fire

frequency of 0.4–0.5 per year was found to be necessary to

maintain the population, the value depending slightly on the

autocorrelation of the fire process [63].

Figure 7. The statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproductive output of the perennial
plant Trillium grandiflorum, under control and pollen supplementation treatments. Results are calculated from the empirical moments of
rewards, the Poisson reward model, and the fixed reward model. Data from [59].
doi:10.1371/journal.pone.0020809.g007
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Study design. Cross-sectional data were collected in different

years and at different times since the last experimental fire; these

were combined to give stage-classified projection matrices for

each state of the fire environment. Only mean reproductive

output is available, and because the study did not follow cohorts,

no measurements of actual lifetime reproductive output are

available.

The demographic model. Population dynamics were

described with a stage-classified model with stages based on size

and reproductive status (stages 1 = seedlings, 2 = small vegetative

plants, 3 = large vegetative plants, 4 = small reproductives,

5 = medium reproductives, and 6 = large reproductives). The

environment was classified into four states defined by the

time since the most recent fire: state 1 = the year of a fire, state

2 = one year post-fire, state 3 = two years post-fire, and state

4 = three or more years post-fire. Projection matrices with

a projection interval of one year were derived for each

environmental state [63]. The life cycle permits considerable

movement among the larger size classes; the matrix P½1�, for

environmental state 1, for example, is

P½1�~

0 0 0 0 0 0 0

0:38 0:44 0:07 0:05 0:03 0 0

0:04 0:18 0:35 0:18 0:09 0:40 0

0:02 0:06 0:25 0:27 0:11 0:00 0

0 0:02 0:16 0:38 0:63 0:40 0

0 0:02 0:00 0:03 0:06 0:20 0

0:56 0:28 0:18 0:10 0:09 0 1:00

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð60Þ

The fire environment is described by a four-state Markov chain. If

f is the long-term frequency of fire, then the transition matrix of

the environmental states is

Figure 8. The statistics (mean, variance, coefficient of variation, and skewness) of remaining lifetime reproductive output of stages
1–6 of the perennial plant Trillium grandiflorum under control and pollen supplementation treatments. Calculated from the empirical
moments of rewards, based on data from [59].
doi:10.1371/journal.pone.0020809.g008
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M~

f f f f

1{f 0 0 0

0 1{f 0 0

0 0 1{f 1{f

0
BBB@

1
CCCA: ð61Þ

Although fires in this model occur independently from year to

year, the environmental states defined in terms of time since fire

are autocorrelated; see [63] for details.
Rewards. Rewards were measured as production of new

seedling plants,

rij~yearling plants produced per individual of stage j: ð62Þ

Data on individual reproductive output are not available, so the

moments of the rewards were described using the Poisson model

and the fixed reward model.

Results. The statistics of lifetime reproduction depend on the

initial stage, the initial environmental state, and the fire frequency

in the environment. Figure 11 shows the mean, variance, CV, and

skewness of lifetime reproductive output for seedlings in each

environmental state, at two selected fire frequencies (f ~0:1 and

f ~0:9). The lower fire frequency reduces the mean and variance,

and increases the CV and skewness, compared to the high fire

frequency. Individuals in environmental state 1 (the year of a fire)

have the highest mean and lowest CV and skewness of lifetime

reproduction.

Averaging the moments of r the over the stationary distribution

of the environment according to (53) yields the results in Figure 12,

as a function of fire frequency. The mean and variance of lifetime

reproduction increase with fire frequency and with increasing life

cycle stage. The CV and skewness of lifetime reproduction

decrease with increasing fire frequency for early stages and

increase slightly for later stages. Stages 5 and 6, and to a lesser

Figure 9. The statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproduction of an individual of the
perennial plant Lobularia maritima, beginning life as a seed, as a function of the season. Results are shown for reproduction measured as
seeds and as seedlings, using the Poisson reward model. Results for the fixed reward model are nearly identical, and not shown. Based on data from
[61].
doi:10.1371/journal.pone.0020809.g009
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extent stage 4, converge to a CV of 1 and skewness of 2 as fire

frequency increases.

Discussion

A calculation protocol
The results in Proposition 1 make it possible to calculate the

statistics of lifetime reproductive output implied by a wide array of

demographic models: time-invariant or time-varying, age- or

stage-structured, and with the reproductive ‘‘rewards’’ defined in a

variety of ways. The calculation protocol is:

1. Create the Markov chain transition matrix

(a) time-invariant models

N obtain the transient matrix U

N construct the transition matrix P using (3).

(b) time-varying models

N define environmental states 1, . . . ,q

N obtain environmental state-specific transient matrices

U½i�, i~1, . . . ,q

N construct environmental state-specific transition ma-

trices P½i�, i~1, . . . ,q, using (3)

N construct the block-diagonal matrix P using (43)

N define the environment transition matrix M appropri-

ate to the type of environmental dynamics (periodic,

stochastic, etc.)

N construct the block-diagonal matrix M using

(45)

N construct the time-varying transition matrix ~PP, for the

process classified jointly by life cycle stage and

environmental state, using (49)

2. Create the reward matrices

(a) time-invariant models

N choose a reward measure (eggs, seeds, larvae, seed-

lings, etc.)

Figure 10. The statistics (mean, variance, coefficient of variation, and skewness) of lifetime reproduction of an individual of the
perennial plant Lobularia maritima, beginning life as a seedling, as a function of the season. Results are shown for reproduction measured as
seeds and as seedlings, using the Poisson reward model. Results for the fixed reward model are nearly identical, and not shown. Based on data from [61].
doi:10.1371/journal.pone.0020809.g010
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N specify a reward model[s] (empirical distribution,

Poisson distribution, fixed rewards, etc.)

N create the matrices containing moments of stage-

specific rewards, R1, R2, R3

(b) time-varying models

N choose a reward measure

N specify a reward model[s]

N construct environmental state-specific matrices of

moments of stage-specific rewards, R1½i�, R2½i�, R3½i�,
for i~1, . . . ,q

N construct the block moment matrices R1, R2, R3 using

(48)

N construct the reward matrices ~RR1, ~RR2, ~RR3, for the the

process classified jointly by life cycle stage and

environmental state, using (50)

3. Set initial conditions:

r1(0)~r2(0)~r3(0)~0

4. Iterate equations (10)–(12) until r1(t), r2(t), and r3(t) converge

to their equilibria.

5. Calculate statistics. Use equations (24)–(27) to compute the

variance, standard deviation, CV, and skewness of lifetime

reproduction.

These calculations are easily programmed in Matlab or any

other matrix-oriented language.

Data requirements
A Markov chain with rewards requires two kinds of data: the

transition matrix P for the Markov chain, and data on the

distribution of the rewards rij associated with transitions among

states of the Markov chain. Transition matrices are available from

any demographic study that reports a population projection

matrix. The information on reproductive rewards is less

standardized. Sometimes reproduction is measured on single

individuals; if these data are available, the empirical moments of

stage-specific rewards can be used directly. Such data often

underlie reported population projection matrices, but only means

are usually reported. I encourage researchers with such studies to

report the moments of reproduction, or to archive the data so that

they can be available for further analysis.

In some cases, reproduction is not measured individually, or

offspring cannot be attributed to an individual parent. In such

cases, the distribution of rewards can be described with a statistical

model; the Poisson, Bernoulli, and fixed reward models used here

are examples, but others could be developed. In at least some

cases, involving stage-classified populations, the full distribution of

stage-specific rewards appears to have little effect on the statistics

of lifetime reproductive output.

Variability and heterogeneity
Variability among individuals in lifetime reproductive output

may arise from three sources:

1. Differences among individuals in the pathways taken through

the life cycle (individual stochasticity [3] or dynamic hetero-

geneity [23,24]).

2. Differences among individuals in the rewards realized at any

given stage in the life cycle.

3. Differences among individuals in the transition probabilities P
and/or the rewards Ri.

The variability produced by the first two of these sources arises

naturally in any set of individuals experiencing identical vital rates;

they are not the result of heterogeneity among individuals. These

two sources of variability are incorporated in the Markov chain

with reward calculations; hence the statistics calculated from this

model provide the desired baseline measurement of variability

expected in the absence of heterogeneity.

Source 3, on the other hand, depends on differences among

individuals. These may be fixed differences (e.g., genetic

differences, or differences in local environment among individuals

of sessile species), or differences that develop over time (e.g.,

accumulated damage caused by environmental factors). Whether

fixed or variable, these differences are heterogeneity. Unless they

are incorporated into the i-state variables [66] in the demographic

model, they are not reflected in the calculations of variability in the

Markov chain with rewards.

Patterns
The examples presented here suggest some interesting patterns

that warrant further comparative investigation. A comparison of

Figures 1–12 reveals clear differences in the patterns of variability

Figure 11. The statistics (mean, variance, CV, and skewness) of
lifetime reproduction of the perennial plant Lomatium brad-
shawii in a stochastic fire environment, with fire frequency
f ~0:1 and f ~0:9. Results are shown as a function of the initial
environmental state (state 1 = year of fire, 2 = one year post- fire, 3 = two
years post-fire, 4 = three or more years post-fire), calculated using the
Poisson reward model. The fixed reward model produces almost
identical results. Based on data in [63].
doi:10.1371/journal.pone.0020809.g011
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exhibited in these data. Variances can be very large, and skewness

can be very positive, simply due to individual stochasticity.

Genetically homogeneous populations of C. elegans in constant

laboratory conditions exhibit values of CV&0:2 and Sk&{0:5.

Genetically heterogeneous populations of S. benedicti in constant

but stressful laboratory conditions exhibit values of CV&0:5{2:5
and Sk&0{2:5. Genetically heterogeneous human populations

over a long historical sequence exhibit values of CV&1 and

Sk&1. Stage-classified populations of plants (genetically hetero-

geneous and studied in the field) exhibit higher levels of variability,

with CV&7 for T. grandiflorum, CV&10{150 for seed production

of Lobularia maritima, CV&2{3 for seedling production of

Lobularia maritima, and CV&3{8 for Lomatium bradshawii.

Skewness values are similarly more positive, with Sk&11 for T.

grandiflorum, Sk&150 for seed production of Lobularia maritima,

Sk&10{250 for seedling production of Lobularia maritima, and

Sk&5{10 for Lomatium bradshawii. It is an open question whether

these patterns reflect differences between plants and animals, age-

classified and stage-classified models, or field and laboratory

conditions.

The studies on C. elegans and S. benedicti include measurements of

observed individual lifetime reproduction (this is one of the

important advantages of individual-based studies [67]. This makes

it possible to compare the observed variance (which includes the

effects of heterogeneity) and the calculated values (which do not).

Tables 1 and 2 show the results, including the standard errors of

the empirical variance estimates [68, Section 10.15]. For the clk-1

and N2 genotypes of C. elegans, the observed variances are well

within a single standard error of the variance calculated from the

demographic model. For the daf-2 genotype, the observed variance

is about three standard errors less than the calculated value. In the

case of Streblospio benedicti, the observed variance is greater than the

calculated variance in all four treatments. However, because the

sample sizes in this experiment were small, the standard errors on

Figure 12. The statistics (mean, variance, CV, and skewness) of remaining lifetime reproduction for each stage of Lomatium
bradshawii in a stochastic fire environment, as a function of the fire frequency. Values are calculated from moments averaged over the
stationary distribution of the environment according to (53). Calculated using the Poisson reward model; results for the fixed reward model are nearly
identical. Based on data from [63].
doi:10.1371/journal.pone.0020809.g012
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the observed variances are too large to say much about these

differences. Further studies comparing observed and calculated

variances will be useful in detecting heterogeneity in life time

reproduction (see also [34]).

In most of the examples, the age or stage patterns of CV (r) are

very similar to the patterns of Sk(r). This is expected on the basis

of several distributional facts. If lifetime reproduction follows a

Poisson distribution, the CV is equal to the skewness. If individuals

spend an exponentially distributed length of time in adult

reproductive states with a constant reproductive output at each

time, the CV is one-half of the skewness. In an age-classified model

with high survival and a Bernoulli distribution of numbers of

offspring at each age, the lifetime reproduction will have a

binomial distribution. If p be the probability of success in the

Bernoulli trial (i.e., the probability of reproduction), the ratio of the

CV to the skewness of a binomial distribution is

CV (r)

Sk(r)
~

1{p

2{p
ð63Þ

which, if p is small, is approximately 1/2. This suggests that age

patterns of the CV of lifetime reproduction are probably often

similar to the patterns of skewness.

In the cases of T. grandiflorum and L. bradshawii, the skewness of

lifetime reproductive output in adult stages converges to a value

close to 2. This value is a kind of benchmark for skewness, in the

following sense. Consider a population with the minimum possible

variability: all stages have identical survival probability and

identical fixed reproductive output. Individual lifetimes are then

exponentially distributed, and lifetime reproductive output is

proportional to an exponentially distributed random variable. The

skewness of this distribution will be the same as that of the

exponential distribution, which is 2, regardless of parameter

values.

It is interesting to compare the variance from the full reward

model (when available), the Poisson reward model, and the fixed

reward model. Tables 3 and 4 show the results for the various

examples. In the case of C. elegans, the Poisson reward model

accounts for only 20–30% of the variance in lifetime reproduction.

The fixed reward model accounts for only about 10–20%. In the

case of Streblospio benedicti, also age-classified, the Poisson model

accounts for 60–80% of the variance, and fixed model only 1–5

percentage points less. In the case of the human population of

Sweden, the proportion of variance explained by the fixed model

declines from about 35% in 1891 to nearly 0.

In the stage-classified examples the situation is quite different. In

Trillium grandiflorum the Poisson model accounts for 95–98% of the

variance, and the fixed rewards model only about 0.5 percentage

points less. In the periodic model for Lobularia maritima and the

stochastic model for Lomatium bradshawii the full rewards are not

available, so comparisons must be made with the Poisson model.

The fixed reward model captures more than 99% of the variance

Table 2. The observed variance in lifetime reproduction and
the variance calculated from the demographic model, for
S. benedicti under four pollutant exposure treatments.

S. benedicti Treatment

Control Sewage Oil Algae

Observed (SE) 14,049 (4335) 19,041 (6530) 1,674 (656) 705 (276)

Calculated 12,519 15,162 671 231

Standard errors, calculated as in [68], of the observed variances are given in
parentheses.
doi:10.1371/journal.pone.0020809.t002

Table 1. The observed variance in lifetime reproduction and
the variance calculated from the demographic model, for
three genotypes of C. elegans.

C. elegans Genotype

clk-1 daf-2 N2

Observed (SE) 1670.3 (83.5) 2211.5 (110.6) 3280.3 (146.7)

Calculated 1665.4 2555.8 3314.4

Standard errors, calculated as in [68], of the observed variances are given in
parentheses.
doi:10.1371/journal.pone.0020809.t001

Table 3. The fraction of the variance in lifetime reproductive
output accounted for by the Poisson reward model and the
fixed reward model, relative to the variance calculated from
the full empirical moments of the stage-specific rewards.

Full Poisson Fixed

C. elegans

clk-1 1.0 0.226 0.130

daf-2 1.0 0.206 0.115

N2 1.0 0.300 0.213

S. benedicti

control 1.0 0.697 0.643

sewage 1.0 0.779 0.764

oil 1.0 0.584 0.537

algae 1.0 0.706 0.675

Trillium

control 1.0 0.940 0.933

supplement 1.0 0.980 0.975

Results are shown for Caenorhabditis elegans, Streblospio benedicti, and Trillium
grandiflorum.
doi:10.1371/journal.pone.0020809.t003

Table 4. The fraction of the variance in lifetime reproductive
output accounted for by the fixed reward model, relative to
the variance calculated from the Bernoulli model, for the
human population of Sweden.

Sweden

Year Bernoulli Fixed

1891 1.0 0.365

1911 1.0 0.236

1931 1.0 0.093

1951 1.0 0.036

1971 1.0 0.017

1991 1.0 0.012

2001 1.0 0.006

doi:10.1371/journal.pone.0020809.t004
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in lifetime reproduction from the Poisson model in Lobularia and

from 93–98% of the Poisson model variance in Lomatium (results

not shown).

Analyses of the statistics of lifetime reproductive output in other

species, and the responses of those statistics to environmental and

demographic differences, will be valuable. The important paper by

Steiner and Tuljapurkar [34] takes this one step further and

constructs models that include heterogeneity among individuals,

and examines the effect of such heterogeneity on the variance in

lifetime reproduction. They conclude that heterogeneity will

produce only modest changes in the variance.

Generalizing the concepts of rewards and costs
The results of Proposition 1 can be extended to a wide range of

demographic questions by generalizing the concept of reward. For

example, a fixed reward model with

rij~
1 j transient

0 j absorbing

�
: ð64Þ

provides a unit reward each time the individual occupies a

transient (i.e., living) stage. The lifetime reward is longevity, and

Proposition 1 provides a way to calculate all the moments of

longevity. These moments can also be computed directly from the

fundamental matrix of the absorbing Markov chain [69, Theorem

3.2] [2,3,26], but it is useful to have an alternative. Moreover, the

reward model (64) can be generalized to include rewards that

describe the statistics of longevity weighted by quality of life, health

status, income, etc.

Discounting rewards in ergodic Markov chains
The development of Proposition 1 took advantage of the fact

that demographic Markov chains are absorbing, with death as an

absorbing state. If the rewards represent reproduction, then

rewards in an absorbing state are zero, and since all individuals

will eventually be absorbed, the moments ri(t) will eventually

converge to equilibrium values as rewards stop accumulating.

If the Markov chain is ergodic (or if the dead continue to receive

rewards), the situation is different. Rewards will continue to

accumulate indefinitely, and accumulated rewards will not

converge unless a discount rate is introduced, to value future

rewards less than current ones [35]. Let b be a discount rate,

where 0vbv1. Then the conditional expectation of future

rewards in (6) becomes

E rj(t)jj?i
� �

~E rijzbri(t{1)
� �

: ð65Þ

Carrying through the calculations as in Proposition 1 yields

r1(tz1)~ P0R1ð ÞT1zbPTr1(t) ð66Þ

r2(tz1)~ P0R2ð ÞT1z2b P0R1ð ÞTr1(t)

zb2PTr2(t)
ð67Þ

r3(tz1)~ P0R3ð ÞT1z3b P0R2ð ÞTr1(t)

z3b2 P0R1ð ÞTr2(t)zb3PTr3(t):
ð68Þ

In general, the kth moments of accumulated rewards are given by

rm(tz1)~
Xm

k~0

m

k

� �
P0Rm{kð Þbkrk(t): ð69Þ

This formulation may have applications in models for, e.g., habitat

dynamics where different environmental states are of different

value for management or conservation.

Why r1 is not R0

In many cases, the mean lifetime reward r1 (or its first entry,

r(1)
1 ) will equal R0. But not always, and it does not share the

properties mentioned in Section (measuring the per-generation

growth rate and serving as an indicator variable for population

growth). R0 enjoys those properties because it is linked to, and

calculated from, a model of population dynamics, either through

the familiar age-specific calculation (1), or through the Cushing-

Zhou theorem for stage-classified models (2).

The mean lifetime reward r1 is calculated for a cohort, not a

population, and so it has no such linkage. In cases where

reproduction is measured in the same currency (eggs, larvae, seeds,

etc.) that appears in a population projection matrix, r1 may be

numerically equivalent to R0. But it is possible, and will often be

desirable, to measure reproductive rewards in different currencies,

and in such cases r1 cannot be interpreted as other than what it is:

mean lifetime reproductive output, measured in that currency.

This is particularly true when the life cycle includes multiple kinds

of reproduction. Neither of these alone can serve as the net

reproductive rate R0. For example, because Lobularia has

reproductive output measured in seeds and seedlings, the mean

lifetime production of these two types of offspring cannot serve as

an indicator of population growth. Developing connections to

population dynamics is an interesting unsolved problem.
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