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Objective: Brain-computer interface (BCI) has great potential in geriatric

applications. However, most BCI studies in the literature used data from young

population, and dedicated studies investigating the feasibility of BCIs among

senior population are scarce. The current study, we analyzed the age-related

differences in the transient electroencephalogram (EEG) response used in

visual BCIs, i.e., visual evoked potential (VEP)/motion onset VEP (mVEP),

and steady state-response, SSVEP/SSMVEP, between the younger group (age

ranges from 22 to 30) and senior group (age ranges from 60 to 75).

Methods: The visual stimulations, including flicker, checkerboard, and

action observation (AO), were designed with a periodic frequency. Videos

of several hand movement, including grasping, dorsiflexion, the thumb

opposition, and pinch were utilized to generate the AO stimuli. Eighteen

senior and eighteen younger participants were enrolled in the experiments.

Spectral-temporal characteristics of induced EEG were compared. Three

EEG algorithms, canonical correlation analysis (CCA), task-related component

analysis (TRCA), and extended CCA, were utilized to test the performance of

the respective BCI systems.

Results: In the transient response analysis, the motion checkerboard and

AO stimuli were able to elicit prominent mVEP with a specific P1 peak

and N2 valley, and the amplitudes of P1 elicited in the senior group were

significantly higher than those in the younger group. In the steady-state

analysis, SSVEP/SSMVEP could be clearly elicited in both groups. The CCA

accuracies of SSVEPs/SSMVEPs in the senior group were slightly lower

than those in the younger group in most cases. With extended CCA, the

performance of both groups improved significantly. However, for AO targets,

the improvement of the senior group (from 63.1 to 71.9%) was lower than that

of the younger group (from 63.6 to 83.6%).

Conclusion: Compared with younger subjects, the amplitudes of P1 elicited

by motion onset is significantly higher in the senior group, which might be
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a potential advantage for seniors if mVEP-based BCIs is used. This study also

shows for the first time that AO-based BCI is feasible for the senior population.

However, new algorithms for senior subjects, especially in identifying AO

targets, are needed.

KEYWORDS

age, brain computer interface, steady state motion visual evoked potential, motion
onset visual evoked potential, action observation

Introduction

Brain-computer interface (BCI) is a direct communication
pathway between the brain and an external device, receiving
increasing attention in aging research and geriatrics. A BCI
acquires and analyses brain signals in real time and provides
a non-muscular channel of communications and control for
individuals with disabilities, majority of which are seniors
(Wolpaw et al., 2002). In the BCI research, various independent
electroencephalogram (EEG) signals or stimuli-dependent
EEG signals have been investigated as the source signal
for non-invasive BCI paradigms. Among these, event-related
desynchronization/synchronization (ERD/ERS) (Wang et al.,
2019) and movement related cortical potentials (MRCP) (Niu
and Jiang, 2022) are spontaneous and independent modalities,
while P300 (Hoffmann et al., 2008), transient visual evoked
potential (VEP) (Liparas et al., 2014), and steady-state visual
evoked potential (SSVEP) (Vialatte et al., 2010) are stimuli-
dependent. In particular, transient VEPs are elicited by light
flashing or patterned stimuli at low rates. SSVEPs are evoked
by periodic flickers with a stationary distinct spectrum in
EEG recordings mainly at the occipital cortical area. Among
the various BCI paradigms, the SSVEP-based BCI has the
advantage of a high information transfer rate (ITR) and no
or little need for subject training to achieve high decoding
accuracy. These advantages make it popular in spelling
(Chen et al., 2021) and brain-controlled robots (Chen et al.,
2020).

To date, BCI applications have mainly focused on assisting
people with disability in participating in daily life activities.
Senior individuals accounts for a large proportion of individuals
disability. The average age of stroke patients admitted was
66 years old reported in China stroke statistics 2019 (Wang
et al., 2020). While there are well-documented age-related
changes in EEG signals, few studies in the current BCIs
literature investigated the feasibility of various EEG modalities
in senior population. For example, researchers have shown that
there are changes in the brain with age in processing speed,
working memory, inhibitory functions, brain structure size,
and white matter integrity (Park and Reuter-Lorenz, 2009).

A model which is called hemispheric asymmetry reduction
in older adults (HAROLD) stated that older adults tended to
be less lateralized than younger adults when performing the
same task (Cabeza, 2002). A reduced lateralization of ERD
was also reported in the elderly when the participants were
performing covert hand movements (Zich et al., 2015). In
particular, the algorithms in BCI research are almost exclusively
developed with data from young population under the age of
30. The above age-related change has been shown to have a
dramatic change on algorithms developed from young subjects’
data when used in senior population (Chen et al., 2019). For
example, the reduced lateralization in older subjects caused
the accuracy dropping from 82.3 to 66.4% in sensory-motor
rhythm (SMR)-based BCI. As such, careful investigations should
be conducted before these BCIs algorithms can be applied in
geriatric applications.

Steady-state visual evoked potential is one of the most
popular non-invasive BCI modalities, and its age-related effect
has been investigated. For example, a BCI spelling performance
from young adults (between the ages of 19 and 27) and older
adults (between the ages of 54 and 76) was compared. The results
showed a significant difference in the ITR between these two
groups (Volosyak et al., 2017). Another study reported SSVEP-
based BCI performance using the medium frequency range
(approximately 15 Hz) and the high-frequency range (above
30 Hz) in 86 subjects aged 18–55 (Volosyak et al., 2011). But
that study may not be reflective of the general population. The
subjects tended to be young men (25.83 ± 7.84 years). And a
controlled survey has to be carried in the future to examine
the effect of age. In addition, a two-class SSVEP-based BCI
was tested in young adults, older adults, and ALS patients. The
average accuracy reached 96.1% in young adults, 91.8% in older
adults, and 81.2% in ALS patients (Hsu et al., 2016). Thus,
age seems to have some influence on the performance of the
SSVEP-based BCI.

The flickering stimuli used in SSVEP-based BCI can easily
cause visual fatigue and has the risk of eliciting seizures, a
potential risk increasing with age. Recently, motion stimuli
without flickers have been proposed and attracted more
attention. For example, periodic motions, such as rotation,
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spiral, and radial motion, have been shown to elicit steady-
state motion visual evoked potentials (SSMVEPs) (Yan et al.,
2018). The SSMVEP-based BCI maintains the low- or no-
subject training characteristics of SSVEP-based BCIs, but with
the benefit of less visual discomfort (Xie et al., 2012), and
higher robustness to competing stimuli (Ravi et al., 2022),
among others. Moreover, the perception of motion is one of
the fundamental tasks of higher visual systems. The dorsal
pathway in the visual system mainly deals with motion, which
is a different pathway from that dealing with flicker. Thus, the
EEG responses to the motion stimulus is different from that to
flicker stimuli. However, to the best knowledge of the authors,
no comparison of EEG responses to motion stimuli among
different age groups has been reported in the literature.

Steady-state visual evoked potential/steady-state motion
visual evoked potential-based BCIs mainly apply to spelling
(Chen et al., 2015) and might not directly apply to stroke
rehabilitation, which is one of the key sub-group in seniors
with disability that BCIs might help. The flicker and the motion
stimuli mentioned above can activate the occipital area but have
little effect on the sensorimotor area, which is important for
stroke rehabilitation purposes (Biasiucci et al., 2018).

The novel action observation (AO)-based BCI shows
great potential for promoting motor cortical activation in
neural rehabilitation applications. Our recent study showed
that observing the carefully designed gaiting stimulus could
simultaneously elicit SSMVEPs in the occipital area and induce
SMR in the primary sensorimotor area (Zhang et al., 2021b).
We have further shown that designed action video of fine hand
movements could also simultaneously elicit SSMVEP in the
occipital area and SMR in the sensorimotor area (Zhang et al.,
2021a). The induced SMR in both cases could be beneficial
for motor cortical activation, consequently with great potential
in rehabilitation applications. However, the AO-based BCI was
only tested in younger subjects, not in senior population.

To evaluate the ability of visual stimuli in BCI, especially
the motion stimulus, inducing EEG characteristics in senior
subjects, the transient response and the steady state response
to three typical paradigms were explored in the current study
for the first time. The flicker, motion checkerboard, and AO
were selected as the visual stimuli, which were designed with
periodic frequency. Not only the steady state response, i.e.,
SSVEP/SSMVEP, but also the transient response, i.e., VEP/
motion onset VEP (mVEP) (Heinrich, 2007), were illustrated
in two age groups (young and senior). The amplitudes of the
transient components were compared between these two age
groups. The feasibility of AO stimuli, such as grasping, the
opposition movement, and pinching, eliciting the SSMVEP in
senior subjects was also investigated. Furthermore, three typic
algorithms, which were widely utilized to identify the target
stimulus in the multi-stimuli scenario based on the induced
SSVEP/SSMVEP in younger subjects, were investigated to the
applicability of dealing with senior EEG signals.

Materials and methods

Participants

Two different age groups of healthy volunteer participants,
i.e., a senior group and a young group, participated in this
study. Each group contained eighteen subjects. The senior group
consisted of four males and 14 females, aged 60–75 years old
(mean ± SD: 67.50 ± 4.20), and the younger group consisted
of nine males and nine females, aged 22 to 30 years old
(mean ± SD: 26.17 ± 2.68). All 36 volunteer participants were
naïve to BCI.

Stimulation design

Three different kinds of visual stimulation, i.e., flicker,
checkerboard, and AO, as shown in Figure 1, were designed to
induce the visual evoked potential (transient and steady state)
in brain. The stimulations were presented on a liquid crystal
display monitor. The screen refresh rate was 60 Hz, i.e., 60
frames per second.

The sampled sinusoidal stimulation method (Chen et al.,
2014) was utilized to present visual flickers. The period flicker
was intended to elicit SSMVEP. Checkerboard stimulation
consists of multiple concentric rings (Zhang et al., 2017, 2019).
Each ring was divided into white and black lattices with equal
sizes and numbers. Thus, the total areas of the bright and dark
regions in each ring were always identical. The multiple rings in
the checkerboard contracted as the phase of the sinusoid signal
of the targeted frequency changed from 0◦ to 180◦ and expanded
as the phase changed from 180◦ to 0◦. The period movement was
intended to elicit SSMVEPs.

In addition, videos of several hand movements, including
grasping, dorsiflexion, the thumb opposition, and pinch, were
recorded. A frame rate reduction method (Zhang et al., 2021a)
was utilized to generate the AO stimulus. Taking the stimulus
of pinch as an example, as shown in Figure 1D, each frame
was extracted from a video. The same image would last for
N/60 s, followed by the next different image. Consequently,
the frame rate of the designed stimulus decreased to 60/N
Hz. In one cycle of the action movement, there were a total
of M_AO captured images. Thus, the frequency of the action
movement was 60/(M_AO× N). The background of the stimuli
was unchanged so that the subject intuitive perception was that
the finger was moving instead of flicker. If the optical frequency
of the stimulus was lower than 4 Hz, the SSVEP cannot be
induced. Thus, we designed the AO stimulus containing two
frequencies, i.e., the frame rate and the frequency of the action
movement. The frame rates were higher than 4 Hz to ensure the
effective induction of the SSMVEP. The frequencies of the action
movement were approximately 1 Hz, within the normal speed of
human movement. In addition to the SSVEP/SSMVEP, the onset
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FIGURE 1

The visual stimulation. (A) Flicker (B) checkerboard (C) action observation (D) generation of the action observation (AO) stimulus (pinch).

of the visual stimulus was anticipated to elicit VEP/mVEP. The
program presenting the stimulus was developed with MATLAB
using the Psychophysics Toolbox (Brainard, 1997).

Experimental design

During the experiment, the participant was seated in a
comfortable chair and was briefed on the tasks to be performed.
In total, four tasks were designed, as shown in Figure 2.
Multiple visual stimuli were presented simultaneously in task
1–3. The inter-stimulus distance (ISD) was measured as the
visual angles between two individual stimuli. The minimal ISD
was 9.46◦ in the first three tasks. And that ISD had little
influence on the decoding performance of SSVEP/SSMVEP-
based BCI (Gao et al., 2021). To avoid the unknown effect of
competing stimuli which may be a confounding factor for the
novel AO stimulus, we further designed task 4 that only one
stimulus was presented. Task 1: the subject engaged his or her
gaze at the flicker stimulus according to the cues displayed
on the screen (Flicker). Task 2: the subject engaged his or
her gaze at the checkerboard stimulus (Checkerboard). Task 3:
the subject engaged his or her gaze at the AO stimulus and
imagined the same movement simultaneously (AO+MI). Task
4: the subject engaged his or her gaze at the AO stimulus and

performed the same movement simultaneously (AO+ME). The
experimental tasks were designed based on the requirements of
the target application, i.e., BCI-based rehabilitation training. In
addition to gazing, the participants were instructed to imagine
the movement or performance the movement, which will be
benefit for rehabilitation training. Thus, the mental tasks were
added in the AO stimulus.

Figure 2A illustrates the trial sequence in the experiment.
Each trial consisted of three phases: the cue phase, stimulus
phase and relaxation phase. For the first three tasks, each trial
started with the cue phase (from −2 to 0 s), where one of the
four cue letters (“1,” “2,” “3,” and “4”) would appear at the screen,
at one corner of the screen. It indicated the target stimulus
for the current trial, at which participant would then engage
his or her gaze during the stimulus phase. The stimulus phase
started at 0 s and lasted 5 s. In this phase, the four stimuli
(Task 1: Four flicker stimuli. Task 2: Four cherkerbaord stimuli.
Task 3: The left-hand opposition movement stimulus, the left-
hand pinch stimulus, the right-hand opposition movement
stimulus, and the right-hand pinch stimulus) appeared on the
four corners of the screen for 5 s. The flicker frequencies of
the four flicker stimuli, the motion frequencies of the four
checkerboard stimuli, and the frame rates of the four AO stimuli
were all 6, 5, 4.615, and 6.667 Hz. For the AO stimulus, the
frequencies of the action movement were 0.6, 0.83, 0.58, and
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FIGURE 2

Illustration of the experimental protocol. (A) The trial sequence of the four tasks. (B) The action observation (AO) stimulus in the stimulus phase
used in task 4.

1.11 Hz, respectively (M_AO = 10, 6, 8, and 6, respectively).
The participants were asked to gaze at the target appearing
in the same position as the letter shown in the cue phase
or to imagine the movement based on the task requirement
mentioned above. This was followed by the 2 s long relaxation
phase, during which the participant could relax the gaze. The
text “rest” in Chinese appeared on the screen. The videos of the
single trial in each task could be found in the Supplementary
material.

The trial sequence in task 4 was similar to that in
task 3. The main differences were the cue phase and the
stimulus phase. The duration of the cue phase in task 4
was 4 s, and a countdown in 1 s intervals appeared at the
screen in the cue phase. In the stimulus phase, only one
stimulus would appear in the same position as the countdown
shown in the cue phase. Figure 2B shows all possibile AO
stimuli (including left-hand grasping, right-hand grasping, and
dorsiflexion in the stimulus phase) that could appear in this
phase. The frame rates of these three AO stimuli were 10,
6, and 4.615 Hz. The frequencies of the action movement
were 1, 1, and 0.77 Hz, respectively (M_AO = 10, 6, and 6,
respectively).

For the first three tasks, the experiment consisted of four
runs in each task. In each run, each of the four targets was
repeated five times in a randomized order resulted in a total of 20
experimental trials. Thus, there were a total of 80 experimental
trials for each task. For task 4, the experiment consisted of five
runs, and each of the three targets was repeated seven times in a
randomized order in each run.

Electroencephalogram data recording

Electroencephalogram signals were recorded using a 32-
channel wireless g.Nautilus EEG system (g.tec, Austria).
Electrodes were placed at Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC4, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6,
P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, and Oz according to
the extended 10/20 system. The reference electrode was located
on the right earlobe, and the ground electrode was located on
the forehead. A hardware notch filter at 50 Hz was used, and
signals were digitally sampled at 500 Hz. All EEG data, event
timestamps (the beginning and the end of each trial) and true
labels were recorded for subsequent processing.
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Target detection

In this study, canonical correlation analysis (CCA), task-
related component analysis (TRCA), and extended CCA-based
method (extended CCA) were investigated for target stimulus
detection and classification based on SSVEPs/SSMVEPs. The
classification accuracy was computed to evaluate the target
identification performance in different age groups. The
classification accuracy is defined as the percentage of the correct
predictions out of all predictions. EEG data from electrodes
P3, Pz, P4, PO7, PO3, PO4, PO8, and Oz were selected
for analysis. EEG data in the stimulus phase were bandpass
filtered from 3 to 40 Hz with the Butterworth filter. Then,
the three abovementioned methods were utilized to perform
classification. The details of the target identification methods are
described below.

Canonical correlation analysis-based
target identification

Canonical correlation analysis is a statistical way to measure
the underlying correlation between two multidimensional
variables and has been widely used to detect the frequency of
SSVEPs (Lin et al., 2006). It is a training free method. Single trial
test data are denoted as X ∈ RNc × Ns . Here, Nc is the number of
channels, and Ns is the number of sampling points in each trial.
In the current study, multichannel EEG data in the occipital
region and sine-cosine reference signals were calculated by the
following formula.

ρ(x, y) =
E[wT

x XYf
Twy]√

E[wT
x XXTwyE[wT

x YfYf
Twy]]

where ρ is the CCA correlation coefficient and Yf is the
reference signal.

The sine-cosine reference signals are as follows:

Yf =


sin × (2 × π × f × t)
cos× (2 × π × f × t)
sin× (4 × π × f × t)
cos× (4 × π × f × t)


where f is the motion frequency.

The target on which the participant focused could be
identified by taking the maximum CCA coefficient.

Task-related component
analysis-based target identification

Task-related component analysis is an approach to extract
task-related components from a linear weighted sum of

multiple time series. TRCA was first proposed to maximize
the reproducibility during task periods from near-infrared
spectroscopy data (Tanaka et al., 2013). As it had the ability to
maximize inter-block covariance and to remove task-unrelated
artifacts, TRCA was successfully used as a spatial filter to remove
background EEG activities in SSVEP-based BCIs (Nakanishi
et al., 2018). The spatial filter can be achieved as follows:

ω = arg max
ω

ωTSω
ωTQω

The normalization matrix Q is defined as:

Q =
Nc∑

j1,j2 = 1

Cov(xj1 (t) , xj2 (t))

where xj1 (t) is the EEG data in the j1-th channel and xj2 (t)
is the EEG data in the j2-th channel. Cov(., .) represents the
cross covariance.

The symmetric matrix S = (Sj1j2)1 ≤ j1,j2 ≤ Nc
is defined as:

Sj1j2 =
Nt∑

h1,h2 = 1
h1 6=h2

Cov(x(h1)
j1 (t) , x(h2)

j2 (t))

where x(h1)
j1 (t) is the EEG signal in the h1-th trial in the j1-th

channel. x(h2)
j2 (t) is the EEG signal in the h2-th trial in the j2-

th channel.
With the help of the Rayleigh-Ritz theorem, the eigenvector

of the matrix Q−1S provides the optimal coefficient vector.
If there were four individual training data corresponding

to four stimuli in one task, four different spatial filters
could be obtained. Then, an ensemble spatial filter
W = [ω1 ω2 ω3 ω4] was obtained. Through spatial filtering
XTW, the test data X were expected to be optimized to achieve
maximum performance.

The correlation coefficient was selected as the feature.
Pearson’s correlation analysis between the single-trial
test signal X and averaging multiple training trials as
χi =

1
Nt

∑Nt
h = 1 χih across trials for the i-th stimulus was

calculated as ri = ρ
(
XTW,

(
χi
)TW)

. Here, ρ is Pearson’s
correlation, i indicates the stimulus index, h indicates the index
of training trials, and Nt is the number of training trials.

The target on which the participant focused could
also be identified by taking the maximum coefficient as
Target = max (ri) , i = 1, 2, 3, 4.

Extended canonical correlation
analysis-based target identification

The extended CCA-based method incorporated individual
template signals obtained by averaging multiple training trials
as χi (Chen et al., 2015). The following three weight vectors are
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utilized as spatial filters to enhance the SNR of SSMVEPs: (1)
WX(X, χi) between test signal X and individual template χi, (2)
WX(X,Yf ) between test signal X and the sine-cosine reference
signals Yf , and (3) Wχi(χi,Yf ) between the individual template
χi and the sine-cosine reference signals Yf . Then a correlation
vector r̂i is defined as follows.

r̂i =


ρi,1

ρi,2

ρi,3

ρi,4

 =


ρ(X,Yf )

ρ(XTWX
(
X, χi

)
, χi

TWX(X, χi))

ρ(XTWX
(
X,Yf

)
, χi

TWX(X,Yf ))

ρ(XTWχi(χi,Yf ), χi
TWχi(χi,Yf ))


Finally, the following weighted correlation coefficient is used

as the feature in target identification.

ri =
4∑

l = 1

sign
(
ρi,l
)
· ρi,l

2

where sign() is used to retain discriminative information from
negative correlation coefficients between the test signals and
individual templates.

The target on which the participant focused could also be
identified by taking the maximum coefficient.

In addition, a fourfold cross-validation scheme was
performed for the first three tasks. One run’s data were retained
as the validation data for testing, and the other three runs’ data
were used as training data. There was no overlapping part in
either the training or test subsets. The cross-validation process
was then repeated four times, with each of the four runs’ data
used exactly once as the validation data. Similarly, a fivefold
cross-validation scheme was performed for the fourth task.

Statistical analysis

A mixed-effect model of ANOVA was used to quantify the
differences in the amplitudes of P1 and N2 in each task. The
group with two levels (1: senior, 2: young) was one fixed factor.
The subject nested within the group and target were two random
factors. The mixed-effect model of ANOVA was also used to
quantify the differences in the classification accuracies. The
method with three levels (1: CCA, 2: TRCA, and 3: extended
CCA), data length with three levels (1: 1 s, 2: 3 s, and 3: 5 s), and
group with two levels (1: senior and 2: young) were three fixed
factors, and subject was a random factor nested within groups.

Results

Temporal characteristics of the
induced transient response

High contrast and bright luminance of a visual object was
able to evoke VEP, and the motion behavior of visual objects

could evoke mVEP. Thus, the transient EEG components
immediately following the onset of the visual stimuli were first
analyzed. EEG data epochs during the beginning of the stimulus
phase (0–0.5 s) were averaged over all trials registered from each
of the subjects. Figure 3 illustrates the grand average waveforms
for all senior subjects (blue line) and all younger subjects (red
line) at electrode PO8 response to different kinds of stimuli.
0 s referred to the moment when the stimulus occurred on the
screen. Overall, the grand average visually evoked potentials in
response to target stimuli had a positive deflection (P1) with a
latency of 100–160 ms, followed by a negative deflection (N2)
with a latency of 160–230 ms post-flicker or postmotion onset.
The transient response to the motion stimulus was clearer than
that to the flicker. Furthermore, the amplitudes of the P1 and
N2 repsonses to the flicker stimulus were similar in these two
age groups. But the amplitudes of the P1 and N2 repsonses
to the motion stimulus in the senior group were larger than
those in the younger group. For example, in the AO+MI task,
the amplitudes (mean ± SD) of those two components were
7.70 ± 4.03 µV and −7.01 ± 3.34 µV in senior group, whereas
the amplitudes (mean ± sd) of P1 and N2 were 4.69 ± 1.85 µV
and−6.01± 2.35 µV in younger group.

A mixed-effect model of ANOVA was used to quantify the
differences in the amplitudes of P1 and N2 in different tasks.
In task 1 (Flicker), the fix factor Group had no significant
influences on the amplitudes of P1 [F(1, 34) = 3.71, p = 0.063]
and N2 [F(1, 34) = 0.71, p = 0.405]. The random factor Target
also had no significant influence on the amplitude of the P1
(p = 0.126) and N2 (p = 0.127). In task 2 (Checkerboard),
the mixed-effect model of ANOVA revealed that the fix factor
Group had a significant influence on the amplitudes of the P1
[F(1, 32.18) = 12.12, p = 0.001]. But the Group had no significant
influence on the amplitude of N2 [F(1, 34) = 3.78, p = 0.06].
The random factor Target had no significant influence on the
amplitude of P1 and N2 responses to the checkerboard stimulus
(p = 0.205 and 0.132, respectively). For the AO stimulus in task
3 and 4, the mixed-effect model of ANOVA revealed that the
fix factor Group had a significant influence on the amplitudes
of the P1 in task 3 [F(1, 34) = 10.1, p = 0.003] and in task 4
[F(1,6.98) = 11.82, p = 0.011]. But the Group had no significant
influence on the amplitude of N2 in task 3 [F(1,31.97) = 1.31,
p = 0.216] and in task 4 [F(1,7.81) = 1.7, p = 0.229]. The random
factor Target had no significant influence on the amplitude of P1
and N2 in task 3 (p = 0.161 and 0.137, respectively) and in task
4 (p = 0.276 and 0.19, respectively).

In addition, the type of motion (translation, contraction,
expansion, and rotation) might differentially affect the spatial
and temporal characteristics of mVEP (Delon-Martin et al.,
2006). For example, the N2 component response to the moving
line (moving leftward) had an asymmetrical activation in
occipito-temporal area (Wang et al., 2006). The P1 and N2
components that respond to expansion and contraction, such as
Newton’s ring stimulus or the checkerboard stimulus, exhibited
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FIGURE 3

The grand average waveforms for all senior subjects (blue line) and all younger subjects (red line) at electrode PO8 response to different kinds of
stimuli. 0 indicate the onset of the stimulus. The center dashed line shows the averaged amplitudes while the shading around the dash line
indicates averaged amplitudes ± SD. (A) Task 1 (B) task 2 (C) task 3 (D) task 4.

symmetrical activations in the occipital lobe (Xie et al., 2012).
Thus, as the AO stimulus was a new paradigm, the topographies
for P1 and N2 in task 3 were further analyzed. Figure 4 illustrates
the grand average amplitude topographic maps of target 1
among all the senior subjects and all the younger subjects at
140 ms and 210 ms. In both age groups, the topographies for
P1 and N2 were all nearly symmetric.

Spectral characteristics of the induced
steady state response

In addition to the above induced transient response,
the steady-state rhythmic EEG components in different age

groups were explored. The steady-state response is mainly
reflected in frequency domain. Thus, the spectral characteristics
of SSVEP/SSMVEP induced by the stimuli in different age
groups were analyzed. The spectra of the EEG data in the
stimulus phase (0–5 s) were calculated. Figure 5 illustrates
the spectra of EEG data averaged from all trials and all
subjects in the same age group (blue line: senior and red
line: young) from Oz in different tasks. Overall, for all
stimulus frequencies, a clean peak at the stimulus frequency
in each spectrum was clearly situated at the corresponding
frequency when subjects in both age groups stared at each
target. The second harmonic of the stimulus frequencies were
either unexpectedly weak or completely absent in SSMVEPs
induced by the checkerboard, which was different from the
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FIGURE 4

The grand average amplitude topographic maps of target 1 in
task 3 among all the senior subjects and all the younger subjects
at 140 and 210 ms.

SSVEPs induced by the flicker. For the AO stimulus, the
second harmonic of the stimulus frequencies occurred in some
targets.

Furthermore, for the SSVEPs induced by the flicker, the
averaged amplitudes of the peak at the flicker frequencies
in senior subjects were slightly lower than those in younger
subjects. For the SSMVEP induced by the checkerboard, the
averaged amplitudes of the peak at the motion frequencies
between senior subjects and younger subjects were highly
similar. For the SSMVEP induced by the AO stimulus, the
averaged amplitudes of the peak at the frame rates in these two
age groups were different among different targets.

Classification accuracies

To compare the BCI system performance between senior
subjects and younger subjects, three algorithms were utilized
to detect SSVEPs/SSMVEPs and classify the target stimulus.
Figure 6 illustrates the classification accuracies with different
data lengths in different age groups (green line: senior and red
line: young). As expected, with the increase in the EEG epoch
length, the classification accuracies increased monotonically in
both groups, regardless of the algorithm used. The average
accuracies in the senior group were lower than those in
the younger group utilizing the CCA-based method, TRCA-
based method and extended CCA-based method in most
cases.

A mixed-effect model of ANOVA was used to quantify the
differences in the accuracies in each task. The analysis results
showed that the fix factors method and data length both had a
significant effect on the accuracies (all p < 0.001) in all tasks, as
expected. However, the fix factor group had no significant effect
on the accuracies in all tasks [task 1: F(1, 34) = 0.34, p = 0.564,

task 2: F(1, 34) = 1.6, p = 0.214, task 3: F(1, 34) = 1.73, p = 0.198,
and task 4: F(1, 34) = 2.58, p = 0.117].

In addition, compared with the CCA-based method, the
TRCA-based method mainly achieved superior performance
with a 1 s data length in both groups. The extended CCA-
based method achieved the best identification performance
in all data lengths in both groups compared with the
other two methods. Moreover, the accuracy of identifying
the traditional flicker stimulus was highest compared with
other stimuli in both groups. The average accuracy achieved
93.75 ± 10.33% within 5 s data length in the senior group.
And the average accuracy achieved 97.85 ± 2.93% within 5 s
data length in the younger group. The accuracy of identifying
the motion checkerboard stimulus was slightly lower. The
average accuracies achieved were 86.39 ± 16.37% in the
senior group and 93.96 ± 5.68% in the younger group. The
accuracy of identifying the AO stimulus in task 3 was lowest
compared with other stimuli. The average accuracies were
71.88 ± 18.68% in the senior group and 83.61 ± 14.08%
in the younger group. While the average accuracies of
identifying the AO stimulus in task 4 (three targets) achieved
87.09 ± 12.87% in the senior group and 92.65 ± 8.47% in
the younger group.

Furthermore, the difference in the accuracies utilizing the
CCA-based method between these two age groups was similar.
However, differences in the accuracies utilizing the TRCA-based
method or extended CCA-based method were great, especially
when identifying AO stimuli. For example, in task 3, the average
accuracy utilizing the extended CCA-based method increased
20% compared with the CCA-based method with 5 s data
length in the younger group. However, in the senior group,
the accuracies utilizing the extended CCA-based method only
increased 8.8% compared with those utilizing the CCA-based
method. A pairwise t-test revealed that the senior group had
a significantly larger difference in the accuracies, utilizing the
extended CCA-based method and the accuracies utilizing the
CCA-based method with 5 s data length, than the younger group
(t =−3.35, p = 0.004) in task 3.

To further compare the relative identification performance
of the stimulus targets based on the multichannel classification
methods in different age groups, the confusion matrices of
the identification accuracy utilizing the extended CCA-based
method with 5 s data length for all participants in the same
age group were calculated, as shown in Figure 7. The color
scale revealed the average classification accuracies and the
diagonals labeled the correct classification accuracies among all
the participants. We observed that the influence of the four
stimulus frequencies on the accuracies was not too great. We
also observed that the identification accuracy of the target 4
was lower than other targets in task 3, which might be caused
of the unexpected peak in the spectrum and inducing the low
amplitude at the stimulus frequency in target 4 as shown in
Figure 5C.
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FIGURE 5

The spectra of electroencephalogram (EEG) data averaged from all the trials and all the subjects in the same age group from Oz in different
tasks. (A) Task 1 (B) task 2 (C) task 3 (D) task 4.

Discussion and conclusion

The results of the current study indicate that (1) the motion
checkerboard and AO stimuli are able to elicit prominent mVEP
with specific P1 peak and N2 valley. The amplitude of the P1
peak in the senior group was significantly higher than that in
the younger group, which might be a potential advantage for
seniors in leveraging mVEP detection to identify when the user
engages with a visual stimulus. (2) Except for the traditional
flicker and the checkerboard stimulus with periodic frequency,
the newly designed AO stimulus can also elicit clearly SSMVEPs
at the stimulus frequency in the senior group. As such, the
SSVEP/SSMVEP-based BCI is feasible for the senior population.
And with the AO stimuli, it has great potential for rehabilitation
applications, common in senior population.

To the best of our knowledge, this is the first study to report
the differences in both transient response and steady-state
response to different kinds of visual stimuli between younger
subjects and senior subjects. In the literature, one study utilized

the approach of capturing the EEG segment occurring at the
onset of the SSVEP stimulus to analyze the transient VEP (Xie
et al., 2012). And the spectral-temporal characteristics of the
EEG induced by the checkerboard are similar to the results in
that study, which utilized the oscillating Newton’s rings as the
motion stimuli with young subjects.

In general, low stimulus frequencies (lower than 4 to 6 Hz)
could evoke a transient VEP. As the stimulus frequencies
increase, the EEG responses overlap one another and merge
into the steady state. Thus, transient VEP only occurs at
the stimulus onset, and then the EEG response changes into
SSVEPs/SSMVEPs in each trial in the current study. In contrast
with flash VEP, mVEP has a much lower amplitude decrease
with increasing retinal eccentricity (Schlykowa et al., 1993).
mVEP displays the largest amplitudes and the lowest inter- and
intra-subject variabilities (Guo et al., 2008). This might be the
reason that the motion stimulus elicits strong mVEP, while the
transient VEP elicited by the flicker was weak in the current
study.
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FIGURE 6

The classification accuracies with different data lengths in different age groups in different tasks. (A) Task 1 (B) task 2 (C) task 3 (D) task 4.

FIGURE 7

The confusion matrices of the identification accuracy (%) utilizing extended canonical correlation analysis (CCA)-based method with 5 s data
length for all participants in the same age group in different tasks. (A) Senior group (B) younger group.
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FIGURE 8

The t-distributed stochastic neighbor embedding (t-SNE) of the correlation coefficients in different age groups. (A) The distribution of the CCA
correlation coefficient ρ in S9 in the senior group. (B) The distribution of the weighted correlation coefficient r in S9 in the senior group. (C) The
distribution of the CCA correlation coefficient ρ in S9 in the younger group. (D) The distribution of the weighted correlation coefficient r in S9 in
the younger group.

Interestingly, the significantly larger amplitude in P1 in
mVEP in the senior group was unexpected. One possible
reason is that the senior subjects paid more attention than
younger subjects, when either checkerboard or AO stimulus was
presented. Many senior subjects reported, post-experiment, that
they were involuntarily counting the times of the movement in
the stimulus during the experiments, while no participants in
the younger group reported doing so. Previous studies found
that the amplitudes of mVEP components can be modulated
by attention (Torriente et al., 1999). “Counting” may help
subjects to be more engaged and concentrate more on the target
stimulus. In the literature, larger amplitudes of VEP in older
females, compared with younger females, were reported, in
which the authors suggested that this was due to a heightened
sensitivity of the older female visual system to patterned
stimuli (La Marche et al., 1986). Furthermore, the characteristics
of mVEP are influenced by the type of visual stimuli. The
reason for the larger amplitude in mVEP still needs further
investigation. The characteristics of the mVEP in senior subjects
may provide a valuable signal modality in designing more
appropriate BCIs for targeting the senior population. This will
be the focus of our future studies. Moreover, the HAROLD
model is mainly supported by evidence in the domains
of episodic memory, semantic memory, working memory,
perception, and inhibitory control. For the EEG response to
the visual stimulus, it exhibited symmetrical activations in the

occipital lobe as shown in Figure 4. The HAROLD model seems
to be not applicable.

On the other hand, the steady-state response, i.e.,
SSVEP/SSMVEP, provides an even more robust way of
determining the subject’s choice of visual target. While no
significant difference was found, the average accuracy of
identifying the flicker stimulus achieved 93.75% in senior
subjects, which was lower than the accuracy in younger subjects
(97.85%), with no statistical significance. A similar level of
difference in accuracies in these two age groups was also
reported a prior study (Volosyak et al., 2017). The current study
also reported that no significant difference was found in the
accuracies of identifying the checkerboard stimulus or the AO
stimulus in the two age groups despite no previous reports.
Consistent with this lack of difference, the BCI performance
between the two groups were not significant. This might be
because the EEG data from channels O1, O2, and POz were not
utilized in the classification. Limited by the EEG device, where
the positions of the electrodes are fixed and no electrodes were
located at O1, O2, and POz.

In the current study, three popular SSVEP algorithms
were investigated. In recent literature, many studies have
utilized TRCA-based methods to process SSVEPs with short
durations (<1 s) and have reported enhanced performance
(Nakanishi et al., 2018). The current study also achieved
improved accuracy with 1 s data length compared with the
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more traditional CCA-based method. However, for longer data
lengths, the current study found no difference in performance
between CCA-based and TRCA-based methods. Furthermore,
the extended CCA-based method achieved the highest accuracy
in three data lengths.

It is worth noting that the improvement in accuracy,
utilizing the extended CCA-based method compared with the
CCA-based method, in the senior group was significantly
lower than that in the younger group for the AO stimulus
in task 3. Even though the accuracies utilizing the CCA-
based method were similar between these two age groups,
the distributions of the CCA correlation coefficient were quite
different. T-distributed stochastic neighbor embedding (t-SNE)
(Van Der Maaten and Hinton, 2008) was utilized to visualize
the distribution of the CCA correlation coefficient ρ and the
weighted correlation coefficient r in different groups. Figure 8
illustrates the t-SNE of S9 in the senior group and S9 in the
younger group. The classification accuracy was 70% utilizing the
CCA-based method in S9 in the senior group. S9 in the younger
group achieved slightly lower accuracy, i.e., 68.75%. The target
on which the participant focused was identified by taking the
maximum CCA coefficient. However, the boundaries among the
four categories are clearer for the younger group (Figure 8C),
than in the senior group (Figure 8A). This implies that the
quality of the individual training data to build the CCA-based
spatial filter, as distributed in the extended CCA-based method,
is better in the younger group. Thus, the extended CCA-
based method achieved better performance improvement in the
younger group, which could also be reflected in Figures 8B,D.
Thus, detecting SSMVEPs induced by AO stimuli for seniors
calls for better more complex algorithms, which is another
research direction.

Furthermore, the current study shows for the first time that
the AO-based BCI is feasible for the senior population. The
average accuracies of identifying the target stimulus on which
the senior participant focused among four AO stimuli (i.e., the
left-hand opposition movement, the left-hand pinch, the right-
hand opposition movement, and the right-hand pinch) and
three AO stimuli (i.e., left-hand grasping, right-hand grasping,
and dorsiflexion) reached 71.88 ± 18.68% and 87.09 ± 12.87%,
respectively. It is observed that the accuracies in these two tasks
are quite different. Even though the stimulations are both AO
stimuli in task 3 and task 4, several differences exist. First, it is
the four-target classification in task 3, while it is the three-target
classification in task 4. In addition, the parameters of the AO
stimulus, such as different frame rates and different actions, are
different. This finding is in line with our recent study, which
showed that the parameters of the AO stimulus influence the
classification accuracy (Zhang et al., 2021a).

Overall, the current study reports the differences in spectral-
temporal characteristics of the EEG induced by the three types
of visual stimuli: flicker, checkerboard, and AO, in both senior
and younger groups. The characteristics of the mVEP in senior

subjects may provide a valuable signal modality in designing
more appropriate BCIs for targeting the senior population. Not
only the traditional flicker and the checkerboard stimulus with
periodic frequency but also the newly designed AO stimulus,
including various actions, could clearly elicit SSMVEP at the
stimulus frequency in both age groups. The accuracies of
identifying SSVEP/SSMVEP in the senior group were slightly
lower than those in the younger group. These findings may
be helpful for researchers designing algorithms to achieve high
classification performance, specifically for senior subjects. In
addition, current study focused on the transient and steady
state responses in occipital cortex to different visual stimuli in
senior and younger subjects and investigating the applicability of
typical algorithms in dealing with senior EEG signals. Analysis
of the SMR and the brain network in task 3 and 4 will
be our next study.
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