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ABSTRACT: Over the last three decades, measuring
and modulating cerebellar activity and its connectivity with
other brain regions has become an emerging research
topic in clinical neuroscience. The most important con-
nection is the cerebellothalamocortical pathway, which
can be functionally interrogated using a paired-pulse
transcranial magnetic stimulation paradigm. Cerebellar
brain inhibition reflects the magnitude of suppression of
motor cortex excitability after stimulating the contralateral
cerebellar hemisphere and therefore represents a neuro-
physiological marker of the integrity of the efferent cere-
bellar tract. Observations that cerebellar noninvasive
stimulation techniques enhanced performance of certain
motor and cognitive tasks in healthy individuals have
inspired attempts to modulate cerebellar activity and con-
nectivity in patients with cerebellar diseases in order
to achieve clinical benefit. We here comprehensively

explore the therapeutic potential of these techniques in
two movement disorders characterized by prominent cer-
ebellar involvement, namely the degenerative ataxias and
essential tremor. The article aims to illustrate the (patho)
physiological insights obtained from these studies and
how these translate into clinical practice, where possible
by addressing the association with cerebellar brain inhibi-
tion. Finally, possible explanations for some discor-
dant interstudy findings, shortcomings in our current
understanding, and recommendations for future research
will be provided. © 2019 The Authors. Movement Disor-
ders published by Wiley Periodicals, Inc. on behalf of Inter-
national Parkinson and Movement Disorder Society.
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The cerebellum is a highly complex brain region that
fulfills a crucially important role in a variety of seemingly
natural processes, including postural control, locomotion,
and numerous cognitive functions. As an integration

center receiving multimodal sensorimotor information
from the spinal cord, cerebral cortex, and vestibular
nuclei, it continuously compares efference copies and
reafference signals and corrects for discrepancies between
them to enable the execution of smooth, well-coordinated
movements. Notably, given the dearth of direct connec-
tions between the cerebellum and peripheral nervous sys-
tem, this intricate task is mainly accomplished by
modulating the excitability of the primary motor cortex
through the cerebellothalamocortical tract.1,2

In 1995, Ugawa and colleagues demonstrated the possi-
bility of quantifying the integrity of the cerebellothala-
mocortical pathway as a neurophysiological outcome
measure by means of a painless paired-pulse transcranial
magnetic stimulation (TMS) paradigm.3,4 In an influential
series of experiments, they showed a reduction of the
motor evoked potential (MEP) amplitude when a condi-
tioning stimulus was delivered across the contralateral
skull base in a time window of 5 to 7 ms prior to a mag-
netic pulse over the motor cortex.4 Given the absence of
such a suppression effect in two patients with cerebellar
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dysfunction and the observation that the most effective
stimulation position to diminish MEP amplitude cor-
responded to the cerebellar hemisphere, they deduced that
the cerebellummust play a pivotal role. From a physiologi-
cal perspective, Purkinje cells exert an inhibitory tone on
the deep cerebellar nuclei, which constitute the sole cere-
bellar outflow system. Their excitatory projections to the
contralateral motor cortex are relayed within the ventro-
lateral thalamus (Fig. 1). The net effect of a cerebellar con-
ditioning stimulus would therefore consist of an activation
of Purkinje cells, inhibition of deep cerebellar nuclei, and
thus a reduction of the contralateral motor cortex excit-
ability, a phenomenon called cerebellar brain inhibition
(CBI). Subsequent investigations in patients with cerebel-
lar ataxia due to lesions in different pathways revealed
that CBI is reduced or absent in case of pathology involv-
ing the efferent cerebellar tract. On the other hand, when
afferent cerebellar systems were implicated, patients were
found to display normal motor cortex inhibition.5-8

In healthy individuals, repeated CBI measurements have
been conducted to examine the role of the cerebellum and
dynamic alterations of its excitability in motor tasks.
These studies have contributed to a better understanding
of the underlying neural basis of motor learning. For
instance, the decline of CBI that was found to occur in a
visuomotor reach adaptation task when perturbations
were introduced abruptly (large errors), but not gradually

(small errors), suggests that distinct neural mechanisms
are engaged in response to errors of varying size and that
the cerebellum is most implicated early on during the
motor adaptation process.9 A reduction of CBI magnitude
was later confirmed to be specific to the early (rather than
late) stage of skill learning.10,11 Interestingly, CBI alter-
ations correlated with the amount of skill acquisition and
locomotor adaptation, which indicates a direct association
between changes in the degree of cerebellar excitability
and performance of these tasks.10,12 Similar reductions in
CBI have been reported during both the execution and
observation of a visuomotor procedural learning task that
is dependent on a proper cerebellar function, but only if
the learning had not been acquired previously.13 The
mechanistic underpinning of reduced CBI during the pro-
cess of motor learning possibly entails a temporarily
diminished excitability of Purkinje cells due to a decrease
in synaptic transmission efficacy between parallel fibers
and Purkinje cells, emanating from simultaneous activa-
tion of climbing and parallel fibers. This phenomenon has
been established in vivo in animal studies and named long-
term depression.11,14-17

Beyond measuring the excitability of the cerebellum,
modulation of its activity and connectivity with other
brain regions by noninvasive stimulation techniques
has gained increasing attention and may represent a
novel exciting approach in the treatment of cerebellar

(A)

(B) (C)

FIG. 1. (A) Excitatory and inhibitory projections of the cerebellothalamocortical pathway and the putative effects of cerebellar anodal and cathodal
transcranial direct current stimulation (tDCS), high-frequency and low-frequency repetitive transcranial magnetic stimulation (rTMS), and intermittent
and continuous theta burst stimulation (TBS). (B) A single suprathreshold TMS pulse over the primary motor cortex elicits a motor evoked potential
(MEP), which decreases in size when the test stimulus (TS) is preceded by a conditioning stimulus (CS) over the contralateral cerebellar hemisphere
within an interval of 5 to 7 ms. This physiological phenomenon, which depends on the integrity of the cerebellothalamocortical pathway, is called cere-
bellar brain inhibition (CBI). (C) The MEP amplitude following paired-pulse stimulation is expressed as a percentage of the unconditioned MEP ampli-
tude. Significant suppression in healthy individuals typically occurs when interstimulus intervals are set at 5 to 7 ms. [Color figure can be viewed at
wileyonlinelibrary.com]
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disorders. In this article, after an introduction highlight-
ing some basic physiological principles and promising
study results in healthy individuals, we comprehensively
explore the therapeutic potential of noninvasively mod-
ulating a damaged and/or malfunctioning cerebellum
and show how this has expanded our pathophysiologi-
cal insights. Where possible, the association with CBI
will be addressed. Finally, possible explanations for the
sometimes discordant interstudy findings, shortcomings
in our current understanding, and recommendations for
future research will be discussed.

Noninvasive Modulation of
Cerebellar Activity in Healthy

Adults

Following the widespread usage of transcranial direct
current stimulation (tDCS) and repetitive TMS (rTMS),
including theta burst stimulation (TBS) protocols, over dif-
ferent areas of the cerebral cortex, the similar application
of these techniques over the cerebellum has only relatively
recently been embraced. Both modalities have been shown
to induce changes in neural activity that outlast the dura-
tion of stimulation. More specifically, low-frequency
rTMS (≤ 1 Hz), continuous TBS (cTBS), and cathodal
tDCS decrease the excitability of neurons in the targeted
region, whereas opposite effects can be elicited by high-
frequency rTMS (≥ 5 Hz), intermittent TBS (iTBS), and
anodal tDCS.18 Although the net results of these interven-
tions with respect to neuronal excitability may be similar,
each of them has intrinsic advantages and disadvantages
that have been discussed extensively elsewhere.19

Trains of repetitive magnetic stimuli generally provoke a
transient modulation of neural activity in a selected cortical
area, which may elicit measurable behavioral effects. Low-
frequency rTMS over the medial cerebellum in healthy
adults has been demonstrated to reduce the magnitude of
saccadic adaptation and increase variability on the paced
finger-tapping task, whereas an impairment of procedural
learning was observed when the cerebellar hemispheres
were targeted.20-22 Furthermore, application of cTBS over
the right cerebellar hemisphere interfered with the normal
acquisition of conditioned eyeblink responses in individ-
uals naïve to this motor learning paradigm and brought
about a lower number of category switches during the early
phase of a phonemic fluency task.23,24 Last, cTBS delivered
over the midline cerebellum increased the sway path length
and the oscillations of the center of pressure.25 Long-term
depression-like effects are proposed to underlie the afore-
mentioned behavioral manifestations of cerebellar cTBS
and low-frequency rTMS.18 Indeed, observed neurophysi-
ological alterations directly following the administration of
these interventions in healthy adults include an increased
unconditioned MEP amplitude derived from contralateral
motor cortex stimulation and a significant CBI reduction

that lasted for at least 30 minutes after the end of stimula-
tion.26,27 These changes probably indicate the release
of tonic inhibition of Purkinje cells on deep cerebellar
nuclei. High-frequency rTMS and iTBS, on the other hand,
are thought to increase synaptic strength (long-term
potentiation-like effects).18 Accordingly, midline cerebellar
iTBS targeting one of the nodes of the dorsal attentional
network was found to enhance functional connectivity
with cortical regions within this network and improved
sustained attentional control, while an induced alteration
of the activity in the posterolateral cerebellum, more specif-
ically Crus I/II, modulated the connectivity within the
defaultmode network.28,29

At variance with TMS, which employs the principle of
electromagnetic induction and involves the use of an exter-
nal coil to instantaneously generate action potentials in
cortical axons, the weak electric currents (1–2 mA) that
are applied in tDCS by means of two electrodes are
thought to modulate the excitability of the neuronal mem-
brane potential toward depolarization (anodal stimula-
tion) or hyperpolarization (cathodal stimulation).30 The
orientation of neural structures in the target area relative
to the current flow and their pre-existing physiological
state are two key factors that critically affect the likelihood
of neuronal discharge and therefore the efficacy of stimula-
tion.31 In modeling studies, cerebellar tDCS has been
shown to selectively influence the cerebellar hemispheres
with only minor spread of the electric field toward the
occipital cortex and negligible spreading to the brainstem
and the heart, rendering this a safe technique.32,33 In a
seminal article, Galea and colleagues showed that a
25-minute session of tDCS over the right cerebellar hemi-
sphere can modulate cerebellar excitability in young,
healthy individuals in a polarity-specific manner– that is,
anodal tDCS increased CBI, cathodal tDCS decreased
CBI, and sham stimulation left CBI unchanged.34

Subsequently, anodal cerebellar tDCS was reported to
enhance acquisition in visuomotor adaptation, locomotor
adaptation, delay eyeblink conditioning, skill learning,
and postural control adaptation tasks in healthy individ-
uals.35-39 These results could, however, not always be
reproduced.40,41 Cathodal cerebellar tDCS, on the other
hand, caused slower adaptation, significantly fewer condi-
tioned responses in an eyeblink conditioning paradigm,
and reduced forward digit spans.36,38,42However, a recent
meta-analysis found no evidence for such polarity-
dependent effects.43

Although most investigations that evaluated the effects
of cerebellar tDCS were performed in young adults, posi-
tive results on postural stability and motor learning have
also been described in healthy elderly individuals.44-46 A
single round of cerebellar anodal tDCS decreased postural
sway and increased Berg Balance Scale (BBS) scores com-
pared to sham stimulation in a randomized double-blind
study.44 Furthermore, while older individuals are known
to display a considerably slower motor adaptation rate, it
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took only one bout of anodal cerebellar tDCS to acquire a
performance level comparable to that of a younger sham
group.45 Finally, as an adjunct to postural training, multi-
ple rounds of bilateral cerebellar anodal tDCS improved
anterior-posterior and mediolateral stability indices and
BBS scores in a multiple-arm, randomized controlled trial
in older adults with a high fall risk, whereas the groups
that received only postural training or bilateral cerebellar
anodal tDCS remained at baseline level.46

Besides rTMS and tDCS, transcranial alternating cur-
rent stimulation (tACS) has recently emerged as a third
noninvasive neuromodulation technique.47 In brief, exter-
nally imposed sinusoidal currents at a specific frequency,
phase, and intensity selectively intervene with endogenous
brain oscillations, which may, in turn, generate electro-
physiological and behavioral effects.31,48,49 Indeed, the
application of cerebellar tACS at a frequency near the
basal firing rate of Purkinje cells (50 Hz) has been shown
to modulate CBI and affect the performance of a right-
hand motor task.50,51 Interestingly, interference with the
surrounding inhibitory interneuronal network using
300-Hz tACS induced opposite effects on CBI, highlight-
ing the frequency specificity of this modality.50,51 Finally,
simultaneous antiphase gamma tACS over a cerebellar
hemisphere and the contralateral motor cortex in order to
strengthen the network may constitute a more effective
strategy than isolated stimulation of each of these
regions.52,53

In summary, noninvasive cerebellar stimulation tech-
niques are able to modulate cerebellar activity and the
connectivity with other brain regions, as exemplified by
the modulation of the degree of CBI. From a clinical
perspective, especially cerebellar anodal tDCS has been
demonstrated to enhance postural control in the elderly
and induce a higher level of performance with a faster
reduction of (large) errors in motor learning tasks in
both younger and older adults. However, behavioral
effects have not always been consistent.

Effects of Noninvasive Cerebellar
Stimulation in Diseases Affecting The

Cerebellum

Following the aforementioned encouraging observations
that performance of certain motor and cognitive tasks
could be enhanced in healthy individuals, investigators
started to explore whether modulating the excitability
and connectivity of a damaged and/or malfunctioning
cerebellum may also benefit patients with various types of
cerebellar dysfunction.54 In the ensuing section, we com-
prehensively discuss these studies and discern two disease
models that share primary involvement of the cerebellum:
(1) degenerative ataxias, characterized by an insidious
onset and gradually progressive course (Table 1), and
(2) essential tremor (ET), which is hypothesized to arise

mainly from a complex functional perturbation along
the cerebellothalamocortical pathway (Table 2). Stroke-
related ataxia can be considered a third model of cerebellar
dysfunction, epitomizing an acute, static cerebellar insult,
but we will not review these studies in the main text of this
article. A description of their results can be found in
Supporting Information Table S1.

Degenerative Cerebellar Ataxias
Noninvasive cerebellar stimulation techniques have

shown tentatively promising, yet not always consistent,
results in patients with degenerative ataxias for whom
disease-modifying and symptomatic treatments are cur-
rently lacking. Shiga and colleagues were among the
first to touch upon this topic by conducting a sham-
controlled trial in 74 patients with “sporadic or heredi-
tary spinocerebellar degeneration.” They delivered
10 TMS pulses at 100% of maximum stimulator out-
put for 21 consecutive days over both cerebellar hemi-
spheres and the inion. After three weeks of stimulation,
gait speed and standing capacities had improved to a
greater extent in the intervention group compared to
the sham group. Of note, beneficial effects were larger
in individuals with pure cerebellar atrophy than in
those with olivopontocerebellar atrophy. This improve-
ment was maintained until at least six months after trial
cessation when TMS was continued once or twice a
week, whereas stimulating once every two weeks
quickly led to a return to baseline results.55 However,
effects on upper limb coordination, speech, and CBI
were not addressed, and the authors did not record the
precise distribution of ataxia etiologies. Using an identi-
cal TMS protocol in a single patient with idiopathic
late-onset cerebellar atrophy, Farzan and colleagues
noticed improvements in speech, dysmetria, and tremor,
increased gait speed in normal walking and during cog-
nitive dual tasking, and decreased postural sway, para-
lleled by a reduction of CBI that persisted after
six months.56 Finally, Manor and colleagues recently
published the outcomes of a randomized, double-blind,
sham-controlled trial in which 20 subjects with various
genetically confirmed spinocerebellar ataxias (SCAs)
received 20 daily sessions of the aforementioned TMS
regimen.57 Unfortunately, there were significant base-
line differences between the rTMS and sham groups,
with the former exhibiting a lower score on the Scale
for the Assessment and Rating of Ataxia (SARA),
which denotes less severe ataxia, and a faster execution
of the Nine-Hole Peg Test (9HPT). The investigators
therefore computed the percent change in each outcome
from baseline to follow-up and reported a larger
decrease in SARA score after one month in rTMS-
treated patients, which proved to be due to a better per-
formance on the stance item only. These results were
corroborated by more quantitative kinetic postural
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control tests and the absence of improvement on the
9HPT, suggesting that axial functions may be more sus-
ceptible to modification than the appendicular ones.
Cerebellar tDCS might be an exciting new avenue in

the treatment of heredodegenerative ataxias that is
cheaper, portable, and easier to use compared to TMS
devices. In a group of 9 patients with ataxia of various
etiologies, anodal tDCS induced a lower amplitude of
long-latency stretch reflexes in the upper limbs, though
without amelioration of coordination deficits.58

Accordingly, two sham-controlled studies from the
same German group, which included 20 and 14 individ-
uals with heterogeneous cerebellar degenerative disor-
ders, failed to show benefit of anodal tDCS over the
right cerebellar hemisphere in a force-field reaching
adaptation task and grip force control task involving
the ipsilateral arm.40,59 At odds with previous research,
these investigators also did not find faster motor adap-
tation in healthy age-matched and younger controls
after anodal cerebellar tDCS.40

In contrast, significant improvements of upper limb pos-
tural and action tremor and hypermetria were observed in
two SCA2 patients after a protocol involving cerebellar
anodal tDCS immediately followed by anodal tDCS over
the contralateral motor cortex. These were objectified by
spectral analysis of accelerometric data and a decrease of
3 and 3.5 points in the SARA score.60 Similarly, the same
authors reported a reduction of upper limb postural
tremor amplitude in a subject with cerebellar ataxia due to
an ANO10 gene mutation using a modified stimulation
technique, with the anode over the right cerebellar hemi-
sphere and the cathode now over the left motor cortex.61

Further promising results have come from three random-
ized, double-blind, sham-controlled trials from an Italian
group.62-64 In a heterogeneous sample of nineteen patients
with both acquired and hereditary ataxias, Benussi and
colleagues showed significantly faster execution of the
8-meter walk test (8MWT) and 9HPT along with a mean
decrease of 1.7 points in the SARA score after a single ses-
sion of anodal cerebellar tDCS.64 In their next study, these
investigators applied a two-week treatment regimen, pre-
sumed to generate more cumulative cerebellar excitability
changes,65 in a group (n = 20) with ataxia of heteroge-
neous etiologies and showed significant ameliorations in
the 8MWT, 9HPT, and SARA score after two weeks of
stimulation, the latter still present after three months of
follow-up.63 Notably, the reductions in the SARA scores
of approximately 3 points roughly correspond to a disease
progression of two years in SCAs.66 Furthermore, these
clinical effects were paralleled by an increase in CBI that
also persisted after three months. The significant correla-
tion between symptomatic improvement and return of
CBI may imply that a functional restoration of the cer-
ebellocerebral connection is involved in the reduction of
ataxia symptoms, but causality cannot be inferred.
Patients with less severe ataxia tended to have the largest

clinical benefits, probably indicating that the volume of
viable cerebellar cortex that can be stimulated is of para-
mount importance. Interestingly, equally positive effects
on ataxia severity, gait speed, manual dexterity, and CBI
were obtained after a two-week treatment with cerebel-
lospinal tDCS in a crossover design involving 21 individ-
uals, again with mixed etiologies.62 The results of all these
studies are encouraging, but further double-blind, sham-
controlled, randomized clinical trials are required in more
homogeneous cohorts of patients. By corollary, these
would yield more robust conclusions per entity and will
facilitate decision-making processes regarding implemen-
tation. The varying degree of pathological involvement of
the cerebellar nuclei (and cerebellar cortex) per condition
may be a pivotal factor, which is not covered in studies
with ataxias of heterogeneous etiologies. To this end, a
cerebellar tDCS trial involving only SCA3 patients is now
ongoing in our center (the Netherlands Trial Register
NL7321),67 and we are aware of studies focusing on
Friedreich ataxia (FA) and the cerebellar type of multiple
system atrophy (MSA-C).
Importantly, an extended schedule comprising 60 daily,

remotely supervised tDCS sessions has proven feasible in
cerebellar ataxia. This observation may pave the way
toward future application of tDCS in a home-based set-
ting if efficacy can be established on a larger scale.68

Essential Tremor
ET is caused by abnormal oscillatory activity in a net-

work involving the motor cortex, cerebellum, thalamus,
and possibly the brainstem.69,70 Multiple lines of evidence
point to the cerebellum as a key player in the pathophysiol-
ogy of this disorder. Using a combined electromyography/
functionalMRI (fMRI) approach, increased tremor-related
activity was found in multiple areas bilaterally in the cere-
bellum.71 Furthermore, ET patients exhibited reduced
effective connectivity between the cerebellar cortex and
dentate nucleus72 and increased functional connectivity
between the cerebellar cortex and thalamus.73 Postmortem
studies revealed pathological changes in all Purkinje cell
compartments in the cerebellar cortex (i.e., dendrites,
axons, and cell bodies) and reduced gamma-aminobutyric
acid (GABA) levels in the dentate nucleus.74,75 The role of
GABAergic dysfunction in ET has been further elaborated
by nuclear imaging, showing increased 11C-flumazenil
binding in cerebellothalamocortical pathways.76 Taken
together, these investigations indicate reduced function of
the cerebellar cortex in ET, a disinhibition of the deep cere-
bellar nuclei, and an increased dentate-thalamo-cortical
drive, which could theoretically result in an abnormal
decrease in CBI.
However, two previous CBI studies have reported con-

flicting outcomes. Hanajima and colleagues found CBI to
be significantly reduced compared to healthy controls and
therefore proposed involvement of the cerebellar efferent
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tract in ET.77 In contrast, Pinto and colleagues showed nor-
mal CBI in younger, more severely affected individuals.
Moreover, cerebellar TMS did not result in tremor reset in
this study. It was therefore concluded that the tremor oscil-
lator may not reside within the cerebellar cortex, but
should be sought in the cerebellar afferent pathway,
although the small sample size and interindividual variabil-
ity in ET may also have contributed to the null finding.78

These same investigators later performed TMS examina-
tions in 6 ET patients who had undergone unilateral DBS
of the thalamic ventralis intermedius (VIM) nucleus. Rely-
ing on the results of their previous work, they ascribed the
absence of CBI when DBS was turned off to a thalamic
lesion effect (rather than to disease-specific, intrinsic
cerebellothalamocortical tract dysfunction) and showed
return of CBI, albeit to a lesser extent than healthy control
subjects, in the ON condition.79 At first sight, it seems
rather puzzling how VIM-DBS, which is thought to inhibit
thalamic neurons through synaptic fatiguing,80 can rein-
state CBI. A possible explanation would be that DBS selec-
tively suppresses the transmission of pathological signals
from the thalamus to the cerebral cortex, leaving the physi-
ological signals along this tract unaffected.
Over the last years, various interventional studies have

been conducted in ET using cerebellar 1-Hz rTMS, cTBS,
cathodal tDCS, and tACS.81-87 Unlike in healthy controls,
one session of cTBS over the right cerebellar hemisphere
did not diminish contralateral motor cortex excitability in
16 ET patients, nor did it improve tremor severity, ampli-
tude, frequency, or the kinematics of reaching move-
ments.81 Conversely, a significant, but transient, clinical
antitremor effect lasting 5 to 60 minutes was noticed after
a single bout of 1-Hz rTMS over the midline cerebellum.83

An open-label trial investigated the efficacy of a 5-day
course of bilateral cerebellar 1-Hz rTMS and reported a
significant improvement of tremor severity, writing/draw-
ing tasks, and tremor-related functional disability that was
still present after 12 and 29 days. Hence, it is possible that
multiple rounds of stimulation also induce cumulative
effects in ET.86 Furthermore, using resting-state fMRI,
these authors showed that the functional connectivity
between the cerebellum and motor cortex, which was
severely reduced at baseline compared to healthy age-
matched controls, increased significantly after five days of
cerebellar rTMS. Interestingly, the degree of recovery of
the functional connectivity on the fifth day was a predictor
of tremor severity at day 12. A drawback of this study,
however, was the absence of a sham control group.86

Finally, the efficacy of five daily sessions of low-frequency
bilateral cerebellar rTMS as add-on treatment has been
investigated recently in a single-blind, randomized, sham-
controlled study involving 22 patients who still exhibited a
troublesome tremor despite using propranolol and/or clo-
nazepam. Both groups displayed a significant decrease in
total Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS)
score and subscale scores immediately and after

four weeks. Importantly, there was no significant group
effect and no change in activities of daily living (ADL).87

Ten consecutive sessions of bilateral cathodal cerebel-
lar tDCS—also aimed at decreasing Purkinje cell
excitability—failed to produce any clinical benefits in
ET patients.84 Last, a second study with fewer patients
and no control group suggested an improvement in
ADL and tremor severity after 15 sessions of cathodal
cerebellar tDCS.85 However, the methodological qual-
ity of the latter, as assessed by the PEDro score, was
found to be the lowest of the articles discussed in a
recent systematic review.88

Given its potential to interfere with endogenous brain
oscillations, cerebellar tACS is a particularly useful tool to
investigate the pathophysiology of tremor. Cerebellar
tACS at tremor frequency was able to entrain the phase of
the ongoing tremor in patients with Parkinson’s disease
(PD) and ET, suggesting that the cerebellothalamocortical
tract is either part of or connected to the tremor oscillator.
Interestingly, entrainment was stronger in patients with a
lower frequency tolerance, a newly introduced measure
that denotes the range of frequencies over which a tremor
is stable.82 This finding indicates that a finely tuned set of
oscillators (with a narrower frequency tolerance) is more
susceptible to interference than a loosely tuned circuit
(with a broader frequency tolerance). Future studies may
also determine the characteristics of dystonic tremor in this
context.

Discussion and Future
Perspectives

Although the anatomical connections between the cere-
bellum and contralateral motor cortex were described
already in the 1960s in animal experiments, some time
had elapsed before novel technological interventions
allowed the functional exploitation of this tract in
humans. The emergence of CBI—an indirect, quantifiable
measure of cerebellar excitability—has enriched our
understanding of the underlying neural basis of a number
of intricate motor tasks in which the cerebellum is impli-
cated.9-13 In neurological diseases, it represents a marker
that may provide evidence of a functionally or structurally
compromised cerebellothalamocortical pathway and
therefore deserves to be utilized more frequently as an out-
come measure in future cerebellar stimulation trials.
Moreover, modulation of cerebellar excitability and con-
nectivity with other brain regions by rTMS or tDCS is a
burgeoning area of research that seeks to provide novel
insights into the normal functioning of the cerebellum as a
node amid various neural networks. The application of
noninvasive stimulation modalities in several movement
disorders and psychiatric diseases aims to shed new light
on the specific role of the cerebellum in their frequently
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complex pathogenesis and may, in certain cases, also
prove to be of therapeutic benefit.54,89

Some noteworthy observations of the studies we have
reviewed need to be highlighted. First of all, it is important
to realize that their methods differed to a great extent with
respect to the number of sessions, specificmode of stimula-
tion, and precise placement of the TMS coil or tDCS elec-
trodes. Nevertheless, several investigations in healthy
elderly individuals suggest that cerebellar anodal tDCS
may be an effective approach to enhance postural control,
especially when applied in combination with postural
training, and overcome age-related declines in motor
learning.44-46 In addition, encouraging results of this stim-
ulation technique have also been reported in patients with
degenerative cerebellar ataxias, although the scarcity of
adequately powered, randomized, double-blind, sham-
controlled trials and lack of etiological homogeneity in
these studies are important shortcomings that need to be
appreciated. Yet, multiple rounds of stimulation have
repeatedly been shown tomitigate ataxia and induce func-
tional improvement, particularly when medial cerebellar
structures were targeted, possibly hinting toward induc-
tion of synaptic plasticity.62,63,68 By contrast, the effects of
a single bout that involves one of the cerebellar hemi-
spheres appear to be less consistent.40,58-61 Second, CBI
seems to be reduced in degenerative cerebellar diseases,
but can potentially return into the physiological range
after multiple sessions of anodal cerebellar or cerebel-
lospinal tDCS. Interestingly, the significant correlation
with symptomatic improvement in these studies likely
reinforces the direct relevance of the CBI concept in ataxia
of degenerative origin, although causality can of course
not definitively be inferred.62,63 Third, opposing results
regarding CBI and the modulation of cerebellar activity
have been reported in patients with ET, possibly reflecting
the clinical and pathological heterogeneity of this
entity.90,91 Still, repeated sessions of 1-Hz cerebellar rTMS
(albeit in a single open-label study) seem to be more effec-
tive than cathodal tDCS or cTBS,81,84,86 and partial resto-
ration of the cerebellothalamocortical pathway may be
realized by virtue of thalamic VIM-DBS, which is associ-
ated with reduction of tremor severity.79 However, given
the small number of patients included and lack of well-
designed studies that have reproduced these results, the
findings should be interpreted with caution. Furthermore,
the value of cerebellar rTMS as add-on therapy to the reg-
ular, first-line drugs has been questioned recently.87

In addition to its application in degenerative ataxias
and ET, the usefulness of noninvasive cerebellar stimu-
lation techniques has also been examined in individuals
with cerebellar ataxia resulting from posterior circula-
tion stroke.92-95 The latter may be considered a third
model of cerebellar dysfunction, exemplifying an acute,
static cerebellar insult. We have not discussed these
investigations here, but a description of their results can
be found in Supporting Information Table S1. In brief,

the designs of the few studies that have been performed
in stroke-related ataxia were highly heterogeneous in
terms of stimulation location (over the injured vs. the
healthy cerebellar hemisphere), time frame (acute
vs. chronic stroke), duration of stimulation (1, 5,
10, and 14 sessions), and stimulation mode (aimed to
increase or decrease the excitability of cerebellar corti-
cal neurons).92-95 This precludes a robust conclusion on
the direction of effect of noninvasive cerebellar stimula-
tion in cerebellar stroke. Randomized trials with har-
monized stimulation targets and protocols are
clearly needed in this area. Of note, patients with mid-
dle cerebral artery stroke showed improvement in gait
and balance functions after contralateral cerebellar
iTBS.96

A general remark pertaining to the bulk of studies dis-
cussed here concerns the lack of cerebellocerebral connec-
tivity measurements (before and) after noninvasive
cerebellar stimulation, which hampers any correlation
with clinical changes and thus limits the understanding of
the underlying neurophysiological processes. Further-
more, some critical reflections should be made regarding
the (sometimes) inconsistent interstudy CBI findings. First,
as opposed to the aforementioned investigations in degen-
erative cerebellar disorders, CBI could be elicited normally
in six patients with stroke-related ataxia and in one with
idiopathic late-onset cerebellar atrophy, and moderate
clinical improvement was paralleled by a decrease, rather
than increase, of CBI after cerebellar stimulation in these
cases.56,92 It may thus be argued that the magnitude of cer-
ebellocerebral connectivity and its alteration following
stimulation depend on the specific etiology and course of
cerebellar pathology, reflecting the variable involvement
of cerebellar components and underlying neurophysiolog-
ical processes in different disorders. Second, this and other
observations raise the question of which cerebellar struc-
ture becomes primarily modulated by noninvasive stimu-
lation. The figure depicts the commonly held view,
pointing to the Purkinje cells in the cerebellar cortex. A
number of studies reviewed here, however, report CBI
results that are discordant with these assumptions.
Accordingly, the situation seems to be much more com-
plex, probably relating to the complicated cerebellar
cytoarchitecture and folding pattern as compared to the
cerebral cortex,30 and the figure should merely be consid-
ered a simplified model. Technical considerations that
may affect CBI data include the degree to which the TMS
coil fits the participant’s head and potential coactivation
of the brainstem corticospinal tract when using high-
intensity cerebellar conditioning stimuli.97,98 Third, stimu-
lationmodes known to have opposing effects on cerebellar
excitability sometimes induced similar clinical results.
Analogous to DBS,99 which was initially thought to exert
its effects simply by local inhibition of the target structure,
it is readily conceivable that cerebellar noninvasive stimu-
lation techniques not just act via a single unifying
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mechanism of local inhibition or excitation, but rather in
multiple ways influencing a whole network.100-103 Fourth,
other possible explanations for the sometimes contradic-
tory results may include differences in the disease duration
and/or stage of participants, the generally small number of
patients, heterogeneity of neuropathology in spite of
apparently similar phenotypes, and differences in cerebral
resilience and compensation dynamics related to a static
lesion or progressive disorder.
The next challenges regarding cerebellar stimulation in

degenerative ataxias lie in investigating homogeneous
cohorts in terms of (genetic) etiology, exploring the effect
and optimal timing of a follow-up stimulation session, and
studying the added effect to intensive training interven-
tions. Future investigations in ET would mainly benefit
from including larger numbers of patients exhibiting a sim-
ilar clinical phenotype and comparable disease severity.
The importance of “deeper phenotyping of ET” and
including more homogeneous populations in intervention
studies was endorsed by the International Parkinson and
Movement Disorder Society, which led to the recent publi-
cation of a consensus statement on tremor classification.104

Besides the clinical effects on the severity of ataxia,
tremor, or cognitive dysfunction, measures of cer-
ebellocerebral connectivity, such as CBI, should be deter-
mined more regularly to better characterize the
neurophysiological substrate of clinical changes after cere-
bellar stimulation. Last, the addition of imaging tech-
niques and other neurophysiological markers of cerebellar
dysfunction may also prove to be a valuable strategy to
enhance our understanding of the mechanisms underlying
cerebellar stimulation.
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